ABELIAN SURFACES WITH SUPERSINGULAR GOOD REDUCTION AND NON SEMISIMPLE TATE MODULE

MAJA VOLKOV

Abstract

We show the existence of abelian surfaces \mathcal{A} over \mathbb{Q}_{p} having good reduction with supersingular special fibre whose associated p-adic Galois module $V_{p}(\mathcal{A})$ is not semisimple.

2000 Mathematics Subject Classification: 11G10, 14K15, 14G20.
Keywords: Abelian varieties, local fields, Galois representations.

Contents

Introduction 1

1. The general method 2
2. A lift of the twofold product of a supersingular elliptic curve 4
3. A lift of a simple supersingular abelian surface 6

References 7

Introduction

Fix a prime number p and an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p}. Write $G=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ for the absolute Galois group of \mathbb{Q}_{p}. For a d-dimensional abelian variety \mathcal{A} over \mathbb{Q}_{p} let $\mathcal{A}\left[p^{n}\right]$ be the group of p^{n}-torsion points with values in $\overline{\mathbb{Q}}_{p}$ and

This is a $2 d$-dimensional \mathbb{Q}_{p}-vector space on which G acts linearly and continuously. We want to consider the following problem: find abelian varieties \mathcal{A} over \mathbb{Q}_{p} having good reduction with supersingular special fibre and such that the Galois module $V_{p}(\mathcal{A})$ is not semisimple. In this paper we show the existence of two such varieties with nonisogenous special fibres for the least dimension possible, namely for $d=2$. In fact our procedure easily generalises to any $d \geq 2$, however we stick to surfaces as they furnish low-dimensional hence simple to describe representations.

The existence of such surfaces follows from the characterisation of p-adic representations of G arising from abelian varieties with (tame) potential good reduction obtained in [Vo], and indeed provides an example of application of this result. In order to explicitely describe our objects we use Fontaine's contravariant functor establishing an equivalence between crystalline p-adic representations of G and admissible filtered φ-modules. In section 1 we briefly review this theory as well as the characterisation in [Vo] (Theorem 1.2), and outline the general strategy. In sections 2 and 3 we construct two filtered φ-modules arising
from abelian surfaces over \mathbb{Q}_{p} with good reduction that enjoy the required properties (Propositions 2.1 and 3.1).

1. The general method

Recall from [Fo2] that the objects D in the category $\mathbf{M F}_{\mathbb{Q}_{p}}(\varphi)$ of filtered φ-modules are finite dimensional \mathbb{Q}_{p}-vector spaces together with a Frobenius map $\varphi \in \operatorname{Aut}_{\mathbb{Q}_{p}}(D)$ and a decreasing filtration $\mathrm{Fil}=\left(\mathrm{Fil}^{i} D\right)_{i \in \mathbb{Z}}$ on D by subspaces such that $\mathrm{Fil}^{i} D=D$ for $i \ll 0$ and $\mathrm{Fil}^{i} D=0$ for $i \gg 0$, and the morphisms are \mathbb{Q}_{p}-linear maps commuting with φ and preserving the filtration. The dual of $(D$, Fil $)$ is the \mathbb{Q}_{p}-linear dual D^{*} with $\varphi_{D^{*}}=\varphi^{*-1}$ and $\mathrm{Fil}^{i} D^{*}$ consists of linear forms on D vanishing on $\mathrm{Fil}^{j} D$ for all $j>-i$. The Tate twist $D\{-1\}$ of $(D$, Fil $)$ is D as a \mathbb{Q}_{p}-vector space with $\varphi_{D\{-1\}}=p \varphi$ and $\operatorname{Fil}^{i} D\{-1\}=\operatorname{Fil}^{i-1} D$. The filtration Fil has Hodge-Tate type $(0,1)$ if $\mathrm{Fil}^{i} D=D$ for $i \leq 0, \operatorname{Fil}^{i} D=0$ for $i \geq 2$, and $\operatorname{Fil}^{1} D$ is a nontrivial subspace. The full subcategory $\mathbf{M F}_{\mathbb{Q}_{p}}^{\text {ad }}(\varphi)$ of $\mathbf{M F}_{\mathbb{Q}_{p}}(\varphi)$ consists of objects $(D$, Fil) satisfying a property relating the Frobenius with the filtration, called admissibility and defined as follows. For a φ-stable sub- \mathbb{Q}_{p}-vector space D^{\prime} of D consider the Hodge and Newton invariants

