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Introduction

Strong interaction: one of the four fundamental forces
According to our current knowledges, all phenomena in nature are well described by only four funda-

mental forces, namely the gravitation and the electromagnetic, weak and strong interactions. The theories
underlying these three latter are part of the Standard Model while the gravitation is usually depicted by the
Einstein’s General Relativity. The ultimate dream of physicists is to build a unified and coherent framework
in which all the physical aspects can be fully explained. Several candidates such as, for instance the String
Theory, are nowadays studied.

The strong interaction is, as its name suggests it, the strongest one. It only acts at the nuclear level
and on certain particles: the quarks, the antiquarks and the gluons. The residue of this force is responsible
of the nuclei cohesion. Indeed, without it, the protons inside the nucleus should repel each other due to
the electromagnetic forces. The theory underlying the strong interaction is the Quantum Chromodynamics
(QCD).

QCD is a quantized non-abelian SU(3) gauge field theory. As in Quantum Electrodynamics (QED), the
theory describing the electromagnetic interaction, the concept of conserved charge is a central point. The
analogue of the electric charge is thus here the colour one, initially introduced by Fritzsch, Gell-Mann and
Leutwyler [Frit73]. Mathematically, this concept is encoded in the associated gauge group. For QED, it is
the abelian U(1) group. There are two states of electric charges (+ or −). In QCD, the associated gauge
group is SU(3). It exists three colour-charged states (red, blue, green) and three anticolour-charged ones
(antired, antiblue, antigreen). Quarks are the fundamental particles sensitive to the strong interaction. So,
they carry a colour charge while antiquarks carry an anticolour one. Gluons are the gauge bosons of the
interaction and have a colour and an anticolour charges. From a group point of view, the quarks (antiquarks)
are in the fundamental (conjugate) representation of the gauge group; The gluons are in the adjoint one. The
non-abelian feature of the gauge group gives a much more complex structure to the theory as we will see
further.

QCD exhibits two essential features: the confinement and the asymptotic freedom. This latter was first
proposed by Gross, Politzer and Wilczek [Gros73, Poli74]. Indeed, they realized that the behaviour of the
QCD running coupling constant, which measures the strength of the interaction, is a decreasing function of
the energy scale. This means that, provided that the energy increases, the interaction between colour-charged
particles is weaker and weaker. These ones can thus feel almost free from each other, leading to the concept
of the asymptotic freedom. On the other hand, at low energy, the strength of the interaction is so strong that
colour particles are confined inside bigger structures called hadrons. This important particularity of QCD is
expressed in the fact that observed particles are colourless.

Therefore, it naturally follows that the hadrons must be colourless combinations of colour particles.
There exist two families experimentally observed: the baryons (combinations of three (anti)quarks) and the

9



10 INTRODUCTION

mesons (combinations of one quark and one antiquark). Nevertheless, from a theoretical side, all colourless
combinations can exist. In this thesis, the stress is thus also put on glueballs, bound states of gluons, even if
they have not been detected for sure in the experiments up to now. Indeed, glueballs are extremely difficult
to identify in particle accelerators, because they mix with other meson states. However, states like f0(1370),
f0(1500) and f0(1710) could be good candidates.

Although so far, QCD appears as the most consistent theory to describe the strong interaction. Everything
is not well understood. For example, the confinement is still a nebulous phenomenon by some aspects.
Hadron spectra are far to be well known. QCD phase transitions require also a deeper understanding. All
these opening directions and many others make that studying QCD and related phenomena is an attractive
field of researches both theoretically and experimentally.

From a theoretical point of view, all these challenges are mainly due to the non-perturbative behaviour
of QCD. Indeed, since at low energy, the QCD running coupling constant is large, the usual perturbative
expansions can not be applied as well as in QED. That is the reason why several approaches, such as lattice
QCD (lQCD), quasiparticle approaches, QCD sum rules etc., are developed in order to predict results at this
energy range. From the experimental side, the extreme smallness of the length scale (≤ 10−18 fm) leads to
build larger and larger accelerators and more and more precise detectors in order to probe matter in such a
range.

