ABELIAN SURFACES WITH SUPERSINGULAR GOOD REDUCTION AND NON SEMISIMPLE TATE MODULE

MAJA VOLKOV

ABSTRACT. We show the existence of abelian surfaces \mathcal{A} over \mathbb{Q}_p having good reduction with supersingular special fibre whose associated *p*-adic Galois module $V_p(\mathcal{A})$ is not semisimple.

2000 Mathematics Subject Classification: 11G10, 14K15, 14G20. Keywords: Abelian varieties, local fields, Galois representations.

CONTENTS

Introduction	1
1. The general method	2
2. A lift of the twofold product of a supersingular elliptic curve	4
3. A lift of a simple supersingular abelian surface	6
References	7

INTRODUCTION

Fix a prime number p and an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p . Write $G = \operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ for the absolute Galois group of \mathbb{Q}_p . For a *d*-dimensional abelian variety \mathcal{A} over \mathbb{Q}_p let $\mathcal{A}[p^n]$ be the group of p^n -torsion points with values in $\overline{\mathbb{Q}}_p$ and

$$V_p(\mathcal{A}) \stackrel{=}{=} \mathbb{Q}_p \otimes_{\mathbb{Z}_p} \lim_{\substack{ n \geq 1 \\ n \geq 1 }} \mathcal{A}[p^n].$$

This is a 2*d*-dimensional \mathbb{Q}_p -vector space on which G acts linearly and continuously. We want to consider the following problem: find abelian varieties \mathcal{A} over \mathbb{Q}_p having good reduction with supersingular special fibre and such that the Galois module $V_p(\mathcal{A})$ is not semisimple. In this paper we show the existence of two such varieties with nonisogenous special fibres for the least dimension possible, namely for d = 2. In fact our procedure easily generalises to any $d \geq 2$, however we stick to surfaces as they furnish low-dimensional hence simple to describe representations.

The existence of such surfaces follows from the characterisation of p-adic representations of G arising from abelian varieties with (tame) potential good reduction obtained in [Vo], and indeed provides an example of application of this result. In order to explicitly describe our objects we use Fontaine's contravariant functor establishing an equivalence between crystalline p-adic representations of G and admissible filtered φ -modules. In section 1 we briefly review this theory as well as the characterisation in [Vo] (Theorem 1.2), and outline the general strategy. In sections 2 and 3 we construct two filtered φ -modules arising

MAJA VOLKOV

from abelian surfaces over \mathbb{Q}_p with good reduction that enjoy the required properties (Propositions 2.1 and 3.1).

1. The general method

Recall from [Fo2] that the objects D in the category $\mathbf{MF}_{\mathbb{Q}_p}(\varphi)$ of filtered φ -modules are finite dimensional \mathbb{Q}_p -vector spaces together with a Frobenius map $\varphi \in \operatorname{Aut}_{\mathbb{Q}_p}(D)$ and a decreasing filtration Fil = $(\operatorname{Fil}^i D)_{i \in \mathbb{Z}}$ on D by subspaces such that Fil^{*i*}D = D for $i \ll 0$ and Fil^{*i*}D = 0 for $i \gg 0$, and the morphisms are \mathbb{Q}_p -linear maps commuting with φ and preserving the filtration. The dual of (D, Fil) is the \mathbb{Q}_p -linear dual D^* with $\varphi_{D^*} = \varphi^{*-1}$ and Fil^{*i*} D^* consists of linear forms on D vanishing on Fil^{*j*}D for all j > -i. The Tate twist $D\{-1\}$ of (D, Fil) is D as a \mathbb{Q}_p -vector space with $\varphi_{D\{-1\}} = p\varphi$ and Fil^{*i*} $D\{-1\} = \operatorname{Fil}^{i-1} D$. The filtration Fil has Hodge-Tate type (0, 1) if Fil^{*i*}D = D for $i \leq 0$, Fil^{*i*}D = 0 for $i \geq 2$, and Fil¹D is a nontrivial subspace. The full subcategory $\mathbf{MF}_{\mathbb{Q}_p}^{\mathrm{ad}}(\varphi)$ of $\mathbf{MF}_{\mathbb{Q}_p}(\varphi)$ consists of objects (D, Fil) satisfying a property relating the Frobenius with the filtration, called admissibility and defined as follows. For a φ -stable sub- \mathbb{Q}_p -vector space D' of D consider the Hodge and Newton invariants

$$t_H(D') \underset{\text{def}}{=} \sum_{i \in \mathbb{Z}} i \dim_{\mathbb{Q}_p} \left(D' \cap \operatorname{Fil}^i D / D' \cap \operatorname{Fil}^{i+1} D \right) \quad \text{and} \quad t_N(D') \underset{\text{def}}{=} v_p(\det \varphi_{|D'})$$

where v_p is the normalised *p*-adic valuation on \mathbb{Q}_p . Then (D, Fil) is admissible if