$$
t_{H}\left(D^{\prime}\right) \underset{\text { def }}{=} \sum_{i \in \mathbb{Z}} i \operatorname{dim}_{\mathbb{Q}_{p}}\left(D^{\prime} \cap \operatorname{Fil}^{i} D / D^{\prime} \cap \operatorname{Fil}^{i+1} D\right) \quad \text { and } \quad t_{N}\left(D^{\prime}\right) \underset{\operatorname{def}}{=} v_{p}\left(\operatorname{det} \varphi_{D^{\prime}}\right)
$$

where v_{p} is the normalised p-adic valuation on \mathbb{Q}_{p}. Then $(D$, Fil) is admissible if
(i) $t_{H}(D)=t_{N}(D)$
(ii) $t_{H}\left(D^{\prime}\right) \leq t_{N}\left(D^{\prime}\right)$ for any sub- $\mathbb{Q}_{p}[\varphi]$-module D^{\prime} of D.

A sub- $\mathbb{Q}_{p}[\varphi]$-module D^{\prime} endowed with the induced filtration $\mathrm{Fil}^{i} D^{\prime}=D^{\prime} \cap \mathrm{Fil}^{i} D$ is a subobject of $\left(D\right.$, Fil) in $\mathbf{M F}_{\mathbb{Q}_{p}}^{\text {ad }}(\varphi)$ if and only if $t_{H}\left(D^{\prime}\right)=t_{N}\left(D^{\prime}\right)$.

Let $B_{\text {cris }}$ be the ring of p-adic periods constructed in [Fo1] and for a p-adic representation V of G put

$$
\mathbf{D}_{\text {cris }}^{*}(V) \underset{\text { def }}{=} \operatorname{Hom}_{\mathbb{Q}_{p}[G]}\left(V, B_{\text {cris }}\right) .
$$

We always have $\operatorname{dim}_{\mathbb{Q}_{p}} \mathbf{D}_{\text {cris }}^{*}(V) \leq \operatorname{dim}_{\mathbb{Q}_{p}} V$ and V is said to be crystalline when equality holds. The functor $V \mapsto \mathbf{D}_{\text {cris }}^{*}(V)$ establishes an anti-equivalence between the category of crystalline p-adic representations of G and $\mathbf{M F}_{\mathbb{Q}_{p}}^{\text {ad }}(\varphi)$, a quasi-inverse being $\mathbf{V}_{\text {cris }}^{*}(D$, Fil $)=$ $\operatorname{Hom}_{\varphi, \operatorname{Fil}}\left(D, B_{\text {cris }}\right)([\mathrm{Co}-\mathrm{Fo}])$. These categories are well-suited to our problem since for an abelian variety \mathcal{A} over \mathbb{Q}_{p} the G-module $V_{p}(\mathcal{A})$ is crystalline if and only if \mathcal{A} has good reduction ([Co-Io] Thm.4.7 or [Br] Cor.5.3.4.).

A p-Weil number is an algebraic integer such that all its conjugates have absolute value \sqrt{p} in \mathbb{C}. Call a monic polynomial in $\mathbb{Z}[X]$ a p-Weil polynomial if all its roots in $\overline{\mathbb{Q}}$ are p-Weil numbers and its valuation at $X^{2}-p$ is even. Consider the following conditions on a filtered φ-module $\left(D\right.$, Fil) over \mathbb{Q}_{p} :
(1) φ acts semisimply and $\mathrm{P}_{\text {char }}(\varphi)$ is a p-Weil polynomial
(2) the filtration has Hodge-Tate type $(0,1)$
(3) there exists a nondegenerate skew form on D under which φ is a p-similitude and $\mathrm{Fil}^{1} D$ is totally isotropic.

