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Abstract. We consider valued fields with a distinguished isometry or contractive
derivation as valued modules over the Ore ring of difference operators. Under
certain assumptions on the residue field, we prove quantifier elimination first in the
pure module language, then in that language augmented with a chain of additive
subgroups, and finally in a two-sorted language with a valuation map. We apply
quantifier elimination to prove that these structures do not have the independence
property.

MSC: 03C60, 03C10, 16D, 16S36, 12J10.

1. Introduction.

The model theory of Witt vectors with the Witt Frobenius as a distinguished
automorphism has been investigated in [5], [27], [6]. The results are of Ax-Kochen-
Ershov type. For instance:

Let K = W (F ) be the field of Witt vectors with coefficients in F , where F is a
p-closed field of characteristic p, let v be the p-adic valuation, and let σ be the Witt
Frobenius (see below). Then Th(K, v, σ) is axiomatized by:

(1) (K, v) is a valued field of characteristic 0 and σ is an isometry, i.e. v(σ(x)) =
v(x), inducing the ordinary Frobenius x 7→ xp on the residue field F ;

(2) a suitable analog of Hensel’s lemma holds for polynomials involving σ;
(3) the residue field satisfies Th(F ),
(4) the value group is a Z-group with least element v(p).

In this paper we will consider the theory of these fields, and other valued fields with
an isometry, in weaker formalisms of (valued) modules. This amounts essentially to
restrict ourselves to study linear equations of the form cnσ

n(X)+. . .+c1σ(X)+c0X =
b, where ci, b ∈ K. Ore was the first to study systematically these equations in the
case of the usual Frobenius map x 7→ xp. There is a well established analogy between
differential fields and fields with a distinguished automorphism, also called difference
fields in the literature. It turns out that if a valued field has a derivation ∂ which
is contractive, i.e. such that v(∂x) ≥ v(x), then much of our results hold as well for
these structures. We will treat both cases simultaneously in a suitable formalism.
In all main results, a linear form of an analog of Hensel’s lemma (alluded to above)
plays a crucial role and corresponds to divisibility of the corresponding module. The
main results, which apply also in positive characteristic, consist of axiomatizations
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and quantifier elimination in appropriate languages (see sections 4 and 5), with an
application to the absence of the independence property. They were sketched in [7].

Some of the basics also hold when σ is just an endomorphism (e.g. the Hensel
property) but we have not pursued the matter further.

The plan of the paper is as follows. In section 2 we introduce the module formalism
and we axiomatize the theories of valued fields with an isometry or a contractive
derivation as modules over a (Ore) skew polynomial ring. In section 3 we introduce
the formalisms of valued modules, first as two-sorted structures with a valuation
map between the module sort and the ordered set sort, and then as modules with a
chain of distinguished additive subgroups indexed by their value group which yield
an abelian structure. In section 4 we prove quantifier elimination in the abelian
structure formalism, and then in section 5 for the two-sorted one. In section 6 we
apply quantifier elimination to prove that in the two-sorted language, these structures
do not have have the independence property (and so their definable sets can be
endowed with a VC-dimension, see e.g. [21]). Finally, in section 7, we observe that
all this allows to prove a transfer principle between Witt vectors and power series.

NOTATION AND TERMINOLOGY.

We will use boldface notation for tuples, e.g. x = (x1, . . . , xn). All our modules will
be right modules. For an element r of a ring, ann(r) will denote its annihilator in a
given module. For a valued field (K, v), we denote its value group by vK, its valuation
ring by OK , its residue field by K̄. The natural residue map from OK to K̄ is denoted
by ¯ , and will be used for various reductions. For example if q(X) ∈ OK [X], then q̄ is
the reduced element in K̄[X] obtained by reducing the coefficients. An isometry is an
automorphism of K such that v(σ(x)) = x. A contractive map is a map ∂ : K → K
such that v(∂(x)) ≥ v(x). If f is a function on a set X we will sometimes use the
notation xf for f(x), x ∈ X.

Let F be a perfect field of characteristic p > 0, we denote by W [F ] the ring of Witt
vectors over F . It can be seen as a ring structure on F ω given by universal polynomi-
als sn(X0, Y0, . . . , Xn, Yn), pn(X0, Y0, . . . , Xn, Yn) with coefficients in the integers and
without constant terms: (x0, x1, . . .)+(y0, y1, . . .) = (x0+y0, s1(x0, y0, x1, y1), s2(x0, ...), . . .)
and similarly for the product using the pn’s. It is a complete discrete valuation ring
of characteristic 0 with uniformizing parameter p and residue field F. Its field of
fractions is denoted by W (F ). From the point of view above, the corresponding
valuation is v(x0, x1, . . .) = min{n : xn 6= 0}, and it is apparent that the map
(x0, x1, . . .) 7→ (xp0, x

p
1, . . .) is an automorphism of W [F ] which induces an isometry

on W (F ). We call this map the Witt Frobenius. If F = Fp, then W [Fp] is the ring Zp
of p-adic integers, W (Fp) is the field Qp of p-adic numbers, and the Witt Frobenius
coincides with the identity. We refer to [19] for basics on Witt vectors.

A field of characteristic p is p-closed if it does not have any finite algebraic extension
of degree divisible by p. G. Whaples showed that this is equivalent to the fact that
every polynomial of the form

∑
cix

pi = c has a root (for a proof ”by hand” see
Afterthought: Maximal fields with valuation in [20]). In particular, a p-closed field is
perfect.

A ring is said to be right Ore, if any two elements have a common right multiple.



QUANTIFIER ELIMINATION IN VALUED ORE MODULES 3

We will assume known classical results on the model theory of modules, and use
the usual “pp” for “positive primitive”, e.g. pp-formula, etc.. For the model theory
of modules we refer to [24].

2. Modules

In order to deal simultaneously with the cases of a valued field with an isometry or
with a contractive derivation, it will be convenient for us to follow the formalism of
Cohn’s book [9]. Other formalisms are possible to cover the two cases, e.g. D-valued
fields (cf. [27]) or valued fields with a twist (cf. [25]), but Cohn’s seems more fitting
to our context.

Definition 2.1. Let K be a field and σ an automorphism of K. A map ∂ : K → K
is called a σ-derivation, if ∂(x + y) = ∂(x) + ∂(y) and ∂(xy) = ∂(x)yσ + x∂(y), for
all x, y ∈ K.

When σ is the identity, this is just a standard derivation. Note that since for us
K is always commutative, when σ is not the identity the σ-derivations are all of the
form ∂(x) = (σ(x)− x)c for some nonzero c ∈ K ([9], Theorem 2.1.3).

We now fix (K, v, σ, ∂), namely a valued field (K, v) with distinguished isometry σ
and contractive σ-derivation ∂.

If ∂ is the zero derivation, then we just have a valued field with an isometry, and if
σ is the identity map, then we just have a valued field with a contractive derivation.

The operators ∂ and σ have an induced action on K̄, that will be denoted by σ̄
and ∂̄ respectively, namely σ̄(ā) = σ(a) and ∂̄(ā) = ∂(a), which make ∂̄ into a σ̄-
derivation. More generally, given any polynomial q[X] ∈ OK [X], we can consider the
action of q(σ) on K and the induced action of q̄(σ̄) on K̄.

Definition 2.2. ([9]) We let A = K[t;σ, ∂] be the skew polynomial ring in the
variable t with the commutation rule for k ∈ K:

kt = tkσ + ∂(k).

When ∂ = 0, we will simply write A = K[t;σ].
We let A0 = OK [t;σ, ∂] be the subring of A consisting of polynomials with coef-

ficients from OK , and we let I be the set of polynomials from A0 with at least one
coefficient of valuation 0.

In A we will write the polynomials in the form
∑
tiki.

First, let us assume that ∂ = 0. Then K can be considered as a module over A,
with t acting as σ, in the following way :

k.(
n∑
i=0

tiki) =
n∑
i=0

σi(k)ki.

Let ∂ 6= 0 be a non-trivial σ-derivation, then K can be considered as a module
over A, with t acting as ∂, in the following way :

k.(
n∑
i=0

tiki) =
n∑
i=0

∂i(k)ki.
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Note that when σ is not the identity, then as noted above ∂ is of the form ∂(x) =
(σ(x) − x).c, and we are back to the first case. If we make the following change of
variable, setting t′ := t.c−1 + 1, we have that A is isomorphic to K[t′;σ] with the
commutation rule kt′ = t′kσ. So, we basically have two cases: either t acts as σ (or
a linear polynomial in σ) with ∂ = 0, or t acts as a classical derivation with σ being
the identity.

Let (F ((x−1)), τ) be the field of Laurent series in x−1 over a field F , let τ be an
automorphism of F ((x−1)). Let K := F ((x−1))(T ) with the T -adic valuation, let σ
be the automorphism of K defined by σ(

∑
i ciT

i) :=
∑

i τ(ci)T
i. Then, with ∂ = 0,

t-motives in [15] are a special kind of A0-modules.
Let Ā = K̄[t; σ̄, ∂̄]. The reduction map ¯ makes K̄ into a corresponding Ā-module

via the action of σ̄ or ∂̄.
The skew polynomial ring A is right Euclidean and left Euclidean (see [9], Chapter

2). In particular it is an integral domain and right Ore. The degree of an element

q(t) =
∑d

i=0 t
iki with ki ∈ K and kd 6= 0, is equal to d.

The center of A is contained in Fix(σ)∩K∂, where K∂ = {x ∈ K : ∂(x) = 0} and
Fix(σ) = {x ∈ K : σ(x) = x}. Note that since a σ-derivation is of the form c(σ− 1),
whenever σ 6= 1, the subfield Fix(σ) ∩K∂ is either equal to K∂ or to Fix(σ).

Definition 2.3. Let q(t) ∈ A. We will say that q(t) is irreducible if it cannot be
expressed as a product of two elements of A of degree bigger than or equal to 1. We
will say q(t) is separable if q(0) 6= 0.

Since K is a valued field, we can extend the map v on the ring A as follows :

v(
∑
i

tiki) := min
i
{v(ki)}

where ki ∈ K \ {0} and v(0) = ∞ (see [9], Chapter 9). In the case where ∂ = 0,
since v(kσ) = v(k) for any k ∈ K, this is a valuation (ibid., pp. 425-426), which can
be extended to the fraction field of A (ibid., Proposition 9.1.1). For the convenience
of the reader we will show that this is the case in general.

Note that A0 = {q ∈ A : v(q) ≥ 0} and I = {q ∈ A : v(q) = 0}.

Lemma 2.1. The map v as defined above is a valuation on A.