- (i) $t_H(D) = t_N(D)$
- (ii) $t_H(D') \leq t_N(D')$ for any sub- $\mathbb{Q}_p[\varphi]$ -module D' of D.

A sub- $\mathbb{Q}_p[\varphi]$ -module D' endowed with the induced filtration $\operatorname{Fil}^i D' = D' \cap \operatorname{Fil}^i D$ is a subobject of (D, Fil) in $\mathbf{MF}^{\mathrm{ad}}_{\mathbb{Q}_p}(\varphi)$ if and only if $t_H(D') = t_N(D')$.

Let $B_{\rm cris}$ be the ring of *p*-adic periods constructed in [Fo1] and for a *p*-adic representation V of G put

$$\mathbf{D}^*_{\operatorname{cris}}(V) \stackrel{}{=} \operatorname{Hom}_{\mathbb{Q}_p[G]}(V, B_{\operatorname{cris}}).$$

We always have $\dim_{\mathbb{Q}_p} \mathbf{D}^*_{\operatorname{cris}}(V) \leq \dim_{\mathbb{Q}_p} V$ and V is said to be crystalline when equality holds. The functor $V \mapsto \mathbf{D}^*_{\operatorname{cris}}(V)$ establishes an anti-equivalence between the category of crystalline *p*-adic representations of G and $\mathbf{MF}^{\operatorname{ad}}_{\mathbb{Q}_p}(\varphi)$, a quasi-inverse being $\mathbf{V}^*_{\operatorname{cris}}(D, \operatorname{Fil}) =$ $\operatorname{Hom}_{\varphi,\operatorname{Fil}}(D, B_{\operatorname{cris}})$ ([Co-Fo]). These categories are well-suited to our problem since for an abelian variety \mathcal{A} over \mathbb{Q}_p the G-module $V_p(\mathcal{A})$ is crystalline if and only if \mathcal{A} has good reduction ([Co-Io] Thm.4.7 or [Br] Cor.5.3.4.).

A *p*-Weil number is an algebraic integer such that all its conjugates have absolute value \sqrt{p} in \mathbb{C} . Call a monic polynomial in $\mathbb{Z}[X]$ a *p*-Weil polynomial if all its roots in $\overline{\mathbb{Q}}$ are *p*-Weil numbers and its valuation at $X^2 - p$ is even. Consider the following conditions on a filtered φ -module (D, Fil) over \mathbb{Q}_p :

- (1) φ acts semisimply and $P_{char}(\varphi)$ is a *p*-Weil polynomial
- (2) the filtration has Hodge-Tate type (0,1)
- (3) there exists a nondegenerate skew form on D under which φ is a p-similitude and Fil¹ D is totally isotropic.

Recall that φ is a *p*-similitude under a bilinear form β if $\beta(\varphi x, \varphi y) = p\beta(x, y)$ for all $x, y \in D$ and Fil¹ D is totally isotropic if $\beta(x, y) = 0$ for all $x, y \in \text{Fil}^1 D$. The map sending $\delta \in \text{Isom}_{\mathbb{Q}_p}(D^*, D)$ to $\beta : (x, y) \mapsto \delta^{-1}(x)(y)$ identifies the antisymmetric isomorphisms of filtered φ -modules from $D^*\{-1\}$ to D with the forms satisfying (3). A \mathbb{Q}_p -linear map $\delta : D^* \to D$ is an antisymmetric morphism in $\mathbf{MF}_{\mathbb{Q}_p}(\varphi)$ if $\delta^* = -\delta$ (under the canonical isomorphism $D^{**} \simeq D$), $\varphi \delta = p \delta \varphi^{*-1}$, and $\delta(\text{Fil}^1 D)^{\perp} \subseteq \text{Fil}^1 D$.