Recall that φ is a p-similitude under a bilinear form β if $\beta(\varphi x, \varphi y)=p \beta(x, y)$ for all $x, y \in D$ and Fil $^{1} D$ is totally isotropic if $\beta(x, y)=0$ for all $x, y \in \operatorname{Fil}^{1} D$. The map sending $\delta \in \operatorname{Isom}_{\mathbb{Q}_{p}}\left(D^{*}, D\right)$ to $\beta:(x, y) \mapsto \delta^{-1}(x)(y)$ identifies the antisymmetric isomorphisms of filtered φ-modules from $D^{*}\{-1\}$ to D with the forms satisfying (3). A \mathbb{Q}_{p}-linear map $\delta: D^{*} \rightarrow D$ is an antisymmetric morphism in $\operatorname{MF}_{\mathbb{Q}_{p}}(\varphi)$ if $\delta^{*}=-\delta$ (under the canonical isomorphism $\left.D^{* *} \simeq D\right), \varphi \delta=p \delta \varphi^{*-1}$, and $\delta\left(\operatorname{Fil}^{1} D\right)^{\perp} \subseteq \operatorname{Fil}^{1} D$.

Remark 1.1. Let $\operatorname{Hom}_{\varphi}^{\mathrm{a}}\left(D^{*}\{-1\}, D\right)$ be the \mathbb{Q}_{p}-vector space of antisymmetric φ-module morphisms from $D^{*}\{-1\}$ to D and pick any $\delta \in \operatorname{Isom}_{\varphi}^{\mathrm{a}}\left(D^{*}\{-1\}, D\right)$. Then $\alpha^{\dagger}=\delta \alpha^{*} \delta^{-1}$ defines an involution \dagger on $\operatorname{End}_{\varphi}(D)$ and the map $\alpha \mapsto \alpha \delta$ establishes an isomorphim $\operatorname{End}_{\varphi}(D)^{\dagger} \xrightarrow{\sim} \operatorname{Hom}_{\varphi}^{\mathrm{a}}\left(D^{*}\{-1\}, D\right)$ where $\operatorname{End}_{\varphi}(D)^{\dagger}$ is the subspace of elements fixed by \dagger.

Theorem 1.2 ([Vo] Corollary 5.9). Let V be a crystalline p-adic representation of G. The following are equivalent:
(i) there is an abelian variety \mathcal{A} over \mathbb{Q}_{p} such that $V \simeq V_{p}(\mathcal{A})$
(ii) $\mathbf{D}_{\text {cris }}^{*}(V)$ satisfies conditions (1), (2) and (3).

Note that the restriction $p \neq 2$ in [Vo] Theorem 5.7 and its Corollary 5.9 is unnecessary as Kisin shows that a crystalline representation with Hodge-Tate weights in $\{0,1\}$ arises from a p-divisible group unrestrictidly on the prime p ([Ki] Thm.0.3).

Let \mathcal{A} be an abelian variety over \mathbb{Q}_{p} having good reduction and (D, Fil) $=\mathbf{D}_{\text {cris }}^{*}\left(V_{p}(\mathcal{A})\right.$). The φ-module D satisfies (1) by the Weil conjectures for abelian varieties over \mathbb{F}_{p}. Tate's theorem on endomorphisms of the latter (see [Wa-Mi] II) shows that the isomorphism class of the φ-module D, given by semisimplicity by $\mathrm{P}_{\text {char }}(\varphi)$, determines the isogeny class of the special fibre of \mathcal{A} over \mathbb{F}_{p}. Any polarisation on \mathcal{A} induces a form on D satisfying (3) and the filtration satisfies (2) by the Hodge decomposition for p-divisible groups and (3).
Conversely let V be a crystalline p-adic representation of G such that $\mathbf{D}_{\text {cris }}^{*}(V)$ satisfies (1), (2), (3). From (1) the Honda-Tate theory ([Ho-Ta]) furnishes an abelian variety A over \mathbb{F}_{p} with the right Frobenius. From (2) Kisin's result [Ki] furnishes a p-divisible group over \mathbb{Z}_{p} lifting $A(p)$. The Serre-Tate theory of liftings then produces a formal abelian scheme \mathcal{A} over \mathbb{Z}_{p} with special fibre isogenous to A. Finally (3) furnishes a polarisation on \mathcal{A} which ensures by Grothendieck's theorem on algebraisation of formal schemes ([Gr] 5.4.5) that \mathcal{A} is a true abelian scheme. The proof of Theorem 5.7 in [Vo d details this construction.