Proof: We need only check the valuation of a product. By induction on n, let us first
show that

atn =
n∑
i=0

ti (
∑
mi∈Cni

ami(σ,∂))

where mi(σ, ∂) denotes a monomial of degree n in σ, ∂ with i occurrences of σ and
Cn
i denotes the set of such monomials, whose cardinal is the corresponding binomial
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coefficient. We have

atn+1 = (atn) t = (
n∑
i=0

ti (
∑
mi∈Cni

ami(σ,∂))) t

=
n∑
i=0

ti+1 (
∑
mi∈Cni

ami(σ,∂)σ) +
n∑
i=0

ti (
∑
mi∈Cni

ami(σ,∂)∂)

= tn+1aσ
n+1

+
n−1∑
i=0

ti+1 (
∑
mi∈Cni

ami(σ,∂)σ) +
n−1∑
i=0

ti+1 (
∑

mi∈Cni+1

ami(σ,∂)∂) + a∂
n

=
n+1∑
i=0

ti (
∑

mi∈Cn+1
i

ami(σ,∂)).

Now consider
n∑
i=0

tiai ·
m∑
j=0

tjbj =
n∑
i=0

ti
m∑
j=0

ait
jbj

=
n∑
i=0

m∑
j=0

(

j∑
`=0

t`+i (
∑
m`∈Cj`

a
m`(σ,∂)
i ) bj)

Let 0 ≤ i1 < · · · < iµ ≤ n be the indices where v(ai), i ∈ {0, · · · , n}, is minimum
and let 0 ≤ j1 < · · · < jµ ≤ m be the indices where v(bj), j ∈ {0, · · · ,m}, is

minimum. Let k = iµ + jµ. Then the coefficient of tk is equal to aiµ
σiµ bjµ

σjµ +∑
i,j a

mi
i .b

mj
j , where ∂ occurs at least once in mi and mj and i + j > k, so either

i > iµ and so v(amii ) > v(aik1 ) or j > jµ and so v(b
mj
j ) > v(bjµ). Hence the minimum

valuation possible v(aiµ
σiµ ) + v(bjµ

σjµ ) = v(aiµ) + v(bjµ) is attained, as wanted. 2

We will show that A0 satisfies a generalized right Euclidean algorithm and so is
right Ore. We will state that result in a more general setting.

Lemma 2.2. Let D be a right Ore domain, α a monomorphism of D and ∂ a α-
derivation. Then the skew polynomial ring D[t;α, ∂] satisfies a generalized right Eu-
clidean algorithm. Namely, given any q1(t), q2(t) with deg(q1) ≥ deg(q2), there exist
c ∈ D \ {0} and f, r ∈ D[t;α, ∂] with deg(r) < deg(q2) such that q1c = q2f + r.

Proof: (See [18], Theorem 2.14, p.128). By induction on deg(q1) + deg(q2). Write
q1 =

∑n
i=0 t

iai and q2 =
∑m

j=0 t
jbj, with n ≥ m. Then q1b

αn−m − q2t
n−man is an

element of A0 of degree strictly less than n. So we apply the induction hypothesis to
this polynomial. The degree 0 case is handled by the fact that D is right Ore. 2

Note that OK is a commutative integral domain and so it is certainly right Ore.

Definition 2.4. Let LA be the language of A-modules and let TA be the LA-theory
of right A-modules.

(1) Let Td be the theory TA together with the axioms ∀m ∃n (n.q(t) = m), where
q(t) varies over the irreducible polynomials of A.
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(2) Let Td,σ be the theory TA together with:
(2.1) ∀m∃n (m = n.t), & ∀m (m.t = 0→ m = 0),
(2.2) ∀m∃n (n.q(t) = m), where q(t) varies over the separable irreducible

polynomials of A.
(3) Let TOre (respectively TOre,σ) be the theory Td (respectively Td,σ) with the

axioms ∃n 6= 0 (n.q(t) = 0), where q(t) varies over all irreducible (respectively
separable irreducible) polynomials of A.

Let M be an A-module. We will denote by Tor(M) the torsion part of M , namely
Tor(M) = {m ∈ M : ∃q(t) ∈ A, m.q(t) = 0}. Note that since A is right Ore,
Tor(M) is a submodule of M . For each a ∈ A, annM(a) is a Fix(σ) ∩ K∂-vector
space.

Since A is right and left Euclidean, the pp-formulas have a very simple form (see
for instance [18], Theorem 3.8, p.181).

Recall that a theory of modules admits positive quantifier elimination if any posi-
tive primitive formula is equivalent to a finite conjunction of atomic formulas.

Proposition 2.3. The theory Td of A-modules admits positive q.e. Each completion
of Td admits quantifier elimination.

Proof: This follows from classical results in the model theory of modules over right
and left Euclidean rings and in particular from the fact that any existential formula
is equivalent to annihilators conditions on the parameters (see [17], Proposition 2.7).
2

We will now determine the completions of Td. We will say that a right A-module
is divisible if it is a model of Td.

Lemma 2.4. For any pair of elements {q1(t), q2(t)} with deg(q1(t)) > deg(q2(t)) of
A, we have that the following equivalences in any divisible A-module M :

q2(t) divides q1(t) if and only if annM(q2) ⊆ annM(q1).

Moreover, if q1(t) = q2(t).r(t) and if the cardinality of the quotient ann(q1(t))/ann(q2(t))
is finite, then |ann(q1(t))/ann(q2(t))| = |ann(r(t))|.
Proof: See [17], Lemma 2.9 and Proposition 2.10. 2

Corollary 2.5. If the subfield Fix(σ)∩K∂ of K is infinite, then the completions of Td
are obtained by specifying for which irreducible polynomials q(t) whether ann(q(t)) 6=
{0}. In particular under this assumption TOre (respectively TOre,σ) admits quantifier
elimination. If Fix(σ) ∩ K∂ is finite, then the completions of Td are obtained by
specifying for each polynomial q(t) if the cardinal |ann(q(t))| is finite and giving its
value.

Proof: First, we observe that if an element m does not belong to a pp-definable
subgroup S, then λ.m does not belong to that subgroup for any λ ∈ Fix(σ) ∩ K∂:
let λ 6= µ ∈ Fix(σ) ∩K∂ and assume that λ.m and µ.m belong to the same coset,
then (λ− µ).m ∈ S, so m ∈ S a contradiction.

So, if Fix(σ)∩K∂ is infinite, then the index of a pair of pp-definable subgroups is
either 1 or infinite.
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Second, by the positive quantifier elimination result, the proper definable subgroups
are the annihilators of elements of A.

So in the first case, in order to determine the completions, by the above lemma, it
suffices to determine which irreducible elements q(t) of A have a non-zero annihilator.

When Fix(σ)∩K∂ is finite, the completions are determined by the cardinalities of
non-trivial quotients of the annihilators of elements of A, which by the above Lemma
can be reduced to the cardinalities of the annihilators. 2

Let N be a pure-injective indecomposable model of Td. Let JN := {a ∈ A :
∃n ∈ N \ {0}, n.a = 0} and suppose Tor(N) 6= {0}. Denote the subset of separable
irreducibles elements of A by P .

Proposition 2.6. Let N1, N2 be two pure-injective indecomposable models of Td such
that Tor(N1) 6= {0}. Then, there exists q0(t) ∈ A such that JN1 ∩ P = {q(t) ∈ A :
deg(q(t)) = deg(q0(t)) & ∃q1∃q2 q(t).q1 = q2.q0, with deg(q1), deg(q2) < deg(q.q0)}.
Also, for any a1, a2 ∈ JN1 ∩ P, we have that annN1(a1) ∼= annN1(a2).

Moreover, if JN1 ∩ JN2 ∩ P 6= {0}, then N1
∼= N2.

Proof: See [10], Lemma 3.14 . 2

Lemma 2.7. Let M be an A-module, where each element is divisible by t. Then, M
is A-divisible iff it is I-divisible.

Proof: Let r(t) :=
∑

i t
iki ∈ A\A0, let λ such that v(λ) = mini{v(ki)} 6= 0. W.l.o.g.,

we may assume that r(t) is separable. Set r1(t) := λ−1r(t), we have v(r1(t)) = 0 i.e.
r1(t) ∈ I. Let m ∈M . Since M is I-divisible, there exists n such that m = n.r1(t) =
n.λ−1.r(t). 2

We will now determine conditions which ensures that (K, v, σ, ∂) is a model of Td
or Td,σ. We will state everything directly in terms of modules. The reader is invited
to make the direct translation in terms of linear σ-equations and linear ∂-equations.

Definition 2.5. Let M = (K, v, σ, ∂) be as above and viewed as an A-module. We
will say that M has the linear Hensel property, if for any q(t) ∈ I and m ∈ OK , if
there is y ∈ OK such that ȳ.q̄(t) = m̄, then there exists x ∈ OK such that x.q(t) = m
and x̄ = ȳ.

In our basic case of the action of the isometry σ, this is the σ-Hensel scheme in
[6] but restricted to linear σ-polynomials. In the case of the action of ∂, this is
the D-henselian property of [27] but restricted to linear D-polynomials. A henselian
property for polynomial equations involving contractive endomorphisms (even many
at a time) has also been considered in [25].

Proposition 2.8. Any M = (K, v, σ, ∂) such that (K, v) is a complete discrete valued
field and M̄ = (K̄, σ̄, ∂̄) is a divisible Ā-module, has the linear Hensel property.

Proof:
Let q(t) ∈ OK [t;σ, ∂] such that q̄(t) 6= 0. Let m ∈ OK , and assume that there

exists u0 ∈ OK such that ū0.q̄(t) = m̄. We want to find u ∈ OK such that u.q(t) = m
and v(u− u0) > 0.
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Set Q0 = u0.q(t)−m, we have that v(Q0) > 0.
We look for an element x ∈ OK such that

v((u0 + xQ0).q(t)−m) > v(Q0).

We have u0.q(t)+xQ0.q(t)−m = Q0 +x.Q0q(t)Q
−1
0 Q0 = (1+x.Q0q(t)Q

−1
0 )Q0. Note

that v(Q0q(t)Q
−1
0 ) = v(q(t)) = 0.