Remark 1.1. Let $\operatorname{Hom}_{\varphi}^{a}(D^{*}\{-1\}, D)$ be the \mathbb{Q}_{p} -vector space of antisymmetric φ -module morphisms from $D^{*}\{-1\}$ to D and pick any $\delta \in \operatorname{Isom}_{\varphi}^{a}(D^{*}\{-1\}, D)$. Then $\alpha^{\dagger} = \delta \alpha^{*} \delta^{-1}$ defines an involution \dagger on $\operatorname{End}_{\varphi}(D)$ and the map $\alpha \mapsto \alpha \delta$ establishes an isomorphim $\operatorname{End}_{\varphi}(D)^{\dagger} \xrightarrow{\sim} \operatorname{Hom}_{\varphi}^{a}(D^{*}\{-1\}, D)$ where $\operatorname{End}_{\varphi}(D)^{\dagger}$ is the subspace of elements fixed by \dagger .

Theorem 1.2 ([Vo] Corollary 5.9). Let V be a crystalline p-adic representation of G. The following are equivalent:

- (i) there is an abelian variety \mathcal{A} over \mathbb{Q}_p such that $V \simeq V_p(\mathcal{A})$
- (ii) $\mathbf{D}^*_{cris}(V)$ satisfies conditions (1), (2) and (3).

Note that the restriction $p \neq 2$ in [Vo] Theorem 5.7 and its Corollary 5.9 is unnecessary as Kisin shows that a crystalline representation with Hodge-Tate weights in $\{0, 1\}$ arises from a *p*-divisible group unrestrictidly on the prime *p* ([Ki] Thm.0.3).

Let \mathcal{A} be an abelian variety over \mathbb{Q}_p having good reduction and $(D, \operatorname{Fil}) = \mathbf{D}_{\operatorname{cris}}^*(V_p(\mathcal{A}))$. The φ -module D satisfies (1) by the Weil conjectures for abelian varieties over \mathbb{F}_p . Tate's theorem on endomorphisms of the latter (see [Wa-Mi] II) shows that the isomorphism class of the φ -module D, given by semisimplicity by $\operatorname{P}_{\operatorname{char}}(\varphi)$, determines the isogeny class of the special fibre of \mathcal{A} over \mathbb{F}_p . Any polarisation on \mathcal{A} induces a form on D satisfying (3) and the filtration satisfies (2) by the Hodge decomposition for p-divisible groups and (3).

Conversely let V be a crystalline p-adic representation of G such that $\mathbf{D}_{cris}^*(V)$ satisfies (1), (2), (3). From (1) the Honda-Tate theory ([Ho-Ta]) furnishes an abelian variety A over \mathbb{F}_p with the right Frobenius. From (2) Kisin's result [Ki] furnishes a p-divisible group over \mathbb{Z}_p lifting A(p). The Serre-Tate theory of liftings then produces a formal abelian scheme \mathcal{A} over \mathbb{Z}_p with special fibre isogenous to A. Finally (3) furnishes a polarisation on \mathcal{A} which ensures by Grothendieck's theorem on algebraisation of formal schemes ([Gr] 5.4.5) that \mathcal{A} is a true abelian scheme. The proof of Theorem 5.7 in [Vo] details this construction.

Thus we want to construct an admissible filtered φ -module (D, Fil) over \mathbb{Q}_p satisfying conditions (1), (2), (3) of theorem 1.2 and such that

- (a) $P_{char}(\varphi)$ is a supersingular *p*-Weil polynomial
- (b) (D, Fil) is not semisimple.

Recall that a *p*-Weil polynomial is supersingular if its roots are of the form $\zeta \sqrt{p}$ with $\zeta \in \overline{\mathbb{Q}}$ a root of unity, and that an abelian variety A over \mathbb{F}_p is supersingular if and only if the characteristic polynomial of its Frobenius is supersingular. Regarding (a) in section 2 we take $P_{char}(\varphi)(X) = (X^2 + p)^2$ which is the characteristic polynomial of the Frobenius of the product of a supersingular elliptic curve E over \mathbb{F}_p with itself. In section 3 we take $P_{char}(\varphi)(X) = X^4 + pX^2 + p^2$ which is the characteristic polynomial of the Frobenius of a simple supersingular abelian surface over \mathbb{F}_p .