Thus we want to construct an admissible filtered φ-module (D, Fil) over \mathbb{Q}_{p} satisfying conditions (1), (2), (3) of theorem 1.2 and such that
(a) $\mathrm{P}_{\text {char }}(\varphi)$ is a supersingular p-Weil polynomial
(b) $(D$, Fil) is not semisimple.

Recall that a p-Weil polynomial is supersingular if its roots are of the form $\zeta \sqrt{p}$ with $\zeta \in \overline{\mathbb{Q}}$ a root of unity, and that an abelian variety A over \mathbb{F}_{p} is supersingular if and only if the characteristic polynomial of its Frobenius is supersingular. Regarding (a) in section 2 we take $\mathrm{P}_{\text {char }}(\varphi)(X)=\left(X^{2}+p\right)^{2}$ which is the characteristic polynomial of the Frobenius of the product of a supersingular elliptic curve E over \mathbb{F}_{p} with itself. In section 3 we take $\mathrm{P}_{\text {char }}(\varphi)(X)=X^{4}+p X^{2}+p^{2}$ which is the characteristic polynomial of the Frobenius of a simple supersingular abelian surface over \mathbb{F}_{p}.

Regarding (b) we assume $p \equiv 1 \bmod 3 \mathbb{Z}$ in section 3. In each (a)-case we find a subobject D_{1} of $\left(D\right.$, Fil) in $\mathbf{M F}_{\mathbb{Q}_{p}}^{\text {ad }}(\varphi)$ and a quotient object D_{2} (endowed with the quotient filtration $\left.\operatorname{Fil}^{i} D_{2}=\mathrm{Fil}^{i} D \bmod D_{1}\right)$ such that the sequence

$$
\text { (s) } \quad 1 \longrightarrow D_{1} \xrightarrow{\text { incl }} D \xrightarrow{\text { proj }} D_{2} \longrightarrow 1
$$

is exact and D_{2} is not a subobject. Thus (s) does not split and therefore $(D$, Fil) is not semisimple. Of course when $(D, \operatorname{Fil}) \simeq \mathbf{D}_{\text {cris }}^{*}\left(V_{p}(\mathcal{A})\right)$ this means that there is a nonsplit short exact sequence of G-modules

$$
1 \longrightarrow V_{2} \longrightarrow V_{p}(\mathcal{A}) \longrightarrow V_{1} \longrightarrow 1
$$

with $V_{i} \simeq \mathbf{V}_{\text {cris }}^{*}\left(D_{i}\right)$ for $i=1,2$, and it follows that $V_{p}(\mathcal{A})$ is not a semisimple G-module.

2. A Lift of the twofold product of a supersingular elliptic curve

Consider the filtered φ-module $\left(D\right.$, Fil) over \mathbb{Q}_{p} defined as follows. There is a \mathbb{Q}_{p}-basis $\mathcal{B}=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ for D so that

$$
D=\mathbb{Q}_{p} x_{1} \oplus \mathbb{Q}_{p} y_{1} \oplus \mathbb{Q}_{p} x_{2} \oplus \mathbb{Q}_{p} y_{2}
$$

is a 4 -dimensional \mathbb{Q}_{p}-vector space. The matrix of φ over \mathcal{B} is

$$
\operatorname{Mat}_{\mathcal{B}}(\varphi)=\left(\begin{array}{cccc}
0 & -p & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -p \\
0 & 0 & 1 & 0
\end{array}\right) \in G L_{4}\left(\mathbb{Q}_{p}\right)
$$

and the filtration is given by

$$
\operatorname{Fil}^{0} D=D, \quad \operatorname{Fil}^{1} D=\mathbb{Q}_{p} x_{1} \oplus \mathbb{Q}_{p}\left(y_{1}+x_{2}\right), \quad \operatorname{Fil}^{2} D=0
$$

Proposition 2.1. There is an abelian surface \mathcal{A} over \mathbb{Q}_{p} such that $(D, \operatorname{Fil}) \simeq \mathbf{D}_{\text {cris }}^{*}\left(V_{p}(\mathcal{A})\right)$.

Further

(a) \mathcal{A} has good reduction with special fibre isogenous to the product of two supersingular elliptic curves over \mathbb{F}_{p}
(b) the G-module $V_{p}(\mathcal{A})$ is not semisimple.

