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1. Introduction

Let K be a topological L-field. We are going to consider two kinds of expansions
< K,D >, where D is a derivation on K. One where the operator D has a priori no
interactions with the topology on K and the other one where D induces a continuous
map from K to K.

In the first case, we will work in the setting we developed in [6]. Assume K is a
model of a universal L-theory T which has a model completion Tc. Under certain
hypothesis on Tc, we showed that the expansion of T to the L ∪ {D}-theory TD
consisting of T together with the axioms expressing that D is a derivation, admits
a model-completion T ∗c,D which we axiomatized. To the theory TD ∪ Tc, we added a
scheme of axioms (DL), which expressess that each differential polynomial has a zero
close to a zero of its associated algebraic polynomial. This scheme (DL) is related
to the axiom scheme (UC) introduced by M. Tressl in the framework of large fields,
and also to the axiomatization, due to M. Singer, of the theory of closed ordered
differential fields (CODF).

We further observed that whenever Tc has the non-independence property (NIP),
then T ∗c,D has NIP. This implies for instance that the definable subsets in a model of
T ∗c,D have a V C-dimension.

Here, using former results of L. van den Dries, we will show the existence of a
fibered dimension function in models of T ∗c,D. In [17], L. van den Dries showed, under
a certain condition: the algebraic (or differential) boundedness property, the existence
of a fibered dimension function on definable sets.

In that framework, we show on one hand that an analog of the algebraic bound-
edness property, the equational boundedness property, holds in the presence of (DL)
and on the other hand that the equational boundedness property plus a quantifier
elimination result suffice to show the existence of a fibered dimension function on the
definable subsets.
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This result gives for the theory of closed ordered fields (CODF) another proof that
definable subsets in models of that theory can be endowed with a fibered dimension
function (see [1]). There the authors first proved a cell decomposition theorem,
introducing the notion of δ-cells and associated with it a fibered dimension function
(Theorem 5.19 [1]).

In the second case, we will show that a class of differential valued fields, the D-
henselian fields (see section 4) introduced by T. Scanlon ([15]), has the equational
boundedness property. We first show that this class of differential topological fields
can be equipped with a topological system, as introduced by L. van den Dries ([17]).
Then we will use the result of T. Scanlon that these D-henselian fields admit quan-
tifier elimination ([15], [16]), revisited by N. Guzy ([5]) who dealt with a one-sorted
language, more convenient to our purpose. Note that these D-valued fields do have
the NIP property.

2. Fibered dimension function and equationnal boundedness.

We will make the assumption throughout the paper that L is a first-order language
containing the language of rings Lrings := {+,−, ., 0, 1}.

Let A be an L-structure. We will denote by Def(A) the set of (all) definable
subsets (with parameters) in the cartesian products An of A, n ∈ ω. For S ⊆ Am

and σ a permutation of {1, · · · ,m}, we denote by Sσ the set {(aσ(1), · · · , aσ(m)) ∈
Am : (a1, · · · , am) ∈ S}.

L. van den Dries introduced a dimension function on Def(A) (and more generally
on a Tarski system [17]) satisfying the axioms below. Recently it was revisited by
C. Ealy and A. Onshuus who call such dimension, a fibered dimension function ([4]
section 6).

Definition 2.1. ([17], [4]) A fibered dimension function d : Def(A)→ {−∞} ∪ On
satisfies the following axioms. Let S, S1, S2, T ∈ Def(A).

(1) d(S) = −∞ iff S = ∅, d({a}) = 0, for each a ∈ A.
(2) d(S1 ∪ S2) = max{d(S1), d(S2)}.
(3) Let S ∈ Am, then for any permutation σ of {1, · · · ,m}, we have d(Sσ) = d(S).
(4) Let S ⊆ An+m, Sx̄ := {ȳ ∈ Am : (x̄, ȳ) ∈ S} and S(γ) := {x̄ ∈ An : d(Sx̄) =

γ}, γ ∈ On. Then, S(γ) ∈ Def(A) and d({(x̄, ȳ) ∈ S : x̄ ∈ S(γ)} =
d(S(γ)) + γ.

If one adds that d(A) = 1, one obtains a dimension function taking its values in
{−∞} ∪ N and one can relax the condition 4 by asking it only for m = 1 (see [17]
Proposition 1.4).

In [4], in the setting of rosy theories, they connected the thorn rank and van den
Dries fibered dimension, under the assumption that the dimension of a set is zero if
and if it is finite (see Proposition 6.7 and Corollary 6.9 in [4]).

Note that there are other dimension functions on definable sets which are in general
ordinal valued and often not fibered. For instance, since the theory of differentially
closed fields is ω-stable, every definable subset in a model of DCF0 has a Morley
rank. However, it has been shown by E. Hrushovski and T. Scanlon that there are
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definable sets where the Lascar rank and Morley rank do not coincide (Corollary 2.8
in [7]). (But it does coincide for definable sets without parameters (see [7] Question
2.9.) )

In ([17]), L. van den Dries first showed for algebraically bounded structures that their
algebraic dimension is a fibered dimension function. Then, he considered expansions
with a derivation and adapted his algebraic setting to a differential one (see 2.25 in
[17]).

More generally we will consider terms in a language L containing the ring language
and make analogous definitions, provided that non trivial terms (modulo the theory)
induce non-trivial functions on models of that theory. This is why we will use the
notation t-dimension.

Let M be a L-structure, model of a L-theory T extending the theory of domains
i.e. commutative rings without zero-divisors. We will assume that M is infinite.

Let LM be the language L expanded by new constants for elements of M .

Definition 2.2. Let M |= T and let M{x1, · · · , xn} be the set of all LM -terms in
free variables x1, · · · , xn up to equivalence ∼ in T . (Namely, t1 ∼ t2 if T |= ∀x̄ t1(x̄) =
t2(x̄).) We will call the following hypothesis on M assumption (C): for any natural
number n and any term t(x1, · · · , xn) if t 6∼ 0, then the corresponding function t on
Mn is non trivial.

Definition 2.3. ([17]) Let M be a model of T , let S be a subset of Mn and denote
by M{S} the set of functions on S induced by M{x1, · · · , xn}.

(1) The elements f1, . . . , fk ∈ M{S} are called t-independent over M if for any
f ∈ M{y1, . . . , yk} with f 6= 0 we have f(f1, . . . , fk) 6= 0, as an element of
M{S}.

(2) The t-dimension of S, denoted t-dimM(S) is the maximal number of functions
in M{S} that are t-independent over M .