Since K̄ is Ā-divisible, there exists x1 ∈ OK such that

v(1 + x1.Q0q(t)Q
−1
0 ) > 0

So, by letting h1 = x1Q0 and u1 = u0 + h1, we get

u1.q(t)−m = (1 + x1.Q0q1(t)Q−1
0 )Q0

and the desired inequality v(u1.q(t)−m) > v(Q0) = v(u0.q(t)−m).
We now generate, by induction, sequences un, hn, Qn, xn ∈ OK such that un+1 =

un+hn+1, hn+1 = xn+1Qn, Qn = un.q(t)−m and that the sequence v(Qn) is strictly in-
creasing. Indeed, as above, there exists xn+1 ∈ OK such that v(1+xn+1.Qnq(t)Q

−1
n ) >

0, and letting hn+1 = xn+1Qn, un+1 = un + hn+1, Qn+1 = un+1.q(t) −m, we get the
desired inequality v(Qn+1) > v(Qn). Now, the sequence (un)n∈ω converges since
un+1 − un = xn+1Qn with xn+1 ∈ OK and v(Qn) → +∞. Let u = limn un.
Then, u.q(t) − m = u.q(t) − un.q(t) + (un.q(t) − m) = (u − un).q(t) + Qn. Since
v((u−un).q(t)) ≥ v(u−un), we get that u.q(t)−m = 0. Moreover, v(u0−u) > 0. 2

Corollary 2.9. Assume that M = (K, σ, ∂, v) has the linear Hensel property, each
element is t−divisible and that M̄ is Ā-divisible. Then M is a model of Td.

Proof: By the linear Hensel property and Ā-divisibility, M is I-divisible. Then apply
Lemma 2.7. 2

Corollary 2.10. Let F be a field of characteristic p which is p-closed.

(1) Let K = W (F ) with σ the Witt Frobenius. Then W (F ) as an A-module with
t acting as the Witt Frobenius is a model of Td,σ.

(2) Let K = F ((x)), the field of Laurent series, with σ defined as σ(
∑
cix

i) =∑
cpix

i. Then F ((x)) as an A-module with t acting as σ is a model of Td,σ.

Proof: Axiom (a) is direct since we have an automorphism. Note that K̄ = F and

σ̄(x) = xp. We then use the fact that p-closed implies that every equation
∑
cix

pi = c,
with ci, c ∈ F has a solution in F . But this amounts to K̄ being Ā-divisible, and
Axiom (b) follows from the linear Hensel property and lemma 2.7. 2

We will return at the end of this paper to the relation between these two models.
It is interesting to note that the general setting in e.g. [6] does not cover the case
of equal characteristic p, like the field of Laurent series F ((x)) above (but see [3] in
that direction.)

We may apply these results to F = F̃p, the algebraic closure of the prime field
Fp, and to F = kp =

⋃
n∈ω Fppn which is the minimal p-closed field (N.B. Its the-

ory is decidable ([2])) . So, both W (F̃p), W (kp) are models of the theory Td,σ with
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the corresponding skew polynomial ring. Since ann(q(t)) 6= {0} with q(t) a separa-
ble irreducible polynomial, their theories are axiomatized by TOre,σ and they admit
quantifier elimination.

Note that there are non algebraically closed fields of characteristic p where each
separable additive polynomial has a non trivial zero (see [6]). We don’t know whether
if we require in addition the field to be p-closed that it implies it is algebraically
closed. We also don’t know if it is possible to characterize the elements of W (F̃p)
which belong to the torsion submodule and to ann(q(t)) for a specific q(t).

The question whether the theory TOre,σ is decidable (at least in the classical sense)
only makes sense if the ring A is countable and such that some part of its existential
theory is decidable. Another way to proceed would be to consider decidability ques-
tions working with BSS-machines instead of Turing machines (see [8]). In particular,
this implies that the elements of the field are given.

Corollary 2.11. Let K be an elementary substructure of W (F ) where F is a field
of characteristic p which is p-closed. Assume that K is recursively presented with
decidable word problem. Let B := K[t;σ]. Then, the corresponding theory TOre,σ is
consistent and decidable.

Proof: One checks that the ring B satisfies the required condition D in [24], Chapter
17, p. 334. 2

Here are assumptions on K which ensure that Fix(σ) is infinite. In case K =
F ((x−1)), this is a special case of a theorem of Hellegouarch (see [14], Theorem 1).

Proposition 2.12. Consider (K, v, σ). Assume that σ̄ is surjective on K̄ and that K
has the linear Hensel property with t acting as σ. Then, Fix(σ) is infinite whenever
the valuation is non trivial.

Proof: We can assume K has finite characteristic. Let x ∈ K with v(x) > 0. This
implies in particular that x is transcendental over the prime subfield of K. Since σ is
an isometry, we have that v(σ(x)) = v(x). In other words there exists u with v(u) = 0
such that σ(x) = x.u. First, assume that ū = 1. We look for an element a ∈ K with
v(a) = 0 such that σ(x.a) = x.a. So, x.u.aσ = x.a, i.e. aσ.u = a. We have to check
that we can solve the equation a.(tu− 1) = 0 residually, but since we assumed that
ū = 1, we can solve it residually by setting ā = 1. So by the linear Hensel property,
we get that K has a solution of that equation. Since the solution is again necessarily
transcendental over the prime field, this ensures that Fix(σ) is infinite. Suppose now
that ū 6= 1, then we look for an element u1 such that σ(x.u1) = x.u.uσ1 with u.uσ1 = 1.
But we can solve the equation ūσ1 = (ū)−1, since σ̄ is surjective on K̄. 2

Now we give some examples involving a derivation ∂.
Let (F, ∂) be a differential field of characteristic 0. Assume its field of constants

is algebraically closed. Then, it is known that there exists an extension F̃ of F with
no new constants such that any finite subset of F̃ is included in a finite sequence of
successive Picard-Vessiot extensions and such that F̃ has no proper Picard-Vessiot
extensions (see [22], Theorem 3.34).
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First consider (F̃ ((x)), v) with the x-adic valuation and ∂ defined by ∂(
∑

i≥m x
i.ai) =∑

i≥m x
i.∂(ai). Then, ∂ is contractive. Second, consider (F̃ ((x−1)), v) with the x−1-

adic valuation and ∂ defined by ∂(
∑

i≥m ai.x
−i) = (

∑
i≥m(−i.ai + ∂(a−i+1)).x−i+1.

Then, again ∂ is contractive.
So, we obtain the following corollary.

Corollary 2.13. Let K be either the field of Laurent series (F̃ ((x)), v, ∂) or (F̃ ((x−1)), v, ∂).
Then K, viewed as an A-module with t acting as ∂, is a model of TOre.

Proof: We will prove at the same time that they are models of Td and TOre. By
Proposition 2.8 and Corollary 2.9, to prove that they are models of Td it suffices to
check that they are t-divisible and that F̃ is Ā-divisible.

First note that any inhomogeneous linear differential equation of order n ≥ 1, of
the form L(y) = b, b ∈ F̃ , can be reduced to the homogeneous equation b.∂(1/b.L(y))
= 0. Now F̃ has no proper Picard-Vessiot extension. So, we get all the solutions in
F̃ , so it is Ā-divisible and moreover we get non-trivial solution to any homogeneous
linear differential equation.

Then, it remains to check that for any element c ∈ F̃ ((x)) there is a a such that
∂(a) = c. In the first case, this follows directly from the fact that F̃ has no proper
Picard-Vessiot extension. In the second case, let c =

∑
i≥m ci.x

−i, then we look for

elements ai ∈ F̃ such that
∑

i≥m ci.x
−i =

∑
i≥m(−i.ai+∂(a−i+1)).x−i+1. Equivalently,

for i ≥ m; ci = (i+1).ai+1 +∂(ai). So, if i+1 6= 0, we set ai+1 = ci
i+1

, and if i+1 = 0,
then we look for an element ai such that ∂ai = ci. 2

A subgroup H of a group G is definably connected (in G) if it does not contain any
proper relatively definable subgroup of finite index (a relatively definable subgroup of
H is the intersection of H with a definable subgroup of G). Recall that in any module,
a definable subgroup has a pp-definable subgroup of finite index ([16], p.140) as a
consequence of B.H. Neumann’s Lemma. So, if we assume that Fix(σ)∩K∂ is infinite

(for instance in the case where K = W (F̃p) with the Witt Frobenius, Fix(σ) = Qp),
then no definable subgroup has a proper definable subgroup of finite index. Since
any pp-definable subgroup is ∅-definable, then any definable subgroup is connected
and ∅-definable.

Corollary 2.14. Assume that Fix(σ) ∩K∂ is infinite. Then the valuation ring OK
of K is not definable in the language LA of modules.

Proof: By the above, it would be pp-definable, and so invariant by multiplication by
elements of Fix(σ) ∩K∂, a contradiction. 2

3. Valued modules and abelian structures.

We will now fix the structures of valued modules we will be dealing with.
We keep the same notation as in the previous section, with a fixed (K, v, σ, ∂), A

the skew polynomial ring K[t;σ, ∂], etc.

Definition 3.1. (cf. [11]) A valued A-module is a structure (M,∆,≤,+, w,∞),
where M is an A-module, ∞ ∈ ∆, (∆,≤) is a totally ordered set for which ∞ is a
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maximum, + is an action of vK on (∆,≤) and w is a surjective map w : M → ∆
such that

(1) For all δ1, δ2 ∈ ∆, γ1, γ2 ∈ vK, if δ1 ≤ δ2 and γ1 ≤ γ2 then δ1 + γ1 ≤ δ2 + γ2.
(2) For all m1,m2 ∈ M , w(m1 +m2) ≥ min{w(m1), w(m2)}, and w(m1) =∞ iff

m1 = 0.
(3) For all m ∈M,w(m.t) ≥ w(m).
(4) For all m ∈M, ∀λ ∈ K,λ 6= 0, w(m.λ) = w(m) + v(λ).

Taking M = (K, v, σ, δ) and w = v, it is a valued A-module in either case of t
acting as σ or ∂.

From the axioms above, we deduce as usual the following properties : w(m) =
w(−m), and if w(m1) < w(m2), then w(m1 +m2) = w(m1).

Definition 3.2. We let Lw be the two-sorted language of valued A-modules obtained
from LA, with a sort M for the underlying module, and a sort ∆ for the ordered set
of valuations, a constant symbol ∞ of sort ∆, and unary function symbols +γ for
each γ ∈ vK. We define the following Lw-theories:

• let Tw be the theory of valued A-modules obtained by translating the required
axioms in Lw.
• let T ∗w = Tw ∪ Td.

Let M |= Tw, then we define

Mδ := {m ∈M : w(m) ≥ δ}

This is not only a subgroup of M , but an A0-submodule.
In order to go into the setting of abelian structures, we will now introduce another

(less expressive) language. This is the language of [26], where Rohwer was considering
the field of Laurent series over the prime field Fp with the usual Frobenius map y 7→ yp

(which is not an isometry). If (M,∆, w) is a valued A-module, we have in mind the
structure (M, (Mδ)δ∈∆)).

Definition 3.3. Let (∆,≤) be a fixed totally ordered set with an action + of vK on
∆ such that for all δ1, δ2 ∈ ∆, γ1, γ2 ∈ vK, if δ1 ≤ δ2 and γ1 ≤ γ2 then δ1+γ1 ≤ δ2+γ2.
We let LV be the language consisting of the language LA of A-modules together with
a set of unary predicates Vδ, indexed by the elements of ∆.