MAJA VOLKOV

Regarding (b) we assume $p \equiv 1 \mod 3\mathbb{Z}$ in section 3. In each (a)-case we find a subobject D_1 of (D, Fil) in $\mathbf{MF}_{\mathbb{Q}_p}^{\mathrm{ad}}(\varphi)$ and a quotient object D_2 (endowed with the quotient filtration $\operatorname{Fil}^i D_2 = \operatorname{Fil}^i D \mod D_1$) such that the sequence

(s)
$$1 \longrightarrow D_1 \xrightarrow{\text{incl}} D \xrightarrow{\text{proj}} D_2 \longrightarrow 1$$

is exact and D_2 is not a subobject. Thus (s) does not split and therefore (D, Fil) is not semisimple. Of course when $(D, \text{Fil}) \simeq \mathbf{D}^*_{\text{cris}}(V_p(\mathcal{A}))$ this means that there is a nonsplit short exact sequence of *G*-modules

$$1 \longrightarrow V_2 \longrightarrow V_p(\mathcal{A}) \longrightarrow V_1 \longrightarrow 1$$

with $V_i \simeq \mathbf{V}^*_{cris}(D_i)$ for i = 1, 2, and it follows that $V_p(\mathcal{A})$ is not a semisimple G-module.

2. A lift of the twofold product of a supersingular elliptic curve

Consider the filtered φ -module (D, Fil) over \mathbb{Q}_p defined as follows. There is a \mathbb{Q}_p -basis $\mathcal{B} = (x_1, y_1, x_2, y_2)$ for D so that

$$D = \mathbb{Q}_p x_1 \oplus \mathbb{Q}_p y_1 \oplus \mathbb{Q}_p x_2 \oplus \mathbb{Q}_p y_2$$

is a 4-dimensional \mathbb{Q}_p -vector space. The matrix of φ over \mathcal{B} is

$$\operatorname{Mat}_{\mathcal{B}}(\varphi) = \begin{pmatrix} 0 & -p & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & 0 & -p\\ 0 & 0 & 1 & 0 \end{pmatrix} \in GL_4(\mathbb{Q}_p)$$

and the filtration is given by

$$\operatorname{Fil}^0 D = D$$
, $\operatorname{Fil}^1 D = \mathbb{Q}_p x_1 \oplus \mathbb{Q}_p (y_1 + x_2)$, $\operatorname{Fil}^2 D = 0$.

Proposition 2.1. There is an abelian surface \mathcal{A} over \mathbb{Q}_p such that $(D, \operatorname{Fil}) \simeq \mathbf{D}^*_{\operatorname{cris}}(V_p(\mathcal{A}))$. Further

- (a) \mathcal{A} has good reduction with special fibre isogenous to the product of two supersingular elliptic curves over \mathbb{F}_p
- (b) the G-module $V_p(\mathcal{A})$ is not semisimple.

Proof. The filtration has Hodge-Tate type (0,1) with dim Fil¹ D = 2 and det $\varphi = p^2$ hence $t_H(D) = 2 = t_N(D)$. Since $P_{char}(\varphi)(X) = (X^2 + p)^2$ the nontrivial φ -stable subspaces of D are the $D_i = \mathbb{Q}_p x_i \oplus \mathbb{Q}_p y_i$ for i = 1, 2 both having Newton invariant $t_N(D_i) = 1$. However $D_1 \cap \text{Fil}^1 D = \mathbb{Q}_p x_1$ whereas $D_2 \cap \text{Fil}^1 D = 0$, so $t_H(D_1) = 1$ and $t_H(D_2) = 0$. Therefore (D, Fil) is admissible, D_1 is a subobject, D_2 is a quotient that is not a subobject, the short exact sequence (s) does not split and (D, Fil) is not semisimple.

The action of φ is semisimple and $P_{char}(\varphi) = P_{char}(Fr_E)^2$ where E is a supersingular elliptic curve over \mathbb{F}_p with $P_{char}(Fr_E)(X) = X^2 + p$. Thus (D, Fil) satisfies condition (1) of theorem 1.2 as well as condition (a) of section 1 and it obviously satisfies (2). It remains to check condition (3) that is to find a $\delta \in Isom_{\mathbb{Q}_p}(D^*, D)$ satisfying $\delta^* = -\delta$, $\varphi \delta = p\delta \varphi^{*-1}$, and $\delta(Fil^1 D)^{\perp} = Fil^1 D$. Let $\mathcal{B}^* = (x_1^*, y_1^*, x_2^*, y_2^*)$ be the dual basis of \mathcal{B} for D^* where z^*

is the linear form on D sending $z \in D$ to 1 and vanishing on all vectors noncolinear to z. The matrix of $p\varphi^{*-1}$ over \mathcal{B}^* is

$$p \operatorname{Mat}_{\mathcal{B}}(\varphi^{-1})^{t} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ p & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & p & 0 \end{pmatrix}$$

where M^t is the transpose of M and

$$(\operatorname{Fil}^{1} D)^{\perp} = \mathbb{Q}_{p} y_{2}^{*} \oplus \mathbb{Q}_{p} (y_{1}^{*} - x_{2}^{*}).$$