(3) By convention we put t-dim(∅) = −∞.
(4) We will say that a (definable) subset S of Mn is small if t-dim(S) = 0. The

small subsets of Mn form an ideal in the power set P(Mn).

Remark 2.4. (1) Let σ ∈ Aut(M) and assume that σ(S) = S, then t-dim(S)=t-
dim(Sσ).

(2) Assumption (C) implies that t-dim(Mn) ≥ n. (Take the projections func-
tions.)

(3) Let S ⊆M , then for any f ∈M{S}−{0}, x and f(x) are not t-independent.
(Consider t(y1, y2) := f(y1) − y2; since t 6= 0 and t(x, f(x)) = 0, x and f(x)
are not t-independent.)

The dimension t-dim satisfies the first three axioms of a fibered dimension function
(see Definition 3.1). We will introduce additional hypothesis in order to obtain a
fibered dimension.

First, following [17], we introduce another notion of dimension via a notion of inde-
pendence which generalizes the usual notions of transcendence degree and algebraic
independence (see Section 2 of [17]).
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Definition 2.5. Let M∗ be a |M |+-saturated elementary extension of M and let
ā := (a1, · · · , an) ∈ (M∗)n.

Let cl be the following operator on M∗: b ∈ cl(ā) if there exists a non zero term
t(x1, · · · , xk) ∈ M{x1, · · · , xk} such that t(b, ā) = 0 and t(x, ā) non-trivial on M∗.
More generally let A ⊆M∗, then b ∈ cl(A) if there exists a k-tuple c̄ ⊆ A and a non
zero term t(x1, · · · , xk) ∈M{x1, · · · , xk} such that t(b, c̄) = 0 and t(x, c̄) non-trivial
on M∗.

We say that cl is a closure operator (or transitive) whenever cl(cl) = cl. A subset
A ⊆M∗ is independent if ∀a ∈ A, a /∈ cl(A− {a}).

Note that this operator has the following properties.

(1) A ⊆ cl(A),
(2) if A ⊆ B, then cl(A) ⊆ cl(B).
(3) If a ∈ cl(A), then there exists a finite subset A0 of A such that a ∈ cl(A0).

Remark 2.6. In the case where L = Lrings or L = Lrings ∪{D}, where D is a unary
symbol for a derivation, then cl is a closure operator.

Lemma 2.7. Let b1, · · · , bk ∈ M∗. We have the following equivalence: b1, · · · , bk
are independent over M iff for any non zero term t(x1, · · · , xk) ∈ M{x1, · · · , xk},
M∗ |= t(b1, · · · , bk) 6= 0.

Proof: Set b̄ := (b1, · · · , bk).
(←) This is immediate.
(→) By induction on k, we will show that this contradicts the fact that b̄ is inde-

pendent.
If k = 1, then, since t is non-trivial on M , it implies that b1 ∈ cl(∅), contradiction.

So, assume that k ≥ 2 and write b̄ := (b̃, bk). Let t be a non-zero term and assume

that t(b̃, bk) = 0. Since bk /∈ cl(b̃), this implies that t(b̃, x) is trivial on M∗. Since t is

non zero, there exists a tuple (m1, · · · ,mk) ⊆M such that t(m̄) 6= 0. But t(b̃, mk) = 0
which contradicts the induction hypothesis. (A subtuple of an independent tuple is
independent too.) �

Lemma 2.8. Assume that cl is a closure operator, then (M∗, cl) is a pregeometry.

Proof: Let us check the axioms of a pregeometry (see for instance Definition 8.1.1
in [10]). In addition to properties (1) up to (3) stated above, it remains to check that
cl has the exchange property.

Let u ∈ cl(A, b)− cl(A) and let us show that b ∈ cl(A, u). By the finite character
of cl, we may assume that u ∈ cl(ā, b) with ā ⊆ A a finite tuple of minimal length.
Moreover, since cl is a closure operator, we may assume that ā is independent.

So, there exists a non zero term t(x0, · · · , xk, xk+1) ∈ M{x0, · · · , xk+1} such that
t(u, ā, b) = 0 and t(x, ā, b) non-trivial on M∗. Either t(u, ā, y) is non-trivial on M∗ and
so b ∈ cl(A, u), or ∀n ∈ M∗ t(u, ā, n) = 0. Since u /∈ cl(A), for all m ∈ M , t(x, ā,m)
is trivial on M∗, in particular for all m1,m2 ∈ M , t(m1, ā,m2) = 0. Moreover, since
t is a non-zero term, ā has non-zero length.

By the preceding Lemma, this contradicts contradicts the fact that ā is independent
over M . �
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So, under the assumption of the Lemma, we can associate with cl a notion of
dimension ([8] 3.6), that we will denote by dim.

First we localize this notion of closure as follows. Let A be a subset of M∗, then
clA(ā) := cl(ā ∪ A). Relative to this localized closure operator clA will correspond a
notion of independence over A.

Definition 2.9. Let M∗ be |M |+-saturated elementary extension of M and let
ā := (a1, · · · , an) ∈ (M∗)n and B a subset of (M∗)n.

Then dim(ā) := dim(M〈ā〉) is the maximal number of elements b1, · · · , bk ∈M〈ā〉
which are independent (relative to cl) and dim(M〈B〉) = max{dim(M〈ā〉) : ā ∈ B}.

Let A ⊆M∗. We will denote by dim(·/A) the dimension relative to clA.
An element ā ∈ B is called generic if dim(ā)=dim(B) and ā is generic over A if

dim(ā/A) = dim(B/A).

Remark 2.10. We have the usual properties of the dimension. Let ā, b̄ ∈ (M∗)n

and A a subset of M∗. Namely that dim(āb̄/A) = dim(ā/A ∪ b̄) + dim(b̄/A).
From that relation, one deduces that dim(ā/A) = dim(ā/A ∪ b̄) iff dim(b̄/A) =

dim(b̄/A ∪ ā). Therefore ā is generic over A ∪ b̄ iff b̄ is generic over A ∪ ā.

Let LS be the expansion of the language L by a new unary predicate S; this
predicate will be interpreted by a subset S of Mn.

Lemma 2.11. Let 〈M∗, S∗〉 be a |M |+-saturated elementary LS-extension of 〈M, S〉,
where S ⊆Mn and assume that cl is a closure operator. Then,

(1) t-dimM(S)=dim(M〈S∗〉).
(2) t-dimM(M) = 1.