Definition 3.4. Let TV be the LV -theory obtained from TA together with the fol-
lowing axioms (1)− (7). Let T ∗V be the theory TV together with axiom scheme (8).

(1) ∀m ∃n (m = n.t).
(2) ∀m ∃n (n.q(t) = m), where q(t) ∈ P .
(3) ∀m (Vδ1(m)→ Vδ2(m)), whenever δ1 ≤ δ2.
(4) ∀m (Vδ(m)→ Vδ(m.t)).
(5) ∀m1 ∀m2 (Vδ(m1) & Vδ(m2)→ Vδ(m1 +m2)).
(6) ∀m (Vδ(m)→ Vδ+v(λ)(m.λ)), where λ ∈ K.
(7) ∀m (Vδ(m)→ Vδ+v(q(t))(m.q(t))), where q(t) ∈ K[t, σ].
(8) ∀m ∈ Vδ ∃n ∈ Vδ n.q(t) = m , where q(t) ∈ I.
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If (M,∆, w) is a valuedA-module, letM be the LV -structure (M,+, 0, (.r)r∈A, (Mδ)δ∈∆),
where Vδ is interpreted as Mδ.

Example 1. Let F be a p-closed field of characteristic p. If M = K = W (F ) with
t acting as the Witt Frobenius, or if M = K = F ((x)) with t acting as

∑
cix

i 7→∑
cpix

i, then M |= T ∗V , as in Corollary 2.10.

Example 2. Let (F, ∂) be a differential field of characteristic 0 whose field of con-
stants is algebraically closed. Let K be either the field of Laurent series (F̃ ((x)), v, ∂)
or (F̃ ((x−1)), v, ∂) as in Corollary 2.13. Then K, viewed as an A-module with t
acting as ∂, is a model of T ∗V .

The structure M is an abelian structure and one gets as in the classical case
of (pure) modules that any formula is equivalent to a boolean combination of pp-
formulas and index sentences (namely, sentences telling the index of two pp-definable
subgroups in one another; for all this see [24]). Moreover, this elimination is uniform
in the class of such structures.

Note that a positive primitive formula φ(x) is now of the form:

∃y1∃y2 · · · ∃yn
∧
i

(x,y).B = 0 & Vγi(ti(x,y)),

where B is a matrix with coefficients in A, γi ∈ Γ and ti(x,y) is a term in the
language LA.

In the next section, we will prove a positive quantifier elimination result for these
abelian structures.

4. Quantifier elimination for valued modules considered as abelian
structures.

This section will be devoted to the proof that T ∗V admits positive quantifier elim-
ination. This means that for any formula φ(x,y) which is a conjunction of atomic
formulas, the existential formula ∃xφ(x,y) is equivalent to a conjunction of atomic
formulas. By our previous remark about general pp-elimination in abelian structures,
it will imply that any formula is equivalent to a quantifier free formula and index
sentences.

The subgroups defined by the unary predicates Vδ are A0-modules. We will use
the fact that A0 satisfies a generalized right (henceforth g.r.) Euclidean algorithm
(cf. Lemma 2.2).

Proposition 4.1. T ∗V admits positive quantifier elimination.

Proof: We can proceed by induction on the number of existential quantifiers, so it
suffices to consider a formula existential in just one variable ∃xφ(x,y), where φ(x,y)
is a conjunction of atomic formulas. Then, since A is right Euclidean, we can always
assume that we have at most one equation involving x.

Let φ(x,y) be a positive quantifier-free formula of the form

x.r0 = t0(y) &
n∧
i=1

Vδi(x.ri − ti(y)) & θ(y)
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where ri ∈ A, θ(y) is a quantifier-free pp-formula, the ti(y) are LA-terms, and δi ∈ ∆
with δ1 ≥ δ2 ≥ · · · δn. Consider ∃xφ(x,y). It suffices to show that any such formula
is equivalent to a positive quantifier-free formula.

First, we note that for each i there exists a non-zero λi ∈ K such that riλi ∈ I.
Then, in T ∗V , we can replace Vδi(x.ri− ti(y)) by Vδi+v(λi)(x.ri.λi− ti(y).λi) and x.r0 =
t0(y) by x.r0.λ0 = t0(y).λ0 , so we can always assume that the ri ∈ I, for all i.

Note also that we can always assume that deg(r0) > deg(ri), for all i. Indeed,
suppose that deg(r0) ≤ deg(ri), for some i, say i = 1. By the g.r. Euclidean algorithm
in A0, there exists λ ∈ OK such that r1.λ = r0.r + r′1 with deg(r′1) < deg(r0) and
r, r′1 ∈ A0. So, we have that x.r1.λ = x.r0.r + x.r1 = t0.r + x.r′1, and we can replace
Vδ1(x.r1 + t1) by Vδ1+v(λ)(x.r

′
1 + t0(y).r − t1(y)).

We will call normalization the process of going through the last two reductions
and re-indexing if necessary to keep the condition δ1 ≥ δ2 ≥ · · · δn. We will use the
notation x.r ≡δ u to mean that Vδ(x.r − u) holds.

First, we will assume that there is one equation present in φ(x,y). We will con-
centrate on the system formed by this equation and the “congruences”.

Consider the system (1):

(1) : x.r0 = t0, x.r1 ≡δ1 t1, · · · , x.rn ≡δn tn

with deg(r0) > deg(ri), r0, ri ∈ I, t0 = t(y), ti = ti(y), 1 ≤ i ≤ n.
Applying the g.r. Euclidean algorithm, we get some λ ∈ OK and s, s1 ∈ A0 such

that r0.λ = r1.s+ s1 with deg(s1) < deg(r1) .
We claim that system (1) is equivalent to the following system (2) :

(2) : x.r1 = t1, x.s1 ≡δ1+v(λ) t0.λ− t1.s, x.r2 ≡δ2 t2, · · · , x.rn ≡δn tn
(1)→ (2)

Let x satisfy (1). Then x.r1 = t1 + a for some a ∈ Vδ1 . By the divisibility condition
on Vδ1 there exists u ∈ Vδ1 such that u.r1=a. Then, we obtain (x − u).r1 = t1 and
(x−u).s1 = (x−u).r0.λ− (x−u).r1.s. So, (x−u).s1 = t0.λ− t1.s+ (−u).r0.λ. Since
(−u).r0 ∈ Vδ1 , we get that (−u).r0.λ ∈ Vδ1+v(λ). Since δ1 ≥ δ2 · · · , we have u ∈ Vδi
and u.ri ∈ Vδi , for i ≥ 2, so that x− u still satisfies the other congruence conditions.

(2)→ (1)
Let x satisfy (2). We look for an element u ∈ Vδ1 such that (x + u).r0 = t0, or
equivalently (x+u).r0.λ = t0.λ. Replacing r0.λ by r1.s+s1, we obtain: (x+u).r1.s+
(x + u).s1 = t0.λ. We have: t1.s + u.r1.s + t0.λ − t1.s + a + u.s1 = t0.λ, for some
a ∈ Vδ1+v(λ). So, u has to satisfy u.r0.λ + a = 0, but by the divisibility property of
Vδ1+v(λ), we can find such an element. It remains to check that x + u satisfies the
other conditions. But, x.r1 = t1 and since u ∈ Vδ1 we have that (x + u).r1 ≡δ1 t1,
and similarly for the other congruence conditions since u ∈ Vδi .

By this device, we replace a system where the couple (r0, r1) occurred by a system
where (r1, s1) occurs with deg(r0) > deg(r1) > deg(s1). We might have to normalize
the new system.

Second, we will consider the case where there are only congruence relations in the
system.
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Consider the following system (3):

(3) : x.r1 ≡δ1 t1, · · · , x.rn ≡δn tn
with δ1 ≥ δ2 ≥ · · · ≥ δn, ri ∈ I, 1 ≤ i ≤ n.

i) We assume that deg(r1) ≥ deg(r2).
Applying the g.r. Euclidean algorithm, we get some λ ∈ OK and and s, s2 ∈ A0

such that r1λ = r2s+ s2 with deg(s2) < deg(r2).
We claim that system (3) is equivalent to the following system (41):

(41) : x.r2 = t2, x.s2 ≡δ2+v(λ) t1.λ− t2.s, x.r3 ≡δ3 t3, · · · , x.rn ≡δn tn
(3)→ (41)

Let x satisfy (3). Then x.r2 = t2 + a and x.r1 = t1 + b for some a ∈ Vδ2 and
b ∈ Vδ1 ⊆ Vδ2 . By the divisibility condition on Vδ2 there exists u ∈ Vδ2 such that
u.r2=a. Then, we obtain (x−u).r2 = t2 and (x−u).s2 = (x−u).r1λ− (x−u).r2s =
t1.λ−t2.s+b.λ+(−u).r1.λ. Since (−u).r1 ∈ Vδ2 , we get that (−u).r1.λ, b.λ ∈ Vδ2+v(λ).
So (x− u) ≡δ2+v(λ) t1.λ− t2.s . The other congruence conditions are still satisfied by
x− u since u ∈ Vδ2 ⊆ Vδi , for i ≥ 3.

(41)→ (3)
Let x satisfy (41). We look for an element u ∈ Vδ2 such that (x + u).r1 ≡δ1 t1
or equivalently (x + u).r1.λ ≡δ1+v(λ) t1.λ. Replacing r1.λ by r2.s + s2, we obtain
(x + u).r2.s + (x + u).s2 ≡δ1+v(λ) t1.λ. So we have t2.s + u.r2.s + t1.λ − t2.s +
a + u.s2 ≡δ1+v(λ) t1.λ, for some a ∈ Vδ2+v(λ). In fact, we can ask that u satisfies
u.r1.λ + a = 0. But by the divisibility property of Vδ2+v(λ) we can find such an
element. It remains to check that (x + u).ri ≡δ1 ti, for i ≥ 2. But this follows from
x.ri ≡δi ti and u ∈ Vδ2 ⊆ Vδj , j ≥ 3.