Phase transitions in QCD

When a physicist is given a description of the matter at the microscopic level (elementary building
blocks and interactions between them), the following relevant question that he has in mind, is: What could
one build with that? For instance, water is made of molecules (building blocks in a relevant microscopic
scale) that interact thanks to a residue of the electromagnetic interaction between electrons and protons,
namely the van der Waals force. However, water can exist as ice, liquid or gas. These states of matter are
different at a macroscopic level and, as we know, it is possible to reach these various phases by changing the
thermodynamic variables.

Also in QCD, this question is meaningful. QCD exhibits two kinds of phase transitions: The con-
finement/deconfinement and the chiral ones. These two phases are driven by the change of two intensive
thermodynamic variables: the temperature and the baryonic potential. At low value of these thermodynamic
variables, the strongly-interacting matter is dominated by hadrons. We are in the confined regime. When
the temperature and baryonic potential are increased and exceed a critical threshold, quarks and gluons are
allowed to move quasi-freely. This is the deconfinement world. In parallel, the QCD chiral symmetry is bro-
ken at low value of these intensive parameters and then progressively restored, provided that they increase.
Nevertheless up to now, there is no strong evidence that these two phase transitions coincide.

Studying such phenomena is thus particularly interesting for several reasons. First of all, it comes to
investigate QCD under extremely high conditions and to develop, in other, thermal field theory. Next, since
1975, many scientists have thought that the core of the heaviest neutron stars should be in a state in which
the density of neutrons is so high that they are overlapping [Coll75]. Therefore, the real degrees of freedom
should be the quarks and the gluons. Moreover, from a cosmological point of view, our universe should go
over a quark-gluon plasma (QGP) state few microseconds after the Big Bang. The temperature was then
100 000 times the one in the Sun core i.e. 1012 K. By cooling, quarks and gluons were sealed in hadronic
matter. Finally, from the experimental side, QCD matter is probed under extremely high energy. Recently,
the CERN has hold the record of the largest energy in the center-of-mass frame never reached (≈ 8 TeV)
and RHIC (Relativistic Heavy Ion Collider) and LHC (Large Hadron Collider) experiments have probably
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created a quark-gluon plasma.

Figure 1: Conjectured QCD phase diagram [Coss11].

However, it is important to mention that the QCD phase diagram is poorly understood up to now. Fig. 1
is a conjecture: There are only few experimental data and the phase transition orders are not well identified.
A lot of things remains to do and so, a lot of works are dedicated to better understand its structure.

Towards the quark-gluon plasma: quasiparticle approaches

In this thesis, the stress is mainly put on the study of the confined and deconfined phases of QCD thanks
to quasiparticle approaches. Moreover, we essentially focus on the evolution in function of the temperature
T . This does not prevent the fact that some parts of our research are also devoted to the effect of the baryonic
potential µ and the study of the chiral transition.

Our quasiparticle approaches rely on the correct identification of the degrees of freedom. Below the
critical temperature of deconfinement (Tc), the matter is seen as a gas of hadrons. Just above that, it is a
strongly-interacting medium in which quarks and gluons are the relevant degrees of freedom. Well above
Tc, it is an ideal gas of quarks and gluons.

The two first chapters of this thesis are of course dedicated to the state of art. The main concepts in QCD,
useful to follow our further purposes, are summarized in Chapter 1 while a brief review of the knowledges
about the QCD at finite temperature and baryonic potential is proposed in Chapter 2.

In Chapter 3, the Hadron Resonance Gas model (HRG) is discussed. This model is particularly inter-
esting to describe matter below Tc. However, since the production of hadronic resonances is so abundant,
approximations are needed and it is often assumed that their number follows an exponential growth in func-
tion of the hadron mass [Hage65, Hage68]. It thus results a limiting temperature Th, for the description of
the QCD matter in terms of hadrons. Maybe it is the temperature of deconfinement, maybe not. The question
is still open.