Let $\delta: D^* \to D$ be the \mathbb{Q}_p -linear morphism with matrix over the bases \mathcal{B}^* and \mathcal{B}

$$\operatorname{Mat}_{\mathcal{B}^*\!\!,\mathcal{B}}(\delta) = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Then δ is invertible and satisfies the relations $\delta^* = -\delta$ and $\varphi \delta = p \delta \varphi^{*-1}$. Further $\delta(\operatorname{Fil}^1 D)^{\perp} = \delta(\mathbb{Q}_p y_2^* \oplus \mathbb{Q}_p(y_1^* - x_2^*)) = \mathbb{Q}_p x_1 \oplus \mathbb{Q}_p(y_1 + x_2) = \operatorname{Fil}^1 D.$

Remark 2.2. Any 2-dimensional object satisfying conditions (1) and (2) of theorem 1.2 also satisfies condition (3). Hence theorem 1.2 applied to the admissible filtered φ -modules $(D_1, \operatorname{Fil}^i D \cap D_1)$ and $(D_2, \operatorname{Fil}^i D \mod D_1)$ shows the existence of elliptic schemes \mathcal{E}_i over \mathbb{Z}_p such that $D_i \simeq \mathbf{D}^*_{\operatorname{cris}}(V_p(\mathcal{E}_i))$ for i = 1, 2. The special fibres of the \mathcal{E}_i are \mathbb{F}_p -isogenous to E. Thus we obtain a nonsplit exact sequence of G-modules

$$1 \longrightarrow V_p(\mathcal{E}_2) \longrightarrow V_p(\mathcal{A}) \longrightarrow V_p(\mathcal{E}_1) \longrightarrow 1 .$$

By Tate's full faithfulness theorem [Ta] the *G*-module $V_p(\mathcal{A})$ determines the *p*-divisible group $\mathcal{A}(p)$ over \mathbb{Z}_p up to isogeny, therefore $\mathcal{A}(p)$ is not \mathbb{Z}_p -isogenous to $\mathcal{E}_1(p) \times \mathcal{E}_2(p)$.

Remark 2.3. The same construction works starting with the square of any supersingular p-Weil polynomial of degree two (when $p \geq 5$ there is only $X^2 + p$ but when p = 2 or 3 there are also the $X^2 \pm pX + p$). However it fails when dealing with the product of two distinct such. Indeed let $\alpha_1 \neq \alpha_2 \in p\mathbb{Z}_p$ and D be a semisimple 4-dimensional φ -module with $P_{char}(\varphi)(X) = (X^2 + \alpha_1 X + p)(X^2 + \alpha_2 X + p)$. Then $D = D_1 \oplus D_2$ with $D_i = \text{Ker}(\varphi^2 + \alpha_i \varphi + p)$, which are the nontrivial φ -stable subspaces of D, and $t_N(D_i) = 1$. Since $\alpha_1 \neq \alpha_2$ one checks that any \mathbb{Q}_p -linear $\delta : D^* \to D$ satisfying $\delta^* = -\delta$ and $\varphi \delta = p \delta \varphi^{*-1}$ sends D_2^{\perp} into D_1 and D_1^{\perp} into D_2 . Endowing D with an admissible Hodge-Tate (0, 1) filtration such that (s) does not split amounts to picking a 2-dimensional subspace Fil¹ D such that dim $D_1 \cap \text{Fil}^1 D = 1$ and dim $D_2 \cap \text{Fil}^1 D = 0$ (or vice versa); then dim $D_1 \cap \delta(\text{Fil}^1 D)^{\perp} = 0$ and dim $D_2 \cap \delta(\text{Fil}^1 D)^{\perp} = 1$, therefore $\delta(\text{Fil}^1 D)^{\perp} \neq \text{Fil}^1 D$. This shows that the p-adic Tate modules of abelian schemes over \mathbb{Z}_p with special fibre \mathbb{F}_p -isogenous to the product of two nonisogenous supersingular elliptic curves are semisimple.