By this device, we replace a system where the couple (r1, r2) occurred by a system
where (r2, s2) occurs with deg(r1) ≥ deg(r2) > deg(s2). Then, we normalize the
system and we note that system (41) is of the same kind as system (1).

ii) Assume that deg(r1) < deg(r2).
Applying the g.r. Euclidean algorithm, we get λ ∈ OK , and s, s2 ∈ A0 such that

r2.λ = r1.s+ s2 with deg(s2) < deg(r1).
We claim that (3) is equivalent to the following system (42):

(42) : x.r1 = t1, x.s2 ≡δ2+v(λ) t2.λ− t1.s, x.r3 ≡δ3 t3, · · · , x.rn ≡δn tn
(3)→ (42)

Let x satisfy (3). Then x.r1 = t1+a and x.r2 = t2+b, for some a ∈ Vδ1 and b ∈ Vδ2 . By
the divisibility condition on Vδ1 there exists u ∈ Vδ1 such that u.r1=a. Then, we obtain
(x−u).r1 = t1 and (x−u).s2 = (x−u).r2.λ−(x−u).r1.s = t2.λ+b.λ−t1.s+(−u).r2.λ.
Since (−u).r2 ∈ Vδ1 , we get (−u).r2.λ ∈ Vδ1+v(λ) ⊆ Vδ2+v(λ) and b.λ ∈ Vδ2+v(λ). The
other congruence conditions are still satisfied by x− u since u ∈ Vδ1 ⊆ Vδi , for i ≥ 2.
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(42)→ (3)
Let x satisfy (42). Replacing r2.λ by r1.s + s2, we obtain x.r1.s + x.s2 ≡δ2+v(λ) t2.λ.
So we have t1.s+ t2.λ− t1.s+ a ≡δ2+v(λ) t2.λ, for some a ∈ Vδ2+v(λ). So, x.r2 ≡δ2 t2.

Note that in each case, we have decreased the degree of each of the coefficients,
and we strictly decreased the sum of the degrees of the elements occurring in the con-
gruence conditions. In the end, we will decrease the degree of the element occurring
in the congruence relation corresponding to the smallest subgroup Vδ.

So, we may assume that we reduce ourselves to a system consisting of possibly a
conjunction of congruence conditions on the parameters and:

(∗) : x.r = u(y), x.µ ≡δ t′(y), x.r′3 ≡δ′3 t
′
3(y), · · · , x.r′` ≡δ′` t

′
`(y)

where µ ∈ OK , r, r′i ∈ I, δ ≥ δ′3 ≥ · · · ≥ δ`, 3 ≤ i ≤ ` ≤ n. Note that if µ = 0,
we strictly decreased the number of congruence conditions in our system. If µ 6= 0,
we replace the first congruence by x ≡δ+v(µ−1) t

′(y).µ−1. If Vδ+v(µ−1) is no longer the
smallest subgroup we continue the above procedure with the smallest subgroup. But
after a finite number of steps, we will obtain a system of the form (∗) with the second
formula of the form x.µ ≡δ t′(y), where we may now assume w.l.o.g. that µ = 1.

To finish, we observe that the above system (∗) with µ = 1 is equivalent to the
following congruence conditions on the parameters:

(∗∗) : t′(y).r ≡δ u(y), t′(y).r′3 ≡δ′3 t
′
3(y), · · · , t′(y).r′` ≡δ′` t

′
`(y)

Indeed, assume that (∗∗) holds, in particular t′(y).r ≡δ u(y). So we have that
t′(y).r = u(y) + b for some b ∈ Vδ. By the divisibility property of Vδ there exists
c ∈ Vδ such that c.r = b. Then (t′(y)−c).r = u(y). Since Vδ is the smallest subgroup,
the element t′(y)− c still satisfies the other conditions of (∗) with µ = 1. 2

Corollary 4.2. Let F be a field of characteristic p which is p-closed.

(1) The LV -structure (W (F ), (W (F )δ)δ∈Z) admits quantifier elimination, for the
Witt Frobenius action.

(2) The LV -structure (F ((x)), (F ((x))δ)δ∈Z) admits quantifier elimination, for the
action by

∑
cix

i 7→
∑
cpix

i.

Corollary 4.3. Let (F, ∂) be a differential field of characteristic 0 whose field of con-
stants is algebraically closed. Let K be either the field of Laurent series (F̃ ((x)), v, ∂)
or (F̃ ((x−1)), v, ∂) as in Corollary 2.13. Then the LV -structure (K, (Kδ)δ∈Z) admits
quantifier elimination, with t acting as ∂.

5. Model-completion

Let M be a A-module. Let X := {tn : n ∈ N}, this is a right denominator set (see
[12], Lemma 9.1). So, there exists a right ring of fractions AX−1 (ibid., Theorem 9.7).
It is isomorphic to the set of equivalence classes in A×X of the following equivalence
relation: (a, tn1) ∼ (a′, tn2) iff there exist s ∈ A and n ∈ N such that atn = a′s and
tn1tn = tn2s. We may extend the valuation on A to AX−1.
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The module M has a right module of fractions MX with respect to X and it is
isomorphic to M ⊗A AX−1, into which it embeds if M is X-torsion-free. Moreover,
any element of MX has the form m ⊗ t−n, for some m ∈ M , n ∈ N \ {0}. (ibid.,
Theorem 9.13, Proposition 9.14).

Proposition 5.1. T ∗V is the model-completion of the theory TV,X consisting of TV
together with the axioms ∀m (m.t = 0→ m = 0) and ∀m Vδ(m.t)↔ Vδ(m), for each
δ ∈ ∆.

Proof: Let now M be a model of TV,X . We will embed M in a model of T ∗V .
First, we extend the predicates Vδ, δ ∈ ∆ on MX by Vδ(m ⊗ t−n), m ∈ M ,

n ∈ N \ {0}, whenever Vδ(m). This is well-defined since Vδ(m.t) iff Vδ(m).
Now, consider Mω

X the direct product of ω copies of MX . Let F be the Fréchet filter
on ω. We endow Mω

X with a structure of A-module as follows. Let (mi)i∈ω ∈ Mω
X ,

define (mi).t := ((mi+1.t)i∈ω) and extend it by linearity on A. Then define Vδ((mi)i∈ω)
iff Vδ(mi), for every i ∈ ω.

Finally, consider the quotient of Mω
X by F and the diagonal embedding of ∆ into

∆ω/F . Define (mi)F .t := ((mi+1.t)i∈ω)F and Vδ((mi)i∈ω)F iff {i ∈ ω : Vδ(mi)} ∈
F . Let us show that this is a model of T ∗V . Let q(t) =

∑d
i=0 t

i.ai with ai ∈ K.
Given m ∈ M, we wish to find n ∈ M such that m = n.q(t). Suppose we have

chosen n0, · · · , nd−1, then m0 = nd.t
d.ad +

∑d−1
i=0 ni.t

i.ai. So, define nd := (m0.a
−1
d −∑d−1

i=0 ni.t
i.ai.a

−1
d ).t−d. Since MX is X-divisible we can find such an element. 2

6. Two-sorted valued structures.

In this section we revert to the two-sorted language Lw of valued A-modules. In
Lw, x, y, z will denote variables of sort M and δ will denote variables of sort ∆. We
keep the same notation as before, with a fixed (K, v, σ, ∂), A = K[t;σ, ∂], etc.

In order to get more precise quantifier elimination results for valued A-modules
(M,∆,≤,+, w,∞), it is useful to look more closely at the structure ((∆,≤), (+γ)γ∈vK).

Definition 6.1. Let (Γ,+, 0,≤) be a fixed totally ordered abelian group. Let L∆ be
the language of sort ∆ with a binary predicate ≤ and unary function symbols +γ for
each γ ∈ Γ. We will write the action of +γ from the right. Let T∆ be the following
L∆-theory.

(1) ≤ is a total order.
(2) ∀δ ((δ + γ1) + γ2 = δ + (γ1 + γ2)), where γ1, γ2 ∈ Γ.
(3) ∀δ1∀δ2 (δ1 ≤ δ2 → δ1 + γ1 ≤ δ2 + γ2), where γ1, γ2 ∈ Γ and γ1 ≤ γ2.

For a valued A-module (M,∆,+, w) and Γ = vK, we see that ((∆,≤), (+γ)γ∈vK) |=
T∆.

We will consider two conditions under which the corresponding extensions of T∆

to valued A-modules admit quantifier elimination.

Definition 6.2. We define the following L∆-theories.

(1) Let T∆,dense be the theory T∆ together with the axiom that the total order ≤
is dense.
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(2) Assume that Γ has a smallest strictly positive element 1. Let T∆,discrete be the
theory T∆ together with the axiom

∀δ1∃δ2∀δ3 (δ2 > δ1 & ( δ3 > δ1 → (δ2 ≤ δ3 & δ2 = δ1 + 1)))

In the case of T∆,discrete, we will always make the assumption that we have a constant
1 in the language of the group Γ.

Proposition 6.1. (cf.[11]) Both theories T∆,dense and T∆,discrete admit quantifier elim-
ination.

Proof: It suffices that any formula with free variables δ = (δ1, . . . , δn) of the form

∃α (
∧
`

δi` + γi` � α � δj` + γj`)

where � ∈ {≤, <}, 1 ≤ i`, j` ≤ n, and γk` ∈ Γ, be equivalent to a quantifier-free
formula in δ. It is equivalent to

∃α (max{δi` + γk`} � α � min{δj` + γt`} & θ(δ))

for some quantifier-free formula θ(δ). In T∆,dense, it is equivalent to

max{δi` + γk`} � min{δj` + γt`} & θ(δ)

In T∆,discrete, if one of the � is ≤, then it is treated similarly as above replacing the
� in the resulting formula by a strict inequality if there was one. If both � stands
for <, then we use the special axiom of T∆,discrete and the resulting formula is:

max{δi` + γk`}+ 1 < min{δj` + γt`} & θ(δ)

2

Definition 6.3. We define the following Lw-theories of valued A-modules.

(1) Let Tw,d consists of the following:
(1.1) Tw.
(1.2) Divisibility axioms (DG). For each q in I ∪ {t}:

∀x (x 6= 0→ ∃y (x = y.q & w(x) = w(y) )) .

(1.3) No residual identities axioms (IR). For each p1, · · · , pn in I:

∀δ∀x1 · · · ∀xn∃x

(
(
n∧
i=1

w(xi) ≥ δ )→
n∧
i=1

w(x.pi + xi) = δ

)
.

(2) Let Tw,d,dense = Tw,d ∪ T∆,dense.
(3) Let Tw,d,discrete = Tw,d ∪ T∆,discrete.

Example 3. Let F be a p-closed field of characteristic p. Then, as in Corollary 2.10,
M = K = W (F ) with the action of the Witt Frobenius, and M = K = F ((x)) with
the action of

∑
cix

i 7→
∑
cpix

i, yield models of Tw,d,discrete.

Example 4. Let (F, ∂) be a differential field of characteristic 0. Assume its field of
constants is algebraically closed. Let K be either the field of Laurent series (F̃ ((x)), v, ∂)
or (F̃ ((x−1)), v, ∂) as in Corollary 2.13. Then K, with t acting as ∂, yields models
of Tw,d,discrete.
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We will abuse notation and continue to use the Vδ, and introduce the new Vδ+,
with Vδ+(x)↔ w(x) > δ. We will also identify all these with the sets they define in
any model, and we recall they are always A0-modules.