A T -matrix approach based on [Cabr07] is then introduced to solve the QCD spectrum in Chapter 4.
This approach is used to (re)produce the glueball and the meson spectra at T = 0 (seen as references) and at



12 INTRODUCTION

finite temperature. Thanks to this study, we will be thus able to answer the question: Do QCD bound states
survive above Tc?

In Chapter 5, the Dashen, Ma and Bernstein (DMB) formalism [Dash69] is applied to QCD in order to
compute the QGP equations of state (EoS). This formalism is based on the T -matrix computations led in
Chapter 4 and has the advantage to take explicitly into account the interactions between quasiparticles. First
of all, the Yang-Mills (YM) sector as well as its extension to any gauge groups is studied and compared to
current results in lQCD. Then, the EoS for the full plasma are presented and analysed. The effects due to the
consideration of a small baryonic potential are also discussed.

In Chapter 6, we consider the N = 1 SUSY extension of the YM theory. This latter is peculiarly
interesting to draw some links with real QCD and is nowadays also investigated in lQCD. The bound-state
sector of this theory is produced at zero and finite temperature following the ideas developed in Chapter 4
while the EoS are computed according to the formalism presented in Chapter 5. Moreover, the question of
the orientifold equivalence is addressed.

In Chapter 7, the large-Nc QCD phase diagram is studied thanks to a Polyakov-Nambu-Jona-Lasinio
(PNJL) model. Within this chapter, the order parameter of the confinement/deconfinement phase transition,
the Polyakov loop, as well as the one of the chiral phase transition, the chiral condensate, are examined and
allow us to draw the critical (T, µ) lines.

In order not to complicate the discussions during the lecture of this thesis, four appendices summarize
some technical points. The conventions and a list of acronyms and abbreviations are given in Appendix A
while the helicity formalism is introduced in Appendix B. The gauge-group factors are computed in Ap-
pendix C and the Lagrange-mesh method (LMM) is discussed in Appendix D.

Finally, our main results and findings are naturally summed up in our conclusions and several perspec-
tives to our works are presented.



Chapter 1

Notions in QCD

The goal of this chapter is to give to the reader unfamiliar with QCD some useful and basic notions in
order to sketch the background of this thesis and appreciate the extensions at finite temperature and chemical
potential 1 that will be introduced in Chapter 2.

First of all, we will start by a theoretical description of QCD. A preliminary study on which QCD
relies on is definitely the quark model. This work was essential because it exhibited for the first time the
real degrees of freedom on which QCD field theory is based. That is the reason why it is the first point
of our discussions. Then, the object of our second section will be obviously the classical formulation of
QCD and its quantization. We will not miss to stress on two important QCD features: the confinement
and the asymptotic freedom. Moreover, we will also briefly discuss the chiral symmetry of QCD with
massless quarks. These characteristics are really the main notions to understand the QCD phase transition
diagram presented in Chapter 2. The references used to achieve this theoretical description are essentially
[Clos80, Muta10, Yagi05].

Amongst all the techniques used to compute observables in QCD, the lattice QCD (lQCD) is nowadays
the most powerful framework to explore the QCD non-perturbative range starting from first QCD principles.
In this thesis, we will systematically compare its predictions to our data. Therefore, it seems pertinent to
dedicate some pages to its description. The key concepts given in this section are, in major part, extracted
from [Yagi05].

Finally, we will close this chapter by relating, from a historical and experimental point of view, some
observations that confirmed the validity of QCD theory. The discovery of quarks and gluons are addressed
as well as the confirmation of their colour degrees of freedom and the behaviour of the strong coupling
constant. The references used to feed this section are [Huss00, Fava12, Beth09].

1.1 Theoretical principles

1.1.1 A preliminary classification: the quark model
During early 1960s, physicists were faced with an impressive collection of particles emerging from

collision experiments and cosmic rays. A classification as Mendeleev did for chemical elements seemed

1. The term “chemical potential” is conventionally used in statistical physics and designates the intensive variable associated toN ,
a number of particles. In the case of QCD, we talk more specifically of “baryonic potential”, the intensive variable associated to the
difference between the number of quarks and antiquarks.

13
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to be more and more indispensable. In 1964, Gell-Mann and independently Zweig proposed a theoretical
scheme of classification, the quark model.