Remark 2.4. One constructs in a similar fashion for each integer $n \ge 2$ a lift of the *n*-fold product of a supersingular elliptic curve over \mathbb{F}_p with nonsemisimple *p*-adic Tate module.

MAJA VOLKOV

3. A lift of a simple supersingular abelian surface

In this section we assume $p \equiv 1 \mod 3\mathbb{Z}$ which is equivalent to $\zeta_3 \in \mathbb{Q}_p$ where ζ_3 is a primitive 3rd root of unity. Consider the filtered φ -module (D, Fil) defined as follows. There is a \mathbb{Q}_p -basis $\mathcal{B} = (x_1, y_1, x_2, y_2)$ for D so that

$$D = \mathbb{Q}_p x_1 \oplus \mathbb{Q}_p y_1 \oplus \mathbb{Q}_p x_2 \oplus \mathbb{Q}_p y_2$$

is a 4-dimensional \mathbb{Q}_p -vector space. The matrix of φ over \mathcal{B} is

$$\operatorname{Mat}_{\mathcal{B}}(\varphi) = \begin{pmatrix} 0 & \zeta_3 p & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \zeta_3^{-1} p \\ 0 & 0 & 1 & 0 \end{pmatrix} \in GL_4(\mathbb{Q}_p)$$

and the filtration is given by

$$\operatorname{Fil}^0 D = D, \quad \operatorname{Fil}^1 D = \mathbb{Q}_p x_1 \oplus \mathbb{Q}_p (y_1 + x_2), \quad \operatorname{Fil}^2 D = 0.$$

Proposition 3.1. There is an abelian surface \mathcal{A} over \mathbb{Q}_p such that $(D, \operatorname{Fil}) \simeq \mathbf{D}^*_{\operatorname{cris}}(V_p(\mathcal{A}))$. Further

- (a) \mathcal{A} has good reduction with special fibre isogenous to a supersingular simple abelian surface over \mathbb{F}_p
- (b) the G-module $V_p(\mathcal{A})$ is not semisimple.

Proof. Just as in the proof of proposition 2.1 we have $t_H(D) = 2 = t_N(D)$. Since

$$P_{char}(\varphi)(X) = X^4 + pX^2 + p^2 = (X^2 - \zeta_3 p)(X^2 - \zeta_3^{-1}p)$$

the nontrivial sub- $\mathbb{Q}_p[\varphi]$ -modules of D are the $D_i = \mathbb{Q}_p x_i \oplus \mathbb{Q}_p y_i$ for i = 1, 2 both having Newton invariant $t_N(D_i) = 1$, and Hodge invariants $t_H(D_1) = 1$, $t_H(D_2) = 0$. Again we obtain a nonsplit exact sequence (s) in $\mathbf{MF}_{\mathbb{Q}_p}^{\mathrm{ad}}(\varphi)$ and (D, Fil) is not semisimple.

obtain a nonsplit exact sequence (s) in $\mathbf{MF}_{\mathbb{Q}_p}^{\mathrm{ad}}(\varphi)$ and (D, Fil) is not semisimple. The action of φ is semisimple and $\mathrm{P}_{\mathrm{char}}(\varphi) = \mathrm{P}_{\mathrm{char}}(\mathrm{Fr}_A)$ where A is a supersingular simple abelian surface over \mathbb{F}_p with $\mathrm{P}_{\mathrm{char}}(\mathrm{Fr}_A)(X) = X^4 + pX^2 + p^2$. Thus (D, Fil) satisfies condition (1) of theorem 1.2 as well as condition (a) of section 1. It obviously satisfies (2) and it remains to check (3). Let $\mathcal{B}^* = (x_1^*, y_1^*, x_2^*, y_2^*)$ be the dual basis of \mathcal{B} for D^* . Again $(\mathrm{Fil}^1 D)^{\perp} = \mathbb{Q}_p y_2^* \oplus \mathbb{Q}_p(y_1^* - x_2^*)$ and the matrix of $p\varphi^{*-1}$ over \mathcal{B}^* is

$$p \operatorname{Mat}_{\mathcal{B}}(\varphi^{-1})^{t} = \begin{pmatrix} 0 & \zeta_{3}^{-1} & 0 & 0 \\ p & 0 & 0 & 0 \\ 0 & 0 & 0 & \zeta_{3} \\ 0 & 0 & p & 0 \end{pmatrix}.$$