Note that (IR) implies that Vδ/Vδ+ 6=
⋃n
i=1{x+Vδ+ : x ∈ Vδ & pi(x) ≡ 0 mod Vδ+}

and that |Vδ/Vδ+| is infinite. When the model of Tw,d is K itself, it implies that K̄
does not satisfy any linear σ̄-identities or ∂̄-identities, according to the action of t.

Definition 6.4. Let r ∈ A0 and n ∈ ω.

(1) A residual index formula Indrn,r(δ), is a Lw-formula which is existential in the
module sort with a free variable in the ordered set sort, of the form

∃x1 · · · ∃xn (
∧

1≤i<j≤n

w(xi − xj) = δ &
n∧
i=1

(w(xi.r) > δ&w(xi) = δ)).

(2) A residual index sentence is an existential sentence of the form ∃δ Indrn,r(δ).

We will often use the following fact. In models of Tw ∪ {(DG)}, if r ∈ I and
Indrn,r(δ) holds, then there exist n elements in ann(r)∩Vδ which belong to different
cosets of Vδ+ in Vδ. In particular, index sentences (in the theory of modules) are
special instances of residual index sentences.

Proposition 6.2. In the theory Tw,d, any existential Lw-formula in the module sort
is equivalent to a formula which is quantifier free in the module sort, existential in
the totally ordered set sort, plus some residual index formulas and sentences.

Corollary 6.3. Let (M,w,∆M) ⊂ (N,w,∆N) be valued A-modules satisfying Tw,d.
Assume that both satisfy the same residual index formulas with parameters in ∆M and
that (∆M ,Γ,+) is existentially closed in (∆N ,Γ,+). Then (M,w,∆M) is existentially
closed in (N,w,∆N). 2

Corollary 6.4. In the theory Tw,d,dense (respectively Tw,d,discrete), any Lw-formula
φ(x, δ) is equivalent to the conjunction of a quantifier-free Lw-formula θ(x, δ) together
with residual index formulas and residual index sentences. Therefore the completions
are given by residual index sentences and quantifier-free L∆-sentences.

Proof: Apply Propositions 6.1 and 6.2. 2

Note that if the action of v(K) is transitive on ∆, then the residual index formulas
can be translated into statements in a fixed quotient.

Proof of Proposition 6.2.
In the language Lw, the only interaction between the two sorts M and ∆ occurs

in valuation equalities and inequalities. Let r ∈ A and u a M -term where x does not
occur, we will replace each valuation inequality where a term of the form w(x.r + u)
occurs, by a formula ∃δ(w(x.r + u) = δ&ψ), where δ is a new variable and ψ is
obtained from the inequality by putting in δ for w(x.r + u). In this way, we can
always assume that terms of the form w(x.r + u) only occur in equation of the form
w(x.r + u) = δ (cf. [28]).
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Also, by replacing each inequality x.r 6= u by w(x.r−u) 6=∞, we can always assume
there are no such x.r 6= u. (N.B. We could handle these x.r 6= u in the elimination
process, but it would generate new index formulas of the form |ann(r) ∩ Vδ| ≥ n.)

Therefore, by the preceding remarks and using the same normalization process as
in Proposition 4.1, it suffices to consider formulas φ(x,y, δ) of the form

x.r0 = t0(y) &
n∧
i=1

w(x.ri + ti(y)) = δi & θ(y, δ)

where ri ∈ I, 0 ≤ i ≤ n, deg(r0) > deg(ri) ti(y) are LA-terms, 1 ≤ i ≤ n, ∞ 6=
δ1 ≥ δ2 · · · ≥ δn, and θ(y, δ) is a quantifier-free formula in the parameters y and
existential in δ. For ease of notation, from now on we will simply denote the terms
ti(y) by ti, 0 ≤ i ≤ n.

We want to show that ∃xφ(x,y, δ) is equivalent to a quantifier-free formula in the
M -sort, existential in the ∆-sort, plus some residual index formulas and sentences.

First, we will assume that we have an equation x.r0 = t0 occurring in φ(x,y).
As in the previous elimination theorem, we will concentrate on the system of con-

ditions where x appears. Using the normalization process of Proposition 4.1 if nec-
essary, we can reduced ourselves to consider systems of the following form:

(1):

∃x


x.r0 = t0,
w(x.r1 + t1) = δ1,
· · ·
w(x.rn + tn) = δn,

with deg(r0) > deg(ri), r0, ri ∈ A0, r̄0 6= 0, r̄i 6= 0 ∈ K̄[t], 1 ≤ i ≤ n, ∞ 6= δ1 = · · · =
δm > δm+1 ≥ · · · ≥ δn and the t` are LA-terms.

In order to proceed inductively, we will have to consider more general systems
where also valuation inequalities of the form w(x.r + t) > δ or w(x.r + t) ≥ δ may
occur. Consider a system of the form:

x.r0 = t0 &
m∧
i=1

w(x.ri + ti)2δ1 &
n∧

i=m+1

w(x.ri + ti)2δi

where 2 is either one of =, >,≥. We define its complexity as the pair (deg(r0),
∑

i∈I= deg(ri))
in the lexicographic product of (N, <) × (N, <), where I= is the set of those i such
that w(x.ri + ti) = δ1 occurs in the system. If I= = ∅, the complexity is set to
(deg(r0),−∞), and if r0 = 0, I= = ∅ to (−∞,−∞), and we extend the lexicographi-
cal order in the natural way.

To keep track of this complexity measure, it is worth recording the main effect of
the normalization process of Proposition 4.1 which we will use again. Namely, it does
not alter the degree of r0, so that the first component of complexity is left unchanged.

We also note that normalization has the effect of altering the δi in a minor way :
δi is transformed into δi + v(λi) for some nonzero λi ∈ K. It will be convenient to
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abuse notation and keep using the notation δi to denote these new terms along the
way.

There are basic cases for the induction. One is when deg(ri) = 0, i = 1, . . . ,m.
W.l.o.g. we can then assume ri = 1, i = 1, . . .m, and this case will be dealt later as
system (3) (see further below). Another case is the following.

Lemma 6.5. Consider the system

∃x


x.r0 = t0,
w(x.r + t) > δ1,∧m
i=1w(x.ri + ti) = δ1,∧n
i=m+1w(x.ri + ti) = δi

where r ∈ A0, v(r) = v(r0) = 0, deg(r) < deg(r0). Let µ ∈ OK , s, r′ ∈ A0 such that
r0µ = rs+ r′, and r′ = 0 or deg(r′) < deg(r). Then the above system is equivalent to
the following system of strictly lower complexity

∃x


x.r = −t,
w(x.r′ − t.s− t0µ) > δ1 + v(µ),∧m
i=1w(x.ri + ti) = δ1,∧n
i=m+1w(x.ri + ti) = δi.

Proof: (→) Let x be a solution of the given system. By Axiom (DG) there exists u
such that w(u) > δ1 and u.r = −x.r−t. We get w((x+u).r′−t.s−t0µ) = w(u.r0µ) >
δ1 + v(µ), and x+ u is a solution of the new system.

(←) Let y be a solution of the new system. We look for an element u such that
(y + u).r0.µ = (y + u).r.s+ (y + u).r′ = t0.µ. Equivalently, u.r0µ = t0.µ+ t.s− y.r′.
By Axiom (DG), the exists such an element u with valuation strictly bigger than δ1.
Then y + u is a solution to the given system. 2

We now proceed to the proof by induction on complexity.
Induction hypothesis: every system of the form

∃x

(
x.r0 = t0 &

m∧
i=1

w(x.ri + ti)2δ1 &
n∧

i=m+1

w(x.ri + ti)2δi

)
where 2 is either one of =, >,≥, is equivalent to a disjunction of formulas of the form∧

j

w(t0.r
′
j + t′j)2δj & Θ(y, δ)

where r′j ∈ A0, t′j(y) are LA-terms, the δj are among δ1, . . . , δn, 2 is either one of
=, >,≥, and Θ(y, δ) is quantifier free in the M -sort, existential in the ∆-sort, plus
some residual index formulas and sentences.

We start with system (1) and we assume r0 6= 0.
Basis of induction. When there are no valuation conditions (I= = ∅) the system

is handled directly by the axioms. When deg(r0) = 0, i.e. r0 ∈ K, then x = t0.r
−1
0

and we can eliminate x by substitution. When deg(ri) = 0, i = 1, . . . ,m, then we can
assume ri = 1 and it reduces to system (3) below which will be treated later.
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Induction step(s). We apply the normalization process if necessary. So consider
system (1). We assume I= 6= ∅, deg(r0) ≥ 1 and deg(ri) ≥ 1 for some 1 ≤ i ≤ m.

Suppose first that some ri, 1 ≤ i ≤ m, with deg(ri) ≥ 1 divides r0, say i = `. Let
r0λ = r`s`, where λ ∈ OK , s` ∈ A0. Since v(r0) = v(r`) = 0, we get v(λ) = v(s`) and
we can assume that λ = 1, i.e. r0 = r`s`. We introduce momentarily a new module
variable which will enable us to do induction. Let z be a new module variable. Then
system (1) is clearly equivalent to the following system:

(2)z:

∃z∃x


x.r` = z,∧

1≤i 6=`≤m w(x.ri + ti) = δ1,∧n
i=m+1 w(x.ri + ti) = δi,

z.s` = t0,
w(z + t`) = δ1.

Now, by induction, the formula

∃x

(
x.r` = z &

∧
1≤i 6=`≤m

w(x.ri + ti) = δ1 &
n∧

i=m+1

w(x.ri + ti) = δi

)
is equivalent to a disjunction of formulas of the form∧

j

w(z.r′j + t′j)2δj & Θ(y, δ)

where r′j ∈ A0, t′j(y) are LA-terms, the δj are among δ1, . . . , δn, 2 is either one of
=, >,≥, and Θ(y, δ) is quantifier free in the M -sort, existential in the ∆-sort, plus
some residual index formulas and sentences. We can now apply induction to

∃z

(
z.s` = t0 & w(z + t`) = δ1 &

∧
j

w(z.r′j + t′j)2δj &
n∧

i=m+1

w(x.ri + ti) = δi

)
and we have completed that induction step.