The main idea of this model is to use the representations of symmetry groups under which the La-
grangian of strong interactions is invariant to classify hadrons (particles sensitive to strong interactions).
Each hadron is then decomposed in terms of elementary pieces belonging to the fundamental representa-
tion of the underlying symmetry group and is described by quantum numbers resulting from the conserved
charges, according to the Noether’s theorem. These fundamental pieces were named quarks by Gell-Mann
and were originally only mathematical tools before their real discovery in 1968 in deep inelastic scattering
experiments of electrons on nucleons (see Section 1.3.1).

The first example of symmetry in which strong interactions obey is the proton/neutron SU(2) isospin
(I) one. This symmetry was firstly noticed in 1932 by Heisenberg, well before the elaboration of the quark
model. Indeed, experiments show that the neutron (n) and the proton (p) have nearly the same mass and that
the strength of the interaction that apply between nn, pp and pn is practically the same, once the electro-
magnetic effects are removed. It can be thus deduced that, from the point of view of strong interactions, the
neutron and the proton are two different representations of the same object, the nucleon. Their only differ-
ence lies in their electric charge. Therefore, including the electromagnetic interactions inside the Lagrangian
breaks the isospin symmetry and defines a privileged direction in the isospin space (I3). This mechanism is
in pure analogy with the particle spin from which its name results.

Formally, a nucleon has an isospin, I = 1/2. This means that it belongs to the two-dimensional (2I+ 1)
representation of the SU(2) group which is the fundamental one 2. The value of I3 is 1/2 for the proton and
−1/2 for the neutron. We can also do the same for pions (light mesons) which have an I = 1 and belong
to the adjoint representation of SU(2): (π+, π0, π−) defines another multiplet of the symmetry group. Their
projections on I3 are respectively 1, 0 and −1. From these considerations, we can observe that particles are
classified in terms of the representations of SU(2) Lie groups. This group was originally used because only
hadrons with quark up and down were discovered at this time. Indeed, these quarks, although still unknown,
are the only ones present in the nuclei structure. Nucleons and pions, as suggested by Yukawa, were (and
still are) the fundamental degrees of freedom for describing the nuclear force, remaining part of the strong
interaction at the nucleus level and only scale at which experiments had a quite easy access.

However in 1947, the picture got tougher because physicists discovered some “strange” hadrons, like
kaons (K±, K0, K̄0, ...) and hyperons (Σ± , Σ0, ...), in cosmic rays and accelerators. They were strange
because they did not obey to any decay rules known at this time. A first attempt of explanation were proposed
in 1950s with the introduction of a new quantum number called strangeness which is conserved during strong
interaction processes. Since a new conserved charge follows from a new symmetry of the Lagrangian, it is
rather reasonable to think to extend the SU(2)-isospin symmetry into a SU(3) one: The quark model was
born and this symmetry is called SU(3)-flavour. Patterns as in Fig. 1.1 were proposed by Gell-Mann and
Zweig to classify hadrons.

Each hadron known at this time was therefore described in terms three flavours of quarks (cfr. Table 1.1):
the up (u), the down (d) and the strange (s). Several associated quantum numbers as, for instance the isospin
I , the strangeness S, the charge Q, were used (and are of course still used) to define all these hadrons.

As previously mentioned, quarks were firstly conjectured because the fundamental representation (i.e. the
three-dimensional one) was missing from the classification scheme. This one represents the building block
from which higher-dimensional representations can be obtained. However, from a tensor product point of
view, only combinations with one quark (fundamental representation) and one antiquark (conjugate repre-
sentation) as well as combinations with three quarks (or antiquarks) are observed in nature:

2. The fundamental representation of SU(2) is a doublet (↑,↓) with ↑ = (1,0) and ↓ = (0,1).
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Figure 1.1: Meson octet, baryon octet and baryon decuplet from Wikipedia.

qq̄ ⇒ 3⊗ 3̄ = 1⊕ 8, (1.1.1)
qqq ⇒ 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (1.1.2)

This leads to two groups of hadrons:

• the mesons: particles made of a quark-antiquark pair,

• the baryons: particles made of three (anti)quarks.