Proof. The filtration has Hodge-Tate type $(0,1)$ with $\operatorname{dim} \operatorname{Fil}^{1} D=2$ and $\operatorname{det} \varphi=p^{2}$ hence $t_{H}(D)=2=t_{N}(D)$. Since $\mathrm{P}_{\text {char }}(\varphi)(X)=\left(X^{2}+p\right)^{2}$ the nontrivial φ-stable subspaces of D are the $D_{i}=\mathbb{Q}_{p} x_{i} \oplus \mathbb{Q}_{p} y_{i}$ for $i=1,2$ both having Newton invariant $t_{N}\left(D_{i}\right)=1$. However $D_{1} \cap \operatorname{Fil}^{1} D=\mathbb{Q}_{p} x_{1}$ whereas $D_{2} \cap \operatorname{Fil}^{1} D=0$, so $t_{H}\left(D_{1}\right)=1$ and $t_{H}\left(D_{2}\right)=0$. Therefore (D, Fil) is admissible, D_{1} is a subobject, D_{2} is a quotient that is not a subobject, the short exact sequence (s) does not split and (D, Fil) is not semisimple.

The action of φ is semisimple and $\mathrm{P}_{\text {char }}(\varphi)=\mathrm{P}_{\text {char }}\left(\operatorname{Fr}_{E}\right)^{2}$ where E is a supersingular elliptic curve over \mathbb{F}_{p} with $\mathrm{P}_{\text {char }}\left(\operatorname{Fr}_{E}\right)(X)=X^{2}+p$. Thus (D, Fil) satisfies condition (1) of theorem 1.2 as well as condition (a) of section 1 and it obviously satisfies (2). It remains to check condition (3) that is to find a $\delta \in \operatorname{Isom}_{\mathbb{Q}_{p}}\left(D^{*}, D\right)$ satisfying $\delta^{*}=-\delta, \varphi \delta=p \delta \varphi^{*-1}$, and $\delta\left(\operatorname{Fil}^{1} D\right)^{\perp}=\operatorname{Fil}^{1} D$. Let $\mathcal{B}^{*}=\left(x_{1}^{*}, y_{1}^{*}, x_{2}^{*}, y_{2}^{*}\right)$ be the dual basis of \mathcal{B} for D^{*} where z^{*}
is the linear form on D sending $z \in D$ to 1 and vanishing on all vectors noncolinear to z. The matrix of $p \varphi^{*-1}$ over \mathcal{B}^{*} is

$$
p \operatorname{Mat}_{\mathcal{B}}\left(\varphi^{-1}\right)^{t}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & p & 0
\end{array}\right)
$$

where M^{t} is the transpose of M and

$$
\left(\operatorname{Fil}^{1} D\right)^{\perp}=\mathbb{Q}_{p} y_{2}^{*} \oplus \mathbb{Q}_{p}\left(y_{1}^{*}-x_{2}^{*}\right)
$$

Let $\delta: D^{*} \rightarrow D$ be the \mathbb{Q}_{p}-linear morphism with matrix over the bases \mathcal{B}^{*} and \mathcal{B}

$$
\operatorname{Mat}_{\mathcal{B} * \mathcal{B}}(\delta)=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Then δ is invertible and satisfies the relations $\delta^{*}=-\delta$ and $\varphi \delta=p \delta \varphi^{*-1}$. Further $\delta\left(\operatorname{Fil}^{1} D\right)^{\perp}=\delta\left(\mathbb{Q}_{p} y_{2}^{*} \oplus \mathbb{Q}_{p}\left(y_{1}^{*}-x_{2}^{*}\right)\right)=\mathbb{Q}_{p} x_{1} \oplus \mathbb{Q}_{p}\left(y_{1}+x_{2}\right)=\operatorname{Fil}^{1} D$.