Proof: (1) Suppose that t-dimM(S) ≥ m, then there exist f1, · · · , fm ∈M{S}−{0},
t(f1, · · · , fm) 6= 0 for every non zero term t(x1, · · · , xm) ∈ M{x1, · · · , xm}. For each
term choose an element s(t) ∈ S such that t(f1(s(t)), · · · , fm(s(t))) 6= 0. Since M is a
domain, this also holds for any finite number of terms by taking their product. Then
by saturation there exists an element u ∈ S∗ such that the m-tuple (f1(u), · · · , fm(u))
of elements in S∗ has the property that for every non zero term t(x1, · · · , xm) ∈
M{x1, · · · , xm}, we have t(f1(u), · · · , fm(u)) 6= 0. So, dim(M〈f1(u), · · · , fm(u)〉) ≥
m. Therefore dim(M〈S∗〉) ≥ m.

Conversely, suppose that dim(M〈S∗〉) ≥ m, then there exists an element ū ∈ S∗
with ū := (u1, · · ·un) such that M〈ū〉 contains m independent elements. Namely,
there exist f1(ū), · · · , fm(ū) independent over M , where f1, · · · fm are LM -terms.
Namely, for every non zero term t ∈M{x1, · · · , xm}, we have t(f1(ū), · · · , fm(ū)) 6= 0.

So,M∗ |= ∃x1 · · · ∃xn
∧n
i=1 S

∗((x1, · · · , xn)) & t(f1(x1, · · · , xn), · · · , fm(x1, · · · , xn)) 6=
0. SinceM∗ is an elementary extension ofM, we get that for every non zero LM -term
t(x1, · · · , xm), there exists an element in S such that in M , the function t(f1, · · · , fm)
is non zero, which means that t-dimM(S) ≥ m.

(2) We will show that dim(M〈M∗〉) = 1. By Remark 3.4 (3), it suffices to show
that t-dim(M) < 2. So, let m∗ ∈ M∗ and let t1(m∗) belong to the L-substructure
M〈m∗〉, where t1(x) ∈ M{x} − {x}. Then, m∗ and t1(m∗) are dependent since
if t(x, y) := t1(x) − y, then t(m∗, t1(m∗)) = 0 and t(x, y) 6= 0. Since cl satisfies the
exchange and cl(cl) = cl, we have that any two elements of M〈m∗〉 are dependent. �
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Definition 2.12. An L-structure M is called equationally bounded if for each de-
finable set S ∈ Mm+1 such that for every ā ∈ Mm, Sā is small, there exist finitely
many terms f1, . . . , fr ∈ M{x1, . . . , xm, y} such that for every ā ∈ Mm, there exists
1 ≤ i ≤ r with fi(ā, y) 6= 0 and Sā ⊆ {b ∈M : fi(ā, b) = 0}.

In the particular case where the reduct of L to its non relational symbols is the
language of rings, an equationally bounded L-structure is called algebraically bounded
and in that case small subsets of M are just the finite subsets. When the reduct of
L to its non relational symbols is the language of differential rings, an equationally
bounded L-structure is called differentially bounded. (See [17]).

Proposition 2.13. Let M be a model of T satisfying assumption (C) and assume
that the operator cl is a closure operator. Then, if M is an equationally bounded L-
structure, the function t-dim on Def(M), defines a fibered dimension function with
values in {−∞} ∪ ω.

Proof. This is analogous to the proof of 2.7 in [17].
The first three axioms are easily checked and t-dim(M) = 1 (see Remark 2). So

to check the fourth one, it suffices to consider the case of subsets included in Mn+1

(namely the case where m = 1).
Let S ⊆ Mn+1 be definable (with parameters) in M. For i ∈ {0, 1}, let S(i) :=
{x̄ ∈Mn : t− dimM(Sx̄) = i}.

SinceM is equationally bounded, there exist non-trivial terms f1, . . . , fk inM{x1, . . . , xn, y}
such that if Sx̄ is small (x̄ ∈ Mn) then Sx̄ ⊆ {y ∈ M : fi(x̄, y) = 0} for some
i = i(x̄) ∈ {1, . . . , k} with fi(x̄, Y ) 6= 0. Hence we have that

S(0) =
k⋃
i=1

{x̄ ∈Mn : ∅ 6= Sx̄} ⊆ {y ∈M : fi(x̄, y) = 0 with fi(x̄, Y ) 6= 0}}.

Therefore we deduce easily that S(0) and S(1) are definable (indeed x̄ ∈ S(0) iff
∃y (x̄, y) ∈ S &

∨
i fi(x̄, y) = 0 and S(1) = Mn − S(0). It remains to show that

t-dimM{(x̄, y) ∈ S : x̄ ∈ S(0)}=t-dimM(S(0)),
t-dimM{(x̄, y) ∈ S : x̄ ∈ S(1)}=t-dimM(S(1)) + 1.

Now we use Lemma 2.11. Let us consider an elementary |M |+-saturated extension
〈M∗, S∗〉 of 〈M,S〉. Let (ā, b) ∈ S∗.

If ā ∈ S(0)∗, then fi(ā, b) = 0 for some i with fi(ā, y) 6= 0. So b ∈ cl(ā) and so
dim(M〈ā, b〉) =dim(M〈ā〉).

If ā ∈ S(1)∗, then S∗ā is not small and so by equationnal boundedness, for any finite
subset of non-zero terms t1(x̄, y), · · · , tk(x̄, y), there exists an element c ∈ S∗ā such

that
∧k
i=1 ti(ā, c) 6= 0. Therefore, by saturation of M∗, there exists b ∈ S∗ā such that

b /∈ cl(ā). So, dim(M〈ā, b〉) =dim(M〈ā〉) + 1. �

3. Topological differential fields and dimension functions.

We will now apply the results of the previous section to topological structures. We
will deal with two kinds of topological structures.

In [17], L. van den Dries defined a topological system onM (see [17] section 2, 2.11),
as follows. It consists of a topology τn on each Mn, n ≥ 1 such that the LM -terms
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induce continuous maps, the singletons {m}, m ∈M , are closed and certain subsets
of the relations and their complements are open. Namely, for each n-ary relation R
and any subsequence 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ k ≤ n, both sets:
{(ai1 , · · · , aik) ∈Mk :M |= R(_a_i1 · · ·

_ a_ik ) & ai1 6= 0 & · · ·&aik 6= 0},
{(ai1 , · · · , aik) ∈Mk :M |= ¬R(_a_i1 · · ·

_ a_ik ) & ai1 6= 0 & · · ·&aik 6= 0}
are open in Mk, where (_a_i1 · · ·

_ a_ik ) is the element of Mn, whose ith1 · · · , ithk
coordinates are ai1 , · · · , aik and the other coordinates are zero.