From (1.1.1) and (1.1.2), we understand the patters presented in Fig. 1.1: the meson and baryon octet as well
as the baryon decuplet. One of the most beautiful predictions of the quark model, other than quarks, was the
experimental observation of Ω− in the baryon decuplet.

To finish this section and bounce on the next one, it is worth pointing two facts. Firstly, the SU(3)-flavour
symmetry is not an exact one of the QCD Lagrangian. There is a mass gap between the u- and d-quarks (few
MeV) and the s-one (around 100 MeV) that breaks it. Secondly, some quark decomposition proposed in
Table 1.1 were disturbing. In fact, if we take into account all the degrees of freedom known at this time, the
symmetry of the wave function associated to some hadrons does not respect the Pauli’s principle: Bosons
(fermions) have a (anti)symmetric wave function. For instance, ∆++ seemed to be a fermion with symmetric
wave function. Either the Pauli’s principle was not correct, either there was another degree of freedom in
order to cure this anomaly. This last assertion was true and the colour was introduced and observed in
experiment (see Section 1.3.3). Since, because of the confinement, the colour degree of freedom produces
an antisymmetric contribution to the wave function, the Pauli’s principle was restored. The SU(3)-colour
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Mesons
Quarks Charge Spin Strangeness Examples

ud̄ 1 0 0 π+

ūd -1 0 0 π−

uū, dd̄ 0 0 0 π0

us̄ 1 0 1 K+

ūs -1 0 -1 K−

ds̄ -1 0 1 K0

Baryons
Quarks Charge Spin Strangeness Examples

uud 1 1/2 0 p

udd 0 1/2 0 n

uuu 2 3/2 0 ∆++

uud 1 3/2 0 ∆+

udd 0 3/2 0 ∆0

ddd -1 3/2 0 ∆−

uus 1 1/2 -1 Σ?+, Σ+

uds 0 1/2 -1 Σ?0, Σ0, Λ0, Λ

dds -1 1/2 -1 Σ?−,Σ−

uss 0 1/2 -2 Ξ?0,Ξ0

dss -1 1/2 -2 Ξ?−,Ξ−

sss -1 3/2 -3 Ω−

Table 1.1: Quark decomposition of some hadrons.

symmetry is nowadays at the heart of the gauge field theory describing QCD.

1.1.2 Classical QCD Lagrangian

QCD is a non-abelian gauge theory describing the interaction between quarks (massive fermions) through
gluons (gauge bosons). The gauge group for the physical QCD is SU(3), but arbitrary semi-simple, compact
Lie groups will be also considered in this thesis. The classical QCD Lagrangian is then given by
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LQCD = Lg + Lq , (1.1.3)

with

Lg = −1

4
F aµνF

µν
a , (1.1.4)

Lq =

Nf∑
f=1

ψ̄αf (iγµDµ −mf )αβψ
β
f . (1.1.5)

This compact notation hides a lot of implicit information that must be clarified.
Firstly, F aµν is the field strength. This tensor depends on the gauge fields Aaµ, through the relation

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.1.6)

where a, a colour index, runs over 1 to the dimension of the adjoint representation of the gauge group. For
SU(Nc), a = 1, . . . , N2

c − 1. g is the strong coupling constant and fabc are the structure constants of the
associated gauge algebra.

Secondly, Dµ is the covariant derivative and is defined by

Dµ = ∂µ − igAaµta, (1.1.7)

where ta are the gauge algebra generators obeying the commutation relations

[ta, tb] = ifabctc, (1.1.8)

and where Aµ = Aaµta.
Finally, ψαf and ψ̄αf = ψ†αf γ0 are the quark and antiquark fields with f , the flavour index, running over

1 to Nf (number of quark flavours in the theory) and α, a colour index, running over 1 to the dimension of
the representation in which the quark and the antiquarks belong (usually, the fundamental and the conjugate
representation of the gauge group). ψαf and ψ̄αf also carry Dirac spinor indices but they are omitted here
not to overload the notation. mf is the mass associated to f -quark and γµ are the Dirac γ-matrices (see
Appendix A).