We are left with the case where no nonconstant ri divides r0. Pick any such, say
i = `, and do Euclidean division. Let r0λ = r`s` + r, where λ ∈ OK , s`, r ∈ A0, r 6=
0, deg(r) < deg(r`) < deg(r0). We claim that system (1) is then equivalent to the
disjunction of the following two systems (2a) or (2b) :

(2a):

∃x


x.r0 = t0,
w(x.r − t`.s` − t0λ) = δ1,
w(x.r` + t`) ≥ δ1,∧

1≤i 6=`≤mw(x.ri + ti) = δ1,∧n
i=m+1w(x.ri + ti) = δi

(2b):

∃x


x.r0 = t0,
w(x.r − t`.s` − t0λ) > δ1,∧m
i=1 w(x.ri + ti) = δ1,∧n
i=m+1 w(x.ri + ti) = δi.
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Indeed, suppose x a solution of (1). We have w(x.r` + t`) = δ1, so that w(x.r`.s` +
t`.s`) ≥ δ1. If w(x.r`.s`+t`.s`) = δ1, we get x.r`.s` = t0λ−x.r and w(x.r−t`.s`−t0λ) =
δ1, and x is a solution of (2a). Similarly, if w(x.r`.s`+t`.s`) > δ1, we get w(x.r`−t`.s`−
t0λ) > δ1, and x is a solution of (2b). Conversely, suppose x is a solution of (2a). We
have w(x.r`.s`+t`.s`) ≥ w(x.r`+t`) and w(x.r`.s`+t`.s`) = w(x.r`−t`.s`−t0λ) = δ1,
so that we cannot have w(x.r` + t`) > δ1. Hence w(x.r` + t`) = δ1 and x is a solution
of (1). Note that a solution of (2b) is immediately a solution of (1).

Consider system (2a) and let µ ∈ OK such that v(µ) = v(r`). Now if in system (2a)
we replace w(x.r`− t`.s`− t0λ) = δ1 by w(x.r`µ

−1− t`.s`µ−1− t0λµ−1) = δ1−v(µ), we
obtain a system of strictly lower complexity. Indeed, if v(r) = 0 we replace a valuation
equation involving δ1 with another one where the coefficient of x has strictly smaller
degree, and if v(r) > 0 we replace it by a valuation equation with a value strictly less
than δ1. So we have completed the induction step in case of system (2a).

Consider system (2b). Recall that v(r0) = 0 and r0λ = r`s` + r. So by scaling
with a suitable element of K we can assume that either v(r`s`) = 0 or v(r) = 0. If
v(r) = 0, then by Lemma 6.5 we can obtain an equivalent system of strictly lower
complexity. If v(r`s`) = 0, then system (2b) is equivalent to the following system
(2c):

(2c):

∃x


x.r`s` = −t`.s`,
w(x.r − t`.s` − t0λ) > δ1,∧m
i=1w(x.ri + ti) = δ1,∧n
i=m+1w(x.ri + ti) = δi

Indeed, if x is a solution of (2b), then by Axiom (DG) there exists u such that
u.r`s` = −x.r`s`− t`.s` and w(u) > δ1, and then x+u is a solution of (2c). A similar
computation works in the other direction. But now in system (2c), r` divides the
coefficient x in the first equation and we are back to a case already treated at the
beginning, the extra strict valuation inequality being harmless in that process. The
induction is now completed.

Thus it remains to handle systems of the following form

(3):

∃x


x.r0 = t0,∧m
i=1 w(x+ u′i) = δ1,∧m
i=1 w(x.ri + ti) ≥ δ1,∧n
i=m+1 w(x.ri + ti) = δi.

where u′i = u′i(y) is a M -term.
This system is equivalent to a disjunction of the following systems over the subsets

B of {1, . . . ,m} as follows:



QUANTIFIER ELIMINATION IN VALUED ORE MODULES 23

(3)B:

∃x



x.r0 = t0,∧m
i=1 w(x+ u′i) = δ1,∧m
i=1 w(x.ri + ti) ≥ δ1,∧n
i=m+1 w(x.ri + ti) = δi,∧
i∈B w(t0 + u′i.r0) > δ1,∧
i 6∈B w(t0 + u′i.r0) = δ1.

We first do the case B = ∅. So consider system

(3)∅:

∃x


x.r0 = t0,∧m
i=1 w(x+ u′i) = δ1,∧m
i=1 w(x.ri + ti) ≥ δ1,∧n
i=m+1 w(x.ri + ti) = δi,∧m
i=1 w(t0 + u′i.r0) = δ1.

We claim that (3)∅ is equivalent to

(4)∅ : 
∧
i 6=j≤m w(u′i − u′j) ≥ δ1,∧m
i=1 w(u′1.ri − ti) ≥ δ1,∧n
i=m+1 w(u′1.ri − ti) = δi,∧m
i=1 w(t0 + u′i.r0) = δ1.

Indeed, suppose x is a solution of (3)∅. Then w(u′i − u′j) = w(x + u′i − x− u′j) ≥ δ1,
w(u′1.ri−ti) = w(x.ri+u

′
1.ri−x.ri−ti) ≥ δ1 if i ≤ m, and w(u′1.ri−ti) = w(x.ri+u

′
1.ri−

x.ri − ti) = δi if i > m. Conversely, suppose (4)∅ is satisfied. By Axiom (DG) let u′′

such that u′′.r0 = t0 +u′1.r0 and w(u′′) = w(t0 +u′1.r0) = δ1. Then u′′−u′1 is a solution
of (3)∅: we have (u′′−u′1).r0 = t0, and w((u′′−u′1)+u′i) = w(u′′− (u′1−u′i)) ≥ δ1, but
the strict inequality would imply w((u′′−u′1).r0 +u′i.r0) = w(t0 +u′i.r0) > δ1, which is
not the case, and so w((u′′− u′1) + u′i) = δ1; on the other hand w((u′′− u′1).ri + ti) =
w(u′′.ri−u′1.ri + ti) ≥ δ1 if i ≤ m, and w((u′′−u′1).ri + ti) = w(u′′.ri−u′1.ri + ti) = δi
if i > m.

We must now consider the case (3)B where B 6= ∅. Note that in that case (3)B
has a solution only if ann(r0) 6= {0}. Indeed, let x be a solution and i ∈ B. By
Axiom (DG) let u be such that u.r0 = t0 + u′i.r0 and w(u) = w(t0 + u′i.r0) > δ1.
Then x − (u − u′i) ∈ ann(r0) and w(x − (u − u′i)) = w(x + u′i − u) = δ1 6= ∞, so
x− (u− u′i) 6= 0. We claim that (3)B is equivalent to a disjunction over the possible
nonempty subsets J of {1, . . . ,m} of the following systems
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(4)B,J :

∃x



x.r0 = t0,
w(x+ u′1) = δ1,∧
i∈J w(x+ u′i) = δ1,∧
i 6=j∈J w(u′i − u′j) = δ1,∧
i 6∈J ∨j∈J w(u′i − u′j) > δ1,∧m
i=1 w(u′1.ri − ti) ≥ δ1,∧n
i=m+1 w(u′1.ri − ti) = δi,∧
i∈B w(t0 + u′i.r0) > δ1,∧
i 6∈B w(t0 + u′i.r0) = δ1

Indeed, let x be a solution of (3)B. We get a corresponding subset J , w(u′1.ri−ti) =
w(x.ri+u

′
1.ri−x.ri−ti) ≥ δ1 if i ≤ m, and w(u′1.ri−ti) = w(x.ri+u

′
1.ri−x.ri−ti) = δi

if i > m. Thus x is a solution of (4)B. Conversely, let x be a solution of (4)B,J . Let
i ≤ m, we have w(x + u′i) = δ1 if i ∈ J , and if i 6∈ J we have j ∈ J such that
w(u′i − u′j) > δ1 and then w(x + u′i) = w(x + u′j + u′i − u′j) = δ1. On the other
hand, w(x.ri + ti) = w(x.ri + u′1.ri − u′1.ri + ti) ≥ δ1 if i ≤ m, and w(x.ri + ti) =
w(x.ri + u′1.ri − u′1.ri + ti) = δi if i > m. Whence x is a solution of (4)B,J .

We now claim that (4)B,J is equivalent to a disjunction over the nonempty subsets
J ′ of J of the following systems

(5)B,J,J ′ : 

Indr|J ′|,r0(δ1),∧
i∈B
∨
j∈J ′ w(u′i − u′j) > δ1,∧

i 6=j∈J w(u′i − u′j) = δ1,∧
i 6∈J ∨j∈J w(u′i − u′j) > δ1,∧m
i=1 w(u′1.ri − ti) ≥ δ1,∧n
i=m+1 w(u′1.ri − ti) = δi,∧
i∈J ′ w(t0 + u′i.r0) > δ1,∧
i 6∈B w(t0 + u′i.r0) = δ1

Indeed, suppose x is a solution of (4)B,J . Let J ′ ⊆ J be such that ∧i∈B ∨j∈J ′ w(u′i−
u′j) > δ1 and ∧i∈J ′ ∨j∈B w(u′i − u′j) > δ1.Then certainly ∧i∈J ′ w(t0 + u′i.r0) > δ1. Fix
j ∈ J ′. Then w((u′j+x).r0) > δ1, w((u′j−u′i).r0) > δ1, j 6= i ∈ J ′, so that Indr|J ′|,r0(δ1)
holds, and hence (5)B,J,J ′ is satisfied. Conversely, suppose (5)B,J,J ′ is satisfied. Fix
j ∈ J ′. Then again w((u′j − u′i).r0) > δ1, j 6= i ∈ J ′. The condition Indr|J ′|,r0(δ1)
ensures that there is y such that w(y) = δ1 and w(y.r0) > δ1 and w(y − (u′j − u′i)) =
δ1, j 6= i ∈ J ′. By Axiom (DG), let z be such that z.r0 = t0 + (u′j − y).r0 and
w(z) = w(t0 + (u′j − y).r0) > δ1. Then (z− u′j + y).r0 = t0, w((z− u′j + y) + u′j) = δ1,
w((z − u′j + y) + u′i) = δ1 si j 6= i ∈ J ′. It follows that w((z − u′j + y) + u′i) = δ1

if i ∈ B. On the other hand, if i 6∈ B, we already have w((z − u′j + y) + u′i) =
w(z + y + (u′i − u′j)) ≥ δ1, but we cannot have w((z − u′j + y) + u′i) > δ1 because it
would lead to w((z − u′j + y).r0 + u′i.r0) = w(t0 + u′i.r0) > δ1 which is not the case.
Thus z − u′j + y is a solution of (4)B,J .



QUANTIFIER ELIMINATION IN VALUED ORE MODULES 25

It remains to handle the case when we have no equation in our system. We will
show how to reduce to the first case, using axiom (IR). We have to consider systems
of the following form :

(1’):

∃x
{ ∧m

i=1w(x.ri + ti) = δ1,∧n
i=m+1w(x.ri + ti) = δi,

with the same notation as before, in particular δ1 = δ2 = · · · = δm > δm+1 ≥ · · · ≥ δn.
We claim that (1’) is equivalent to the following system (1”), which brings us back

to system (1), so we are done.