In [6], we defined a topological L-structure M := 〈M, τ〉 to be a first-order L-
structure with a Hausdorff topology τ on M such that every n-ary function symbol
f of L is interpreted by a continuous function Mn to M , and every m-ary relation
symbol R of L and its complement is interpreted by the union of an open subset of
Mm and an algebraic set (Mn and Mm are endowed with the product topology). We
will denote by V (respectively Vn) a basis of neighbourhoods of 0 (respectively of 0̄
in Mn).

Let K be an L∪{−1}-structure such that its restriction to Lrings∪{−1} is field, 〈K, τ〉
is a topological L-structure and the inverse function −1 is continuous on K \{0}. We
call such structure a topological L-field. We assume our fields to be of characteristic
0.

We say that K is a V -field, where V ∈ V , if any element of K can be written as
x.y−1, with x, y ∈ V and y 6= 0.

We consider expansions of topological L-fields to L∪ {−1, D}-structures, where D
is a new unary function symbol for a derivation:

∀a∀b D(a+ b) = D(a) +D(b), ∀a∀b D(a.b) = a.D(b) +D(a).b.

We shall denote L ∪ {−1, D} by LD and the i-th iterate Di(x) of the derivation by
x(i). We will call these expansions K := 〈K, τ,D〉 differential topological L-fields, but
we do not assume that this new function D is continuous. Let CK denote the subfield
of K of elements with zero derivative (i.e. the constant elements). Note that this is
an infinite small subset of K.

Notation 3.1. Let K{X1, · · · , Xn} be the ring of differential polynomials over K in
n differential indeterminates X1, · · · , Xn over K, namely it is the ordinary polynomial

ring in indeterminates X
(j)
i , 1 ≤ i ≤ n, j ∈ ω, with by convention X

(0)
i := Xi. One

can extend the derivation D of K to this ring by setting D(Xi) := X
(1)
i and using

the additivity and the Leibnitz rule.
Set X := X1, · · · , Xn and for ` := (`1, · · · , `n) ∈ Nn, let X` := X`1

1 · · ·X`n
n and

∂` := ∂`1
∂X1
· · · ∂`n

∂Xn
. We will use the lexicographic ordering on Nn.

Let f(X) ∈ K{X} −K and suppose that f is of order m, then we write f(X) =

f ∗(X1, . . . , X
(m)
1 , · · · , Xn, . . . , X

(m)
n ) for some ordinary polynomial f ∗(X1, · · · , Xn.(m+1))

in K[X1, · · · , Xn.(m+1)]. We will make the following abuse of notation: if b ∈ Kn, then

f ∗(b) means that we evaluate the polynomial f ∗ at the tuple (b1, · · · , b(m)
1 , · · · , bn, · · · , b(m)

n ).
If n = 1, recall that the separant sf of f is defined as sf := ∂f

∂X
(m)
1

.
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Consider now any infinitely differentiable function g(X); we will use the Taylor
expansion of g:

g(X + Y) = g(X) +
∑
`6=0

g`(X).Y` +R(Y),

where `!.g` := ∂`g, and R(Y) is a remainder.

Notation 3.2. Let φ(x1, · · · , xn) be an open LD-formula, for each xi, 1 ≤ i ≤ n, let

mi be the maximal natural number m such that x
(m)
i occurs in an atomic subformula.

Then, we denote by φ∗((xi,j)
n,mi

i=1,j=0) the formula we obtain from φ by replacing each

x
(j)
i by xi,j. Let N :=

∑n
i=1 mi + n and if S is the subset of Kn defined by φ, we

denote by Salg the subset of KN definable by φ∗.
Note that given a definable set S := φ(K), the operation of taking Salg depends

on φ (so the notation is misleading). However, if A ⊆ B are two definable subsets of
Kn, then by possibly taking the direct product with a power of K, one may assume
that Aalg ⊆ Balg.

Definition 3.1. A definable subset S has a non-empty ∗-interior if the corresponding
definable set Salg has a non-empty interior.

Definition 3.2. (See [6]) Let K := 〈K,V , D〉 be a differential topological L-field
and assume that K is a V -field for some V ∈ V . Let V0 :=

⋃
n>1 V0,n+1 where

V0,n+1 ⊆ Vn+1. Then we say that K satisfies (DL)V0 if for every n > 1, for every
differential polynomial f(X) = f ∗(X,X(1), . . . , X(n)) belonging to V {X} and for
every W ∈ V0,n+1, the following implication holds:

(∃α0, . . . , αn ∈ V )(f ∗(α0, . . . , αn) = 0 ∧ s∗f (α0, . . . , αn) 6= 0)⇒(
(∃z)

(
f(z) = 0 ∧ sf (z) 6= 0 ∧ (z(0) − α0, . . . , z

(n) − αn) ∈ W
))

.

When each V0,n+1 = Vn+1, we shall not put any subscript to (DL).

In [6], we showed transfer results on the existence of model-completions for theories
of topological L-fields to theories of differential topological L-fields, assuming the
topology is first-order definable. We follow the treatment of topological structures as
used by A. Pillay in [12]. Let us recall the setting.

Definition 3.3. A topological L-field K satisfies Hypothesis (D) if there is a formula
φ(x, ȳ) such that the set of subsets of the form φ(K, ā) := {x ∈ K : K |= φ(x, ā)}
with ā ⊆ K can be chosen as a basis V of neighbourhoods of 0 in K.

From now on, we will assume in addition that L is the language Lrings ∪ {Ri; i ∈
I} ∪ {cj; j ∈ J} where the cj’s are constants and the Ri are ni-ary predicates.

Let T be a universal L ∪ {−1}-theory of fields of characteristic zero, assume T
admits a model-completion Tc and that the class M(Tc) of all the models of Tc
satisfies Hypothesis (D). So, we have on the elements ofM(Tc) a first-order definable
topology and we denote the corresponding class M(Tc)top.

Let TD (respectively Tc,D) be the LD-theory T (respectively Tc) together with the
axioms stating that D is a derivation. In [6], we showed that under the assumption
that the elements of M(Tc)top satisfies the so-called Hypothesis (I) (?), that any
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element of M(Tc)top embeds in an element of M(Tc)top satisfying the scheme (DL).
The assumption (?) is the analog in our topological setting of the notion of large
fields (see [13]).

Note that since the models of T satisfies Hypothesis (D), the scheme of axioms
(DL) can be expressed in a first-order way. Let T ∗c,D be the LD-theory consisting of
Tc,D together with the scheme (DL).

Theorem 3.4. ([6] Theorem 4.1.) Under the above hypotheses on T and Tc, we have
that the theory T ∗c,D is the model-completion of TD. �

Corollary 3.5. ([6].) The theory T ∗c,D admits quantifier elimination.