It is worth noting that the QCD Lagrangian is obtained by imposing the respect of the Lorentz invariance,
the invariances under space and time reversal and the local gauge invariance. For this latter, the Lagrangian
must be invariant under the transformation,

Ω(xν) = eiθ
a(xν)ta , (1.1.9)

where θa(xν) is an infinitesimal parameter which depends on the space-time point xν . Quarks, antiquarks
and gluons respect respectively the following transformation laws:

ψ(xν) → Ω(xν)ψ(xν) (fundamental representation), (1.1.10)
ψ̄(xν) → ψ̄(xν)Ω†(xν) (conjugate representation), (1.1.11)

Aµ(xν) → Ω(xν)

(
Aµ(xν) +

i

g
∂µ

)
Ω†(xν) (adjoint representation). (1.1.12)



18 CHAPTER 1. NOTIONS IN QCD

At the infinitesimal level, Ω(xν) ≈ 1 + iθa(xν)ta, we have

ψ(xν) → ψ(xν) + iθa(xν)taψ(xν), (1.1.13)
ψ̄(xν) → ψ̄(xν) + iθa(xν)(−t∗a)ψ̄(xν), (1.1.14)

Acµ(xν) → Acµ(xν) + θaf cabA
b
µ(xν) +

1

g
∂µθ

c(xν). (1.1.15)

However, these invariance principles are not sufficient to get an unique LQCD. Indeed, adding terms of
higher powers of F aµν and ψ do not spoil Lorentz, space and time reversal and local gauge invariances. The
additional requirement of renormalizability (see Section 1.1.5) may eliminate all the irrelevant terms and fix
the Lagrangian to that given by (1.1.3).

A remarkable feature of LQCD that can be immediately noticed is that it allows pure-gauge vertices like

• the three-gluon (3-g): AaµA
b
νA

c
ρ,

• the four-gluon (4-g): AaµA
b
νA

c
ρA

d
σ .

These ones are represented in terms of Feynman diagrams in Fig. 1.2 together with the quark/antiquark/gluon
(qq̄g) vertex: ψaAbµψ̄

c.

Figure 1.2: (a) 3-g vertex, (b) 4-g vertex and (c) qq̄g vertex.

1.1.3 Different ways of quantization
As mentioned in the previous section, the Lagrangian given by (1.1.3) is the one of a classical field the-

ory. Quantization is thus needed. However, it is not an unique procedure and several equivalent methods can
be used. There are two well-known ways:

• Canonical operator formalism [Heis29],

• Path-integral formalism [Feyn48],

The most traditional one is the canonical operator formalism in which fields are seen as operators obeying
to canonical commutation relations and in which all the building blocks of the theory, the n-point Green’s
functions, may be calculated as vacuum expectation values of the product of these field operators:

〈0|T [φ̂(x1) . . . φ̂(xn)]|0〉 (1.1.16)

where φ̂(xi) is a field operator at position xi, T is the time-ordered product and |0〉 is the vacuum of the
underlying theory.
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In the Feynman formulation of quantum mechanics, the n-point Green’s functions are written in terms
of path integrals,

〈0|T [φ̂(x1) . . . φ̂(xn)]|0〉 =

∫
[dφ]φ(x1) . . . φ(xn) eiS∫

[dφ] eiS
. (1.1.17)

They are obtained by integrating over all possible classical field configurations φ(t, ~x ), with a weight factor
eiS , given by the classical action,

S =

∫
d4xL , (1.1.18)

evaluated in that field configuration.

This formulation of quantum mechanics is much more intuitive than the canonical one. Indeed, this is a
natural generalization of the two-slit experiment: Even if it is known where the particle originates from and
where it hits on the screen, the slit in which the particle came, can not be determined. The path integral
formalism is an infinite-slit experiment.

In this thesis, we will use the results of the path-integral quantization method for two main reasons.
Firstly, this method is the one used in lQCD to compute observables (see section 1.2.5). Secondly, it can be
easily applied to compute statistical partition functions and thus, to develop QCD at finite temperature (see
section 2.1.2).