Let $\delta: D^* \to D$ be the \mathbb{Q}_p -linear morphism with matrix over the bases \mathcal{B}^* and \mathcal{B}

$$\operatorname{Mat}_{\mathcal{B}^*\!\mathcal{B}}(\delta) = \begin{pmatrix} 0 & 0 & 0 & \zeta_3 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -\zeta_3 & 0 & 0 & 0 \end{pmatrix}.$$

As in the proof of proposition 2.1 one checks that δ is invertible, satisfies $\delta^* = -\delta$, $\varphi \delta = p \delta \varphi^{*-1}$, and that $\delta(\operatorname{Fil}^1 D)^{\perp} = \operatorname{Fil}^1 D$.

Remark 3.2. The objects $(D_1, \operatorname{Fil}^i D \cap D_1)$ and $(D_2, \operatorname{Fil}^i D \mod D_1)$ in $\operatorname{MF}_{\mathbb{Q}_p}^{\operatorname{ad}}(\varphi)$ do not arise from elliptic schemes over \mathbb{Z}_p , however [Ki] Thm.0.3 shows the existence of *p*-divisible groups \mathcal{G}_i over \mathbb{Z}_p such that $D_i \simeq \mathbf{D}_{\operatorname{cris}}^*(V_p(\mathcal{G}_i))$. The special fibre of $\mathcal{A}(p)$ is \mathbb{F}_p -isogenous to the product of the special fibres of the \mathcal{G}_i , themselves being nonisogenous. Thus we obtain a nonsplit exact sequence of *G*-modules

$$1 \longrightarrow V_p(\mathcal{G}_2) \longrightarrow V_p(\mathcal{A}) \longrightarrow V_p(\mathcal{G}_1) \longrightarrow 1$$

and Tate's full faithfulness theorem shows that $\mathcal{A}(p)$ is not \mathbb{Z}_p -isogenous to $\mathcal{G}_1 \times \mathcal{G}_2$.

Remark 3.3. Starting with $X^4 - pX^2 + p^2$ when $p \equiv 1 \mod 3\mathbb{Z}$ and $X^4 + p^2$ when $p \equiv 1 \mod 4\mathbb{Z}$ one obtains alike nonsemisimple 4-dimensional supersingular representations (just replace ζ_3 by ζ_6 or ζ_4). More generally the

$$p^{d}\Phi_{n}\left(\frac{X^{2}}{p}\right) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X^{2} - \zeta_{n}^{i}p) \quad \text{with } d = \#\left(\mathbb{Z}/n\mathbb{Z}\right)^{\times} \ge 2$$

where Φ_n is the *n*th cyclotomic polynomial are supersingular *p*-Weil polynomials leading when $p \equiv 1 \mod n\mathbb{Z}$ to similar higher-dimensional constructions.

References

- [Br] C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés, Annals of Math. **152** (2000), 489-549.
- [Co-Io] R. Coleman and A. Iovita, The Frobenius and Monodromy operators for Curves and Abelian Varieties, Duke Math. J. 97 (1999), 171-215.
- [Co-Fo] P. Colmez et J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. math. 140, 1 (2000), 1-43.
- [Fo1] J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques, Astérisque 223, Soc. Math. de France (1994).
- [Fo2] J.-M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques, Astérisque 223, Soc. Math. de France (1994).
- [Gr] A. Grothendieck, EGA III, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
- [Ho-Ta] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Séminaire Bourbaki 352 (1968), 15p.
- [Ki] M. Kisin, Crystalline representations and F-crystals, in Algebraic Geometry and Number Theory In Honor of Vladimir Drinfeld's 50th Birthday, Progress in Mathematics 253 (2006), 459-496.
- [Ta] J. Tate, p-Divisible groups over local fields, in Proceedings of a Conference on Local Fields, Driebergen 1966, Springer-Verlag (1967), 158-183.
- [Vo] M. Volkov, A class of p-adic Galois representations arising from abelian varieties over \mathbb{Q}_p , Math. Ann. 331 (2005), no. 4, 889–923.
- [Wa-Mi] W.C. Waterhouse and J.S. Milne, Abelian Varieties over Finite Fields, in AMS Proceedings of Symposia in Pure Mathematics XX (1971), 53-64.

Université de Mons, Institut de Mathématique, avenue du Champ de Mars 6, 7000 Mons, Belgium.

E-mail address: volkov@umh.ac.be