Proof: The result follows from the fact that it is the model-completion of a universal
theory ([2] Proposition 3.5.19). �

Corollary 3.6. ([6] Corollary 4.3.) Assume that both theories Tc and T ∗c,D are
complete and that Tc has the non-independence property (NIP). Then the theory
T ∗c,D has NIP.

Lemma 3.7. Let K be a differential topological L-field which satisfies the scheme
(DL). Let S be a definable subset of some Kk either with non empty interior or such
Salg has non empty interior, then S is not included in a zero-set of a non trivial
(differential) polynomial and so, in particular, S is not small.

Proof: Let O be a non empty open subset of Kk, let f(X) be a differential poly-
nomial of order N in k differential indeterminates. Let b ∈ O ⊆ S and assume that
f(b) = 0. We will find an element in O close to b on which f doesn’t vanish. Let f ∗(X)
be the corresponding ordinary polynomial. Write f ∗(b+ Z) = f(b) +

∑
`6=0 f

∗
` (b).Z`,

where `!f ∗` = ∂`f
∗ (see Definition 3.1) and the sum is over tuples ` of length less than

or equal to N.k.
Let T be the set of tuples ` such that ∂`f

∗(b) 6= 0. Since f is non-zero, this

set is non-empty. Let ˜̀ be the minimum of T in the lexicographic ordering; ˜̀ :=
(`n1 , · · · , `nm) with 1 ≤ n1 < · · · < nm ≤ N.k. Denote the ith component of ` by `(i).
For the indices i /∈ {n1, · · · , nm}, set Zi = 0 and denote the obtained m-tuple by Y.

Let T0 the subset of N.k-tuples ` in T − {˜̀} such that `(i) 6= 0 iff i ∈ {n1, · · · , nm}.
Note that for ` ∈ T0, i is minimal such that `(i)− `ni

is non zero, than it is strictly
positive. Let d := max`∈T0{0, `ni

− `(i)}+ 1.

Write f ∗(b + Y) = f ∗(b) + g∗(Y) where g∗(Y) = ∂˜̀f(b).Y
`n1
n1 · · ·Y

`nm
nm .h∗(Y) and

h∗(Y) is the rational function: 1 +
∑

`∈T0
∂`f(b)
∂˜̀f(b)

.Y
`(1)−`n1
n1 · · ·Y `(m)−`nm

nm .

First given a neighbourhood W0 of zero, there exists a neighbourhood W1 of 0 such

that 0 /∈ 1 + W1 and if ε ∈ W1, then for all ` ∈ T0, ε.∂`f(b)
∂˜̀f(b)

∈ W0, and such that the

sum (respectively the product) of |T0| (respectively ≤ c) elements of W1 is in W0,
where c is a natural number that we will determine later. Then evaluate h∗(Y) for

Yni
:= εd

m+1−i
so Y

`(1)−`n1
n1 · · ·Y `(m)−`nm

nm := εq`(d) where q`(d) is a polynomial of the
form

∑m
i=1 d

m+1−i.(`(i)−`ni
) and so q`(d) ≥ 1. Choose c := max`∈T0q`(d). The choice
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of W1 implies that
∑

`∈T0
∂`f(b)
∂˜̀f(b)

.εq`(d) belongs to W1. For j = 1, · · · , k, let aj(n) = 0

if j.(N − 1) ≤ n < j.N and aj = εm+i−1 for n ∈ {n1, · · · , nm}. Let a := (a1, · · · , ak),
we have h∗(a) 6= 0.

Therefore applying k times the scheme (DL) to X(N+1)=0 and its algebraic solu-
tions (aj, 0), we can find elements a′j ∼ aj, 1 ≤ j ≤ k, so that for a′ = (a′1, · · · , a′k),
we have b+ a′ ∈ O, with f(b+ a′) 6= 0. �

Lemma 3.8. Suppose we have a topological system on the LD-structure A. Then,
no non empty open subset in some cartesian power of A is small.

Proof: Let O be a non empty open subset of Ak, let f(Y) be a nonzero differential
polynomial in k differential indeterminates. Let b ∈ O and assume that f(b) = 0.

Set g(Y) := f(b+ Y) = f(b) +
∑

`
∂`1f
∂Y1
· · · ∂`nf

∂Yn
(b).Y l1

1 · · ·Y
lk
k , where ` = (l1, · · · , lk).

Let L be the set of tuples ` such that ∂`f(b) = ∂`1f
∂Y1
· · · ∂`nf

∂Yn
(b) 6= 0. Since f is

non-zero, this set is non-empty.
Let L be the set of tuples ` such that ∂`f(b) 6= 0. Since f is non-zero, this set is

non-empty. Let `0 be the minimum of T in the lexicographic ordering and suppose
it is of the form (`1, · · · , `m) with m ≤ N.k. For the indices i /∈ {n1, · · · , nm}, set
Yi = 0 and denote the obtained tuple by Y. Let T0 the subset of tuples ` in T −{`0}
with the same support as `0. We denote the ith component of ` by `(i). Note that
for ` ∈ T0, if i is minimal such that `(i)− `ni

is non zero, than it is strictly positive.

Write f(b + Y) = f(b) + g(Y) where g(Y) = Y
`n1
n1 · · ·Y

`nm
nm .h∗(Y), where h(Y) is

the rational function:

h(Y) := ∂`0f(b) +
∑
`∈T0

∂`f(b).Y
`(1)−`n1
n1 · · ·Y `(m)−`nm

nm
.

Since h is continuous away from 0, there exists a ∼ 0 such that b+a ∈ O, h(a) 6= 0
and so g(a) 6= 0 and f(b+ a) 6= 0. (One way to check this is to evaluate h(Y) at an

element of the form Yni
:= εn

m+1−i
and so Y

`(1)−`n1
n1 · · ·Y `(m)−`nm

nm = εq(n) where q(n)
is a polynomial of the form

∑m
i=1 n

m+1−i.(`(i)− `ni
) and so the coefficient of its term

of highest degree is positive.)
�

Remark 3.9. In our setting of differential topological L-fields K = (K,D), the
derivation D on K is always non trivial, i.e. D(K) 6= 0. So nonzero differential
polynomials f(X) in K{X}, with X = (X1, . . . , Xm), define differential polynomial
functions Km → K that are not identically zero ([9]). Note that if K satisfies the
scheme (DL), then whenever f ∗ is non trivial, f is non trivial ([6] Corollary 3.15).