Remark 2.2. Any 2-dimensional object satisfying conditions (1) and (2) of theorem 1.2 also satisfies condition (3). Hence theorem 1.2 applied to the admissible filtered φ-modules $\left(D_{1}, \operatorname{Fil}^{i} D \cap D_{1}\right)$ and $\left(D_{2}, \operatorname{Fil}^{i} D \bmod D_{1}\right)$ shows the existence of elliptic schemes \mathcal{E}_{i} over \mathbb{Z}_{p} such that $D_{i} \simeq \mathbf{D}_{\text {cris }}^{*}\left(V_{p}\left(\mathcal{E}_{i}\right)\right)$ for $i=1,2$. The special fibres of the \mathcal{E}_{i} are \mathbb{F}_{p}-isogenous to E. Thus we obtain a nonsplit exact sequence of G-modules

$$
1 \longrightarrow V_{p}\left(\mathcal{E}_{2}\right) \longrightarrow V_{p}(\mathcal{A}) \longrightarrow V_{p}\left(\mathcal{E}_{1}\right) \longrightarrow 1
$$

By Tate's full faithfulness theorem [Ta] the G-module $V_{p}(\mathcal{A})$ determines the p-divisible group $\mathcal{A}(p)$ over \mathbb{Z}_{p} up to isogeny, therefore $\mathcal{A}(p)$ is not \mathbb{Z}_{p}-isogenous to $\mathcal{E}_{1}(p) \times \mathcal{E}_{2}(p)$.

Remark 2.3. The same construction works starting with the square of any supersingular p-Weil polynomial of degree two (when $p \geq 5$ there is only $X^{2}+p$ but when $p=2$ or 3 there are also the $\left.X^{2} \pm p X+p\right)$. However it fails when dealing with the product of two distinct such. Indeed let $\alpha_{1} \neq \alpha_{2} \in p \mathbb{Z}_{p}$ and D be a semisimple 4-dimensional φ-module with $\mathrm{P}_{\text {char }}(\varphi)(X)=\left(X^{2}+\alpha_{1} X+p\right)\left(X^{2}+\alpha_{2} X+p\right)$. Then $D=D_{1} \oplus D_{2}$ with $D_{i}=\operatorname{Ker}\left(\varphi^{2}+\alpha_{i} \varphi+p\right)$, which are the nontrivial φ-stable subspaces of D, and $t_{N}\left(D_{i}\right)=1$. Since $\alpha_{1} \neq \alpha_{2}$ one checks that any \mathbb{Q}_{p}-linear $\delta: D^{*} \rightarrow D$ satisfying $\delta^{*}=-\delta$ and $\varphi \delta=p \delta \varphi^{*-1}$ sends D_{2}^{\perp} into D_{1} and D_{1}^{\perp} into D_{2}. Endowing D with an admissible Hodge-Tate $(0,1)$ filtration such that (s) does not split amounts to picking a 2-dimensional subspace $\mathrm{Fil}^{1} D$ such that $\operatorname{dim} D_{1} \cap \mathrm{Fil}^{1} D=1$ and $\operatorname{dim} D_{2} \cap \mathrm{Fil}^{1} D=0$ (or vice versa) ; then $\operatorname{dim} D_{1} \cap \delta\left(\operatorname{Fil}^{1} D\right)^{\perp}=0$ and $\operatorname{dim} D_{2} \cap \delta\left(\mathrm{Fil}^{1} D\right)^{\perp}=1$, therefore $\delta\left(\mathrm{Fil}^{1} D\right)^{\perp} \neq \mathrm{Fil}^{1} D$. This shows that the p-adic Tate modules of abelian schemes over \mathbb{Z}_{p} with special fibre $\mathbb{F}_{p^{-}}$ isogenous to the product of two nonisogenous supersingular elliptic curves are semisimple.

Remark 2.4. One constructs in a similar fashion for each integer $n \geq 2$ a lift of the n-fold product of a supersingular elliptic curve over \mathbb{F}_{p} with nonsemisimple p-adic Tate module.

3. A Lift of a simple supersingular abelian surface

In this section we assume $p \equiv 1 \bmod 3 \mathbb{Z}$ which is equivalent to $\zeta_{3} \in \mathbb{Q}_{p}$ where ζ_{3} is a primitive 3 rd root of unity. Consider the filtered φ-module (D, Fil) defined as follows. There is a \mathbb{Q}_{p}-basis $\mathcal{B}=\left(x_{1}, y_{1}, x_{2}, y_{2}\right)$ for D so that

$$
D=\mathbb{Q}_{p} x_{1} \oplus \mathbb{Q}_{p} y_{1} \oplus \mathbb{Q}_{p} x_{2} \oplus \mathbb{Q}_{p} y_{2}
$$

is a 4 -dimensional \mathbb{Q}_{p}-vector space. The matrix of φ over \mathcal{B} is