(1”):

∃x

 x.r1 + t1 = 0,∧m
i=2w(x.ri + ti) ≥ δ1,∧n
i=m+1w(x.ri + ti) = δi.

Indeed, suppose x is a solution of (1’). By axiom (DG), there exists y such that
y.r1 = x.r1 + t1, w(y) = δ1, and w(y.r1) = δ1. We get that

∧m
i=2 w((x−y).ri+ ti) ≥ δ1

and
∧n
i=m+1w((x+y).ri+ ti) = δi. So x−y is a solution of (1”). Conversely, suppose

that x is a solution of(1”). Then, thanks to axiom scheme (IR), we may add to x an
element u with w(u) = δ1, w(u.r1) = δ1 and

∧m
i=2w(u.ri + (x.ri + ti)) = δ1. 2

7. NIP

As a reference about the independence property see [23], Chapter 12, section 12.d.
We will abbreviate the property of ”not having the independence property” by NIP.
Recall that the following theories do have NIP: any stable theory, the theory of a
chain (ibid., section 12.f), the theory of abelian totally ordered groups ([13]). It is
known that for most known valued fields for which the Ax-Kochen-Ershov principle
holds, its theory has NIP iff the theory of its residue field does (see [4]). This applies
to W (F ), but leaves F ((x)) open if F is of characteristic p > 0.

Note that by a similar proof that the theory of a chain has NIP, we can deduce that
the theories T∆,dense and T∆,discrete have NIP too. Indeed, the quantifier elimination
result for these theories implies that the types are determined by the quantifier-free
parts and so the type of an element over a model is determined by its cut in that
model. Therefore a type has at most two co-heirs and so we get the NIP property by
Theorem 12.28 of [23].

Proposition 7.1. Let (M,w,∆) be either a model of Tw,d,dense, or Tw,d,discrete. Then
the theory of M has NIP.

Proof: We will proceed by contradiction. Assume that we have a formula φ(α,y, δ)
witnessing the independence property in the single variable α (e.g. see [23], Theorem
12.18), where α is of either sort M or ∆ and the variables y are of sort M and the
δ of sort ∆. Denote by T either Tw,d,dense or Tw,d,discrete.
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By compactness, we have tuples (ai,bm, cm)i∈ω,m∈2ω in some model of T such that
the following holds :∧

i∈m

φ(ai,bm, cm),
∧
i/∈m

¬φ(ai,bm, cm), i ∈ ω,m ∈ 2ω.

First, suppose that α is of sort ∆.
Since T admits quantifier elimination (Corollary 6.4), we may assume that φ(α,y, δ)

is a finite disjunction of quantifier free formulas φ`, of the form:

φl(α,y, δ) :=

n(`)∧
i=1

w(ti(y)) = δi & θ`(y) & δ`1 + γ`1 � α � δ`2 + γ`2 & ψ`(δ)

where � ∈ {<,≤}, θ`(y) is a quantifier-free pp-formula, ti(y) are LA-terms of sort
M , and ψ`(δ) is a quantifier free formula (recall that T∆,dense and T∆,discrete both
admit quantifier elimination).

We introduce new variables βh of sort ∆ that we substitute to each w(ti(y)) and
δ`j + γ`j.

Let φ′`(α,β, δ) be the formula we obtain from φ`(x,y, δ) by making the above
substitution and leaving out all the subformulas not involving either α, δ or β. Set
φ′(α,β, δ) :=

∨
` φ
′
`(α,β, δ).

Let dm be the value of β obtained by making the above substitutions with the
values bm of y and cm of δ.

Therefore the tuples (ai,dm, cm)i∈ω,m∈2ω satisfy the following∧
i∈m

φ′(ai,dm, cm),
∧
i/∈m

¬φ′(ai,dm, cm), i ∈ ω,m ∈ 2ω

contradicting the property that no chain has the independence property.
Now we suppose that α is of sort M . Then we may assume that φ(α,y, δ) is a

disjunction
∨k
`=1 φ`(α,y, δ) of quantifier-free formulas of the form:

φl(α,y, δ) :=

n(`)∧
i=1

w(α.ri + ti(y)) = δi & α.r0 = t0(y) & θ`(y) & ψ`(δ)

with the same notation as before and r0, ri ∈ A.
We vary j ∈ n and by the pigeonhole principle, there exist pairwise distinct ele-

ments j4, j3, j2 ∈ n and some atomic formula χ occurring in φ such that, setting S1 =
n−{j3, j4}, S3 = n−{j2, j4}, S2 = n−{j2, j3}, we have that

∧
i=2,3 ¬χ(aj2 ,bSi , cSi),∧

i=1,2 ¬χ(aj3 ,bSi , cSi) and ¬χ(aj4 ,bS1 , cS1) are satisfied.
Let j1 ∈ S1 ∩ S2 ∩ S3.
Either χ is of the form α.r0 = t0(y) and then we get (aj1 − aj2).r0 = 0 and

aj1 .r0 + t0(bS2) = 0 but aj2 .r0 + t0(bS2) 6= 0, which is a contradiction.
Or, χ is of the form w(α.ri + ti(y)) = δi. We will denote by cSj the ith component

of cSj . Then we have w(aj1 .ri + ti(bS1)) = cS1 and w(aj2 .ri + ti(bS1)) = cS1 . So,
w((aj1 − aj2).ri) ≥ cS1 .
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Similarly, we get w(aj1 .ri+ti(bS3)) = cS3 and w(aj3 .ri+ti(bS3)) = cS3 . So, w((aj1−
aj3).ri) ≥ cS3 .

On the other hand since j3 /∈ S1, w(aj3 .ri+ ti(bS1)) 6= cS1 and w(aj3 .ri+ ti(bS1)) ≥
min{w((aj1 − aj3).ri), w(aj1 .ri + ti(bS1))}, and since j2 /∈ S3, w(aj2 .ri + ti(bS3)) 6= cS3

and w(aj2 .ri + ti(bS3)) ≥ min{w((aj2 − aj1).ri), w(aj1 .ri + ti(bS3))}.
So we get cS1 ≥ cS3 . Suppose now that cS1 > cS3 , then w(aj2 .ri + ti(bS3)) =

w((aj2 − aj1).ri + aj1 .ri + ti(bS3)) = min{w((aj2 − aj1).ri), w(aj1 .ri + ti(bS3))} = cS3 ,
a contradiction.

So we have cS1 = cS3 which denote henceforth c, and by the above, we necessarily
get that w(aj3 .ri + ti(bS1)) > c and w(aj2 .ri + ti(bS3)) > c.

Using these two strict inequalities, we get that w((aj1 − aj3).ri) = c and w((aj2 −
aj3).ri) = c.

Since j1 ∈ S2, w(aj1 .ri + ti(bS2)) = cS2 .
Suppose cS2 < c, then w(aj3 .ri + ti(bS2)) = min{w((−aj1 + aj3).ri), w(aj1 .ri +

ti(bS2))} = cS2 , which contradicts the fact that j3 /∈ S2. Therefore, cS2 ≥ c. Sup-
pose cS2 > c. First note that w((−aj1 + aj4).ri) ≥ cS2 , since w((−aj1 + aj4).ri) ≥
min{w(aj1 .ri+ti(bS2)), w(aj4 .ri+ti(bS2))}}. Then, w(aj4 .ri+ti(bS1)) = min{w((−aj1+
aj4).ri), w(aj1 .ri + ti(bS1))} = c, a contradiction since j4 /∈ S1.

So, we get that cS2 = c.
Now, we have w(aj3 .ri + ti(bS2)) ≥ min{w((aj3 − aj1).ri), w(aj1 .ri + ti(bS2))} =

c and w(aj2 .ri + ti(bS2)) ≥ min{w((aj2 − aj1).ri), w(aj1 .ri + ti(bS2)} = c. Hence
w(aj3 .ri+ ti(bS2)) > c and w(aj2 .ri+ ti(bS2)) > c. But therefore, w((aj2−aj3).ri) > c,
a contradiction. 2

It has been observed that formulas without the independence property are closed
under boolean combinations (see e.g. [1]). So we could have directly considered only
atomic formulas.

8. Ultraproducts.

Let U be a non-principal ultrafilter over the set of prime numbers p. Let Fp be a
p-closed field of characteristic p of cardinality at most ℵ1. By the Ax-Kochen-Ershov
theorem the ultraproducts

∏
UW (Fp) and

∏
U Fp((x)) are elementarily equivalent as

valued fields, and
∏
UW (Fp) and

∏
U Fp((x)) just as well. They are also ℵ1-saturated.

If we assume the continuum hypothesis1, they are of cardinality ℵ1 and so isomorphic.
Similarly

∏
UW (Fp) and

∏
U Fp((x))) are isomorphic as valued fields, say via ϕ. Let

σpwf be the Witt Frobenius on W (Fp) and let σpc be the automorphism sending∑
aix

i to
∑
apix

i in Fp((x)). Consider the valued fields with isometry (W (Fp), σpwf ),
and (Fp((x)), σpc). Denote respectively by σwf and σc the induced automorphisms on
the ultraproducts of these fields.

Let A =
∏
UW (Fp)[t], the polynomial ring over

∏
U Qp. Consider

∏
UW (Fp) as

an A-module with t acting as σwf on
∏
UW (Fp). Consider also

∏
U Fp((x)) as an

A-module via ϕ and t acting as σc, namely m.
∑
tici =

∑
σic(m)ϕ(ci).

1S. Shelah has constructed a model of ZFC where these ultraproducts are not isomorphic.
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We will consider their theories first as modules, then as valued modules with the
usual valuation map. As modules they are elementarily equivalent if for all q(t) ∈ A,
ann(q) is non-zero in

∏
UW (Fp) iff it is non-zero in

∏
U Fp((x)) (see Corollary 2.5).

Since both structures satisfy the linear Hensel property and since the residue fields
are isomorphic to

∏
U Fp and since both σ̄wf and σ̄c act as the standard Frobenius on

the residue fields, we get the result.
Concerning their theories as valued modules, first we have to check that they are

models of the schemes (DG) and (IR), and by remarks on completions in Corollary
6.4, since in this case the image by the map w of the module is equal to the value group
of the ring, it suffices to examine the cardinalities of the annihilators in the quotient
V0/V

+
0 or in the subgroup V0; namely either in

∏
U Fp or in the subgroup

∏
UW [Fp]

(respectively
∏
U Fp[[x]]). Since

∏
U Fp is infinite, it does not satisfy any identities,

so (IR) holds, and the axiom (DG) still holds using the linear Hensel property and
the fact that Fp is p-closed. So we have elementary equivalence as valued modules as
well. This follows also from [6], but it might be appropriate to notice that it already
follows from the linear theory.
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