If K is a differential topological L-field satisfying the scheme (DL), then the subfield
CK of constants is a dense small subfield of K ([6] Corollary 3.13).

Proposition 3.10. Let K be a differential topological L-field such that

(1) for no small definable non empty subset S, Salg is open,
(2) K has quantifier elimination in LD.

Then K is equationally bounded.
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Proof. Let S be a definable subset of Km+1. Since K admits quantifier elimination,
S is a finite union of subsets defined by LD-formulas of the following form:

k∧
i=1

fi(x̄, y) = 0 ∧ φ(x̄, y),

where φ∗(x̄, ȳ) defines a non-empty open subset of a cartesian product of K.
Hence for ā ∈ Km, the definable subset Sā of K is defined by

k∧
i=1

fi(ā, y) = 0 ∧ φ(ā, y).

Suppose that Sā is small. Let us show that for some i, fi(a, Y ) is not identically zero.

Suppose otherwise, so Sā = {y ∈ K : K |= φ(ā, y)} and so the induced set Salgā is
open in some cartesian product of K. Therefore by hypothesis, Sā is empty.

Thus, not all f1(ā, Y ), . . . , fk(ā, Y ) are identically zero, say fi(ā, Y ) 6= 0 and Sā ⊆
{y ∈ K : fi(ā, y) = 0}. Since it only depends on S and not on ā, we have that K is
equationally bounded. �

Corollary 3.11. Let K be a differential topological L-field satisfying the scheme
(DL). Suppose that K has quantifier elimination in LD. Then, the function t-dim
defines a fibered dimension function on K.

Proof. It suffices to apply Proposition 2.13, together with Lemmas 3.7 and Proposi-
tion 3.10. �

In particular in any model of T ∗c,D, the function t-dim defines a fibered dimension
function.

Proposition 3.12. (See [17]).
Let K be a LD-structure endowed with a topological system such that

(1) no non empty open subset is small,
(2) K has quantifier elimination in LD,

Then K is equationally bounded and the function t-dim defines a fibered dimension
function on K.

Proof: See page 203 in [17]. It suffices to apply Proposition 2.13, together with
Lemmas 3.8 and the analog of Proposition 3.10 for topological systems. �

Proposition 3.13. Let K be either a differential topological L-field satisfying the
scheme (DL) or a LD-structure with a topological system. Suppose that K has quan-
tifier elimination in LD. Let X be a definable subset of Kn, then t-dim(X) ≥ k if
and only if there exists a projection πk of X in Kk with non empty ∗-interior.

Proof: (→) Let ā := (a1, · · · , an) be a generic point of X and let us assume that
a1, · · · , ak, 1 ≤ k ≤ n, are independent and let Y be the projection of X along the
first k coordinates. Set āk := (a1, · · · , ak). Note that Y is definable by a quantifier
free formula φ(x) :=

∨
j

∧
i∈Ij tij(x) = 0 & θj(x), where θ∗j (K) is an open subset in

some cartesian product of K. We will proceed by induction on k.
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Case: k = 1. There exists an index j with Ij = ∅, otherwise a1 would belong to
cl(∅).

Case: k = `+ 1. Either there exists an index j with Ij = ∅.
Then, either X has a generic point āk belonging to {x̄ ∈ Kk : K |= θj(x̄)}. So

θj(K) is a non empty subset of Y and θ∗j (K) is an open subset of a cartesian product
of K, or all the generic points ā of X we have for some j that

∧
i∈Ij tij(āk) = 0

and so ∀x
∧
ti(ā`, x) = 0. Since the dimension is fibered t-dim(Y (1)) = ` and so

by induction hypothesis Y (1) has non empty ∗-interior and so Y has non empty
∗-interior since we put the product topology on cartesian products of K.

(←) W.l.o.g., we may assume that the projection with non empty ∗-interior is onto
the first k coordinates and Y be the image of X under that projection. Again, Y
is definable by a quantifier free formula φ(x) :=

∨
j

∧
i∈Ij tij(x) = 0 & θj(x), where

θ∗j (K) is an open subset. Assume that each tij is non trivial. So there is an index
j such that Ij = ∅ and θj(K) is included in Y . We proceed by induction on k. By
Lemma 3.7, Y is not small and so it cannot be of dimension 0. Suppose k = ` + 1.
The set {x̄` : t-dim(Yx̄`) = 1} has also non-empty ∗-interior and so by induction
hypothesis, it has dimension `. �

Corollary 3.14. Let A, B ∈ Def(K). Assume that A ⊆ B and Aalg ⊆ Balg, then
t-dim(A) <t-dim(B) = k iff there exists a projection πk in Kk such that the relative
∗-interior of πk(A) in πk(B) is empty.

Proof: (→) Assume that t-dim(B) = k, then there exists a projection πk of B in
Kk such that πk(B) has non empty ∗-interior. Suppose that πk(A) in Kk has non-
empty ∗-interior (in πk(B)). Then by the above proposition, its dimension is greater
than or equal to k, a contradiction.

(←) Suppose that the relative ∗-interior of πk(A) in πk(B) is empty. Then by the
preceding proposition, t-dim(πk(A)) <t-dim(πk(B)). Since t-dim is fibered, we have
that t-dim(A)=t-dim(πk(A)) + supx̄∈πk(A) t-dim(Ax̄). Since A ⊆ B, for x̄ ∈ πk(A),
Ax̄ ⊆ Bx̄ and so t-dim(Ax̄) ≤ t-dim(Bx̄). Therefore, t-dim(A) <t-dim(B). �

Proposition 3.15. Let K be either a differential topological L-field satisfying the
scheme (DL) or a LD-structure with a topological system. Suppose that K has quan-
tifier elimination in LD. Let X be a definable subset of Kn and let f be a definable
bijection. Then t-dim(X) ≥ k if and only if t-dim(f(X)) ≥ k.

Proof: Let φ(x̄, ȳ) be a formula such that f(x̄) = ȳ iff φ(x̄, ȳ). Denote by G(f) the
graph of f .