$$
\operatorname{Mat}_{\mathcal{B}}(\varphi)=\left(\begin{array}{cccc}
0 & \zeta_{3} p & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & \zeta_{3}^{-1} p \\
0 & 0 & 1 & 0
\end{array}\right) \in G L_{4}\left(\mathbb{Q}_{p}\right)
$$

and the filtration is given by

$$
\operatorname{Fil}^{0} D=D, \quad \operatorname{Fil}^{1} D=\mathbb{Q}_{p} x_{1} \oplus \mathbb{Q}_{p}\left(y_{1}+x_{2}\right), \quad \operatorname{Fil}^{2} D=0
$$

Proposition 3.1. There is an abelian surface \mathcal{A} over \mathbb{Q}_{p} such that $(D, \operatorname{Fil}) \simeq \mathbf{D}_{\text {cris }}^{*}\left(V_{p}(\mathcal{A})\right)$. Further
(a) \mathcal{A} has good reduction with special fibre isogenous to a supersingular simple abelian surface over \mathbb{F}_{p}
(b) the G-module $V_{p}(\mathcal{A})$ is not semisimple.

Proof. Just as in the proof of proposition 2.1 we have $t_{H}(D)=2=t_{N}(D)$. Since

$$
\mathrm{P}_{\mathrm{char}}(\varphi)(X)=X^{4}+p X^{2}+p^{2}=\left(X^{2}-\zeta_{3} p\right)\left(X^{2}-\zeta_{3}^{-1} p\right)
$$

the nontrivial sub- $\mathbb{Q}_{p}[\varphi]$-modules of D are the $D_{i}=\mathbb{Q}_{p} x_{i} \oplus \mathbb{Q}_{p} y_{i}$ for $i=1,2$ both having Newton invariant $t_{N}\left(D_{i}\right)=1$, and Hodge invariants $t_{H}\left(D_{1}\right)=1, t_{H}\left(D_{2}\right)=0$. Again we obtain a nonsplit exact sequence (s) in $\mathbf{M F}_{\mathbb{Q}_{p}}^{\mathrm{ad}}(\varphi)$ and (D, Fil) is not semisimple.

The action of φ is semisimple and $\mathrm{P}_{\text {char }}(\varphi)=\mathrm{P}_{\mathrm{char}}\left(\operatorname{Fr}_{A}\right)$ where A is a supersingular simple abelian surface over \mathbb{F}_{p} with $\mathrm{P}_{\text {char }}\left(\operatorname{Fr}_{A}\right)(X)=X^{4}+p X^{2}+p^{2}$. Thus $(D$, Fil $)$ satisfies condition (1) of theorem 1.2 as well as condition (a) of section 1 . It obviously satisfies (2) and it remains to check (3). Let $\mathcal{B}^{*}=\left(x_{1}^{*}, y_{1}^{*}, x_{2}^{*}, y_{2}^{*}\right)$ be the dual basis of \mathcal{B} for D^{*}. Again $\left(\operatorname{Fil}^{1} D\right)^{\perp}=\mathbb{Q}_{p} y_{2}^{*} \oplus \mathbb{Q}_{p}\left(y_{1}^{*}-x_{2}^{*}\right)$ and the matrix of $p \varphi^{*-1}$ over \mathcal{B}^{*} is

$$
p \operatorname{Mat}_{\mathcal{B}}\left(\varphi^{-1}\right)^{t}=\left(\begin{array}{cccc}
0 & \zeta_{3}^{-1} & 0 & 0 \\
p & 0 & 0 & 0 \\
0 & 0 & 0 & \zeta_{3} \\
0 & 0 & p & 0
\end{array}\right)
$$

Let $\delta: D^{*} \rightarrow D$ be the \mathbb{Q}_{p}-linear morphism with matrix over the bases \mathcal{B}^{*} and \mathcal{B}

$$
\operatorname{Mat}_{\mathcal{B} * \mathcal{B}}(\delta)=\left(\begin{array}{cccc}
0 & 0 & 0 & \zeta_{3} \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-\zeta_{3} & 0 & 0 & 0
\end{array}\right)
$$

As in the proof of proposition 2.1 one checks that δ is invertible, satisfies $\delta^{*}=-\delta$, $\varphi \delta=p \delta \varphi^{*-1}$, and that $\delta\left(\operatorname{Fil}^{1} D\right)^{\perp}=\operatorname{Fil}^{1} D$.