By quantifier elimination, φ(x̄, ȳ) is equivalent to
∨
j φj(x̄, ȳ) with φj(x̄, ȳ) :=∧

i∈Ij tij(x̄, ȳ) = 0 & θj(x̄, ȳ), where θ∗j (x̄, ȳ)} defines a non-empty subset of some

cartesian product of K.
So, for every j the formula φj(x̄, ȳ) is of the form

∧
i∈Ij tij(x̄, ȳ) = 0, where there

exists i such that tij is a non-trivial term which has only finitely many solutions
for each x̄. We show that t-dim(X)=t-dim(G(f)) by induction on n. Set ȳ :=
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(ȳ1, yn). Since t-dim is a fibered dimension and since f is a function, t-dim(G(f))=t-
dim({(x̄, ȳ1) : t-dim(G(f)x̄,ȳ1 = 0}). This set is definable. Indeed, {(x̄, ȳ1) : t-
dim(G(f)x̄,ȳ1 = 0})={(x̄, ȳ1) : ∃yn

∨
j

∧
i∈Ij tij(x̄, ȳ) = 0}); let us denote this set by

X1. Set ȳ1 := (ȳ2, yn−1) Again the t-dimension of X1 is equal to the t-dimension of
{(x̄, ȳ2) :t-dim((X1)x̄,ȳ2) = 0}). Iterating, we obtain that t-dim(X)=t-dim(G(f)). �

4. A dimension function on valued D-fields

In this section, we will consider a class of topological differential fields where the
derivation D is continuous.

Recall that a valued field K is a field together with a valuation map v : K →
Γ ∪ {+∞}, where Γ := v(K×) is a totally ordered abelian group (the value group).
The valuation ring OK is defined as {x ∈ K : v(x) > 0} and the residue field of K
will be denoted by kK := OK/MK , where MK := {x ∈ K : v(x) > 0} is the maximal
ideal of OK . We will assume that kK is a field of characteristic 0. The residue map
will be denoted by π : OK 7−→ kK . We will extend it on K by sending K − OK to
+∞.

We will think of a valued field as the three-sorted structure 〈K,Γ, kK〉 where the
sorts are connected by the functions π : K → kK ∪ {+∞} and v : K → Γ ∪ {+∞}.

We will consider expansion of valued fields with a continuous derivation D, namely

∀x ∈ K v(D(x)) > v(x).

This implies that the derivation D on K induces a derivation, also denoted by D,
on the residue field kK as follows:

∀x ∈ K D(π(x)) = π(D(x)).

This class of differential valued fields was investigated by T. Scanlon ([15]). (In
fact he placed himself in the more general context of valued D-fields and the present
setting corresponds to the case e = 0.) He considered the following problem: given
a differential residue field theory Th(k) and a totally ordered abelian group the-
ory Th(Γ), both admitting quantifier elimination in suitable languages (respectively
Lr and Lg), under which additional conditions does the corresponding three-sorted
theory admits quantifier elimination in a reasonable language? He called the corre-
sponding class of valued differential fields: (k,G)-D-henselian fields (see [15], [16]).
For the present application, it is more convenient not to use the language in which
T. Scanlon proved his result, but a variation of the language introduced by F. Delon
in her thesis [3], for valued fields. This version of the quantifier elimination result for
the (k,G)-D-henselian fields is due to N. Guzy ([5]).

Using this quantifier elimination, we will show that this class of differential valued
fields is equationally bounded and from that we will deduce, as in [17], that they can
be endowed with a fibered dimension function.

Let us recall some terminology and the results that we need which appeared in
[15], [16] and [5].

Definition 4.1. (See Definition 7.3 in [15]).
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(1) A differential valued field K has enough constants if it satisfies v(K×) =
v(C×K)

(2) A differential valued field K satisfies D-Hensel’s Lemma if:
if P ∈ OK{X} is a differential polynomial over OK , a ∈ OK and v(P (a)) >

0 = v( ∂
∂Xi

P (a)) for some i, then there is some b ∈ K with P (b) = 0 and

v(a− b) > v(P (a)).

From now on, we further assume that 〈kK , D〉 is a differential field which admits
quantifier elimination in an expansion Lr of the language of differential rings and that
〈Γ,+, 0,6〉 is an abelian totally ordered group which admits quantifier elimination
in a language Lg extending the language of ordered abelian groups. We denote by
Lrings,D the language of differential rings. Then we may define the notion of (k,G)-
D-henselian field.

Definition 4.2. A three-sorted (Lrings,D,Lr,Lg)-structure 〈K, kKΓ〉 is (k,G)-D-
henselian if the following are satisfied:

(1) 〈kK , D〉 is a model of Th(k),
(2) the maps v : K× → Γ and π : OK → kK are surjective,
(3) v(K×) 6= {0} is a model of Th(G),
(4) 〈K,D, v〉 has enough constants and satisfies D-Hensel’s Lemma.

We will need the fact that if 〈K, kKΓ〉 is is (k,G)-D-henselian, then K and 〈kK , D〉
are linearly D-closed (see [15] 5.3, [16] Remark 6.2).

Let L1 be the three-sorted language (Lrings,D,Lg,Lr). Then the class of (k,G)-D-
henselian valued fields is an L1-elementary class.

Now we introduce as in Section 2 of [5], the language of Delon for valued fields,
denoted by L2 (see Chapter 2 in [3]).

First let Pn(x) be the formula: ∃y 6= 0 (yn = x); so Pn(K) is the subset of
non-zero nth powers of K.

We describe L2 as the language obtained by adding to L1 the following set of new
predicates:{

Fφ,n1,...,nr ;φ Lr-formula with r + s variables, n1, . . . , nr ∈ N \ {0, 1}
}

.

These predicates will be interpreted in the following way:

∀x1, . . . , xr ∈ K ∀η1, . . . , ηs ∈ kK
{
Fφ,n1,...,nr(x1, . . . , xr, η1, . . . , ηs) ⇐⇒

∃z1, . . . , zr ∈ K
[ r∧
i=1

v(zi) = 0 ∧ φ(π(z1), . . . , π(zr), η1, . . . , ηs)

∧
r∧
i=1

Pni
(xizi)

]}
.

Now we can naturally consider the L1-structures of differential valued fields de-
scribed above as L2-structures, since the interpretation of Delon predicates are L1-
definable.

In that language, N. Guzy proved the following quantifier elimination result ([5]).
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Theorem 4.3. (Theorem 3.13 of [5]). The L2-theory of (k,G)-D-henselian fields
eliminates quantifiers.

In order to show that (k,G)-D-henselian fields can be equipped with a topological
system, we need to slightly modify the language in a way analogous to the one done
by L. van den Dries for proving that Henselian fields of equal characteristic 0 are
algebraically bounded ([17] section 3); this language will be denoted by LvdD.