Remark 3.2. The objects ($D_{1}, \operatorname{Fil}^{i} D \cap D_{1}$) and ($D_{2}, \operatorname{Fil}^{i} D \bmod D_{1}$) in $\operatorname{MF}_{\mathbb{Q}_{p}}^{\text {ad }}(\varphi)$ do not arise from elliptic schemes over \mathbb{Z}_{p}, however [Ki] Thm. 0.3 shows the existence of p-divisible groups \mathcal{G}_{i} over \mathbb{Z}_{p} such that $D_{i} \simeq \mathbf{D}_{\text {cris }}^{*}\left(V_{p}\left(\mathcal{G}_{i}\right)\right)$. The special fibre of $\mathcal{A}(p)$ is \mathbb{F}_{p}-isogenous to the product of the special fibres of the \mathcal{G}_{i}, themselves being nonisogenous. Thus we obtain a nonsplit exact sequence of G-modules

$$
1 \longrightarrow V_{p}\left(\mathcal{G}_{2}\right) \longrightarrow V_{p}(\mathcal{A}) \longrightarrow V_{p}\left(\mathcal{G}_{1}\right) \longrightarrow 1
$$

and Tate's full faithfulness theorem shows that $\mathcal{A}(p)$ is not \mathbb{Z}_{p}-isogenous to $\mathcal{G}_{1} \times \mathcal{G}_{2}$.
Remark 3.3. Starting with $X^{4}-p X^{2}+p^{2}$ when $p \equiv 1 \bmod 3 \mathbb{Z}$ and $X^{4}+p^{2}$ when $p \equiv 1 \bmod 4 \mathbb{Z}$ one obtains alike nonsemisimple 4 -dimensional supersingular representations (just replace ζ_{3} by ζ_{6} or ζ_{4}). More generally the

$$
p^{d} \Phi_{n}\left(\frac{X^{2}}{p}\right)=\prod_{i \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(X^{2}-\zeta_{n}^{i} p\right) \quad \text { with } d=\#(\mathbb{Z} / n \mathbb{Z})^{\times} \geq 2
$$

where Φ_{n} is the nth cyclotomic polynomial are supersingular p-Weil polynomials leading when $p \equiv 1 \bmod n \mathbb{Z}$ to similar higher-dimensional constructions.

References

[Br] C. Breuil, Groupes p-divisibles, groupes finis et modules filtrés, Annals of Math. 152 (2000), 489-549.
[Co-Io] R. Coleman and A. Iovita, The Frobenius and Monodromy operators for Curves and Abelian Varieties, Duke Math. J. 97 (1999), 171-215.
[Co-Fo] P. Colmez et J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. math. 140, 1 (2000), 1-43.
[Fo1] J.-M. Fontaine, Le corps des périodes p-adiques, in Périodes p-adiques, Astérisque 223, Soc. Math. de France (1994).
[Fo2] J.-M. Fontaine, Représentations p-adiques semi-stables, in Périodes p-adiques, Astérisque 223, Soc. Math. de France (1994).
[Gr] A. Grothendieck, EGA III, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
[Ho-Ta] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Séminaire Bourbaki 352 (1968), 15p.
[Ki] M. Kisin, Crystalline representations and F-crystals, in Algebraic Geometry and Number Theory In Honor of Vladimir Drinfeld's 50th Birthday, Progress in Mathematics 253 (2006), 459-496.
[Ta] J. Tate, p-Divisible groups over local fields, in Proceedings of a Conference on Local Fields, Driebergen 1966, Springer-Verlag (1967), 158-183.
[Vo] M. Volkov, A class of p-adic Galois representations arising from abelian varieties over \mathbb{Q}_{p}, Math. Ann. 331 (2005), no. 4, 889-923.
[Wa-Mi] W.C. Waterhouse and J.S. Milne, Abelian Varieties over Finite Fields, in AMS Proceedings of Symposia in Pure Mathematics XX (1971), 53-64.

Université de Mons, Institut de Mathématique, avenue du Champ de Mars 6, 7000 Mons, Belgium.

E-mail address: volkov@umh.ac.be