Definition 4.4. Let 〈K,D, v〉 be a differential valued field. The language LvdD is an
expansion of the language of differential rings by a lot of extra predicates (with their
interpretations in K) defined as follows:

(1) for any set S ⊆ Γm (m > 1), an (m+ 1)-ary predicate VS is interpreted in K
as

VS(a1, . . . , am, b) ⇐⇒ a1, . . . , am, b ∈ K× ∧ (v(
a1

b
), . . . , v(

am
b

)) ∈ S;

(2) for any set U ⊆ kr+s (r, s > 0) and any positive integers n1, . . . , nr an (r +
s+ 1)-ary predicate PU,n1,...,nr is interpreted in K by:

PU,n1,...,nr(a1, . . . , ar, b1, . . . , bs, c) ⇐⇒ c 6= 0, v(b1), . . . , v(bs) > v(c)

∧∃z1, . . . , zr
[ r∧
i=1

v(zi) > 0 ∧ (π(z1), . . . , π(zr), π(
b1

c
), . . . , π(

bs
c

)) ∈ U ∧
r∧
i=1

Pn(
aizi
c

)
]
.

Remark 4.5 (See Section 3 in [17]). (1) The set Γ− := {γ ∈ Γ : γ 6 0} cor-
responds via (1) to the following binary predicate (a divisibility relation) on
(K×)2:

a|b ⇐⇒ v(a) 6 v(b) (a, b ∈ K×).

This divisibility relation | determines the valuation v.
(2) By taking r = 0 in item (2) in Definition above, the inverse image in OsK of

any subset of ksK is definable by an atomic LvdD-formula.

Now we can state our quantifier elimination theorem in LvdD.

Theorem 4.6. Let K be a (k,G)-D-henselian field. Then K admits quantifier elim-
ination in LvdD.

Proof. By using the Appendix in [5], we may translate an LvdD-formula ϕ(x1, . . . , xn)
to an (Lrings,D,Lg,Lr)-formula ϕ̃(x1, . . . , xn) for suitable language Lg, Lr such that
kK (respectively v(K×) admits quantifier elimination in Lr (respectively Lg). Then

we apply Theorem 4.3 to get a quantifier-free L2-formula θ̃(x1, . . . , xn) equivalent to
ϕ̃ in Th(K). Now we use again the following fact (see Appendix in [5]):

K |= Fφ,n1,...,nr(x1, . . . , xr, η1, . . . , ηs) ⇐⇒ PU,n1,...,nr(x1, . . . , xr, e1, . . . , es, 1),

with U is the set φ(z1, . . . , zr, w1, . . . , ws)∧
∧r
i=1 zi 6= 0, ηj are free Lr-terms and ei are

the corresponding free LvdD-terms by using the fact kK can be embedded in K. �

Lemma 4.7. A (k,G)-D-henselian field considered as an LvdD-structure can be
equipped with a topological system.
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Proof. The valuation topology is Hausdorff, the derivation D on K is continuous and
so, K is a topological differential field. So it remains to check the third condition on
the new predicates introduced in LvdD.

For the predicates VS in (1), it is immediate since they define clopen subsets of
(K×)m.

We will simply check that PU,~n defines an open subset of Kr+s+1, for the other
subsets of these relations and their complements, the argument is similar.

Assume that (~a,~b, c) ∈ PU,~n. Then we have c 6= 0, v(~b) > v(c) and

K |= ∃z1, . . . , zr
[ r∧
i=1

v(zi) > 0∧(π(z1), . . . , π(zr), π(
b1

c
), . . . , π(

bs
c

)) ∈ U∧
r∧
i=1

Pn(
aizi
c

)
]
.

Let us consider the following open balls in K (of center l and radius v(k)).

Bk(l) := {x ∈ K : v(x− l) > v(k); k 6= 0, l ∈ K}.
We know by Hensel’s Lemma that Pn is open, so there exists open balls Bki(aizi/c)
in Pn for some ki ∈ K×. Moreover for any b′i ∈ Bbi(bi) and c′ ∈ Bc(c), we get

(π(z1), . . . , π(zr), π(
b′1
c′

), . . . , π(
b′s
c′

)) ∈ U .

Now if v(ki) + v(c)− v(zi) < v(ai − a′i) for some a′i in K then

K |= ∃z′1, . . . , z′r
[ r∧
i=1

v(z′i) > 0∧(π(z′1), . . . , π(z′r), π(
b′1
c′

), . . . , π(
b′s
c′

)) ∈ U∧
r∧
i=1

Pn(
a′iz
′
i

c′
)
]
.

It suffices to choose z′i := zic
′/c. �

Lemma 4.8. Let K be a (k,G)-D-henselian field, and let S be a non-empty open
ball of zero in K. Then no non-zero differential polynomial with coefficients in K
vanishes on S.

Proof. This follows from Lemma 3.8, but we will give an alternative proof below.
Assume that {x ∈ K : v(x− a) > v(b), b 6= 0} and let P be in K{X} of order n > 1
(the case n = 0 is trivial). If P (a) 6= 0 then we are done. So assume that P (a) = 0
and consider the differential polynomial Q(X) := P (X + a). Then Q(0) = 0 and Q
is non identically zero. Therefore we may assume a = 0. Moreover w.l.o.g., we may
assume that all the coefficients in P are of valuation bigger than v(b). Let us consider
the Taylor expansion of P at 0

Q(X) =
n∑
i=0

∂Q

∂X(i)
(0)X(i) +R(X),

with R(X) contains only differential monomials of order at least 2 or R(X) = 0 if
n = 1. So if c ∈ K has valuation bigger than v(b) then v(R(b)) > v(b).

Let aj := ∂Q
∂X(j) (0) ∈ K and let α ∈ K\{0} be such that v(α) = minj{v(aj)} > v(b).

Let us consider the following linear differential polynomial L(X)

L(X) := α +
n∑
i=0

aiX
(i).
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By Lemma 8.3 in [15], we know that K is linearly closed. So we have a solution z
of L(X) with v(z) = v(α). Therefore we get v(P (z)) = v(α); and P (z) 6= 0 with
v(z) ∈ S. �

Proposition 4.9. A (k,G)-D henselian field K is equationally bounded.

Proof. By Lemma 4.7 the LvdD-structure K is a topological system. So by using
Lemma above and Theorem 4.6, the result follows from Proposition 3.12. �

Theorem 4.10. If K is a (k,G)-D-henselian valued D-field then K considered as
an LvdD-structure has a unique fibered dimension function on Def(K).

Proof. By Proposition 3.12, we get that the t-dim is a fibered dimension.
Now if S is an open subset of K then we get that S has t-dim equal to 1 by

Lemma 4.8. So we need to show for any fibered dimension function d, d(S) = 1. We
follow the argument in Theorem 3.5 of [17]. We translate S and multiply by a non
zero constant element such that S ⊇ OK . Hence K = S ∪ S−1, which by d(K) = 1
implies that d(S) = 1. �
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