1.1.4 QCD quantization within the path-integral formalism
In the path-integral quantization formalism, all the Green’s functions of a theory can be computed thanks

to the concept of the functional derivative with respect to an external source. This procedure was first
introduced by Schwinger [Schw51].

The main principles of this technique is to consider an external source J(xν) and introduce an artificial
source term φ(xν) J(xν) in the functional integral:

Z[J ] =

∫
[dφ]e

i

∫
d4x (L+ φJ)

. (1.1.19)

Z[J ] is called the generating functional for Green’s functions. Indeed, it generates all the Green’s functions
of the underlying theory by functional differentiation and by setting, at the end of the computation, J to 0:

〈0|T [φ̂(x1) . . . φ̂(xn)]|0〉 =
(−i)n

Z[0]

δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1.1.20)

If we apply straightforwardly (1.1.19) to gauge fields, we have

Z[Jaµ ] =

∫ ∏
µ,a

[dAaµ] e
i

∫
d4x (Lg +AaµJ

µ
a )

. (1.1.21)

The integration in (1.1.21) is over the set of all the configurations of the gluon field Aaµ. This set is called
the gauge space. However, gauge invariance principle imposes that all the gluon fields are not independent.
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Indeed, because of the relation (1.1.12), Aaµ is equivalent to allA
′a
µ (θ). Aaµ andA

′a
µ (θ) lie on the same gauge

orbit. Eventually, we remain with a problem of over-counting the gauge-field path in the integration.
The conventional approach to solve this problem is to make the following restriction on Aaµ,

GµAaµ = Ba, (1.1.22)

where Gµ and Ba should be chosen in an appropriate way. This is a gauge-fixing condition that must be
applied before the quantization. The goal is to include only one configuration of each gauge orbit. Several
gauge-fixing scheme can be used. For instance:

• Coulomb gauge: Gµ = (0, ~∇),

• Covariant gauge: Gµ = ∂µ,

• Axial gauge: Gµ = nµ with nµ is a space-like constant 4-vector,

• Temporal gauge: Gµ = (1, 0, 0, 0).

The standard procedure to implement this constraint at the level of the path-integral is not explained here.
Further explanations can be found in [Muta10]. The result is the appearance of a jacobian det MG, and of a
gauge-fixing term with a gauge parameter ξ, in the exponent within the generating-functional formula,

Z[Jaµ ] =

∫ ∏
µ,a

[dAaµ]detMG e
i

∫
d4x (Lg −

1

2ξ
(GµAaµ)2 +AaµJ

µ
a )

. (1.1.23)

It is det MG which makes the quantization of gauge fields non-trivial. Of course, its computation depends
on the gauge-fixing scheme. For axial and temporal gauges, MG is independent ofAaµ and detMG is simply
a constant. For covariant gauges, MG depends onAaµ and a way to compute detMG is to introduce fictitious
fields called Faddeev-Popov ghost [Fade67].

After having applied all this machinery to quantize our theory, we remain with gauge-dependent n-
point Green’s functions since (1.1.23) depends on the gauge-fixing scheme. Thus, they can not be physical
quantities. They are only building blocks of the underlying theory. Indeed, we need to combine them in
such a way that they are gauge-independent. This is what we call observables in physics. Let us mention for
example the S-matrix of a particle system (defined in the following section). Only the physical observables
can be measured in experiments.

To close this section, quarks and antiquarks must be added and so, the generating functional including
fermion fields is given by

Z[Jaµ , η, η̄] =

∫ ∏
µ,a

[dAaµ]
∏

[dψ]
∏

[dψ̄] detMG (1.1.24)

× e
i

∫
d4x (LQCD −

1

2ξ
(GµAaµ)2 +AaµJ

µ
a + ψη̄ + ψ̄η)

,

where η and η̄ are anticommuting sources for anticommuting fermion fields ψ̄ and ψ. The mathematical tool
to deal with anticommuting fields is the Grassmann algebra. Some cares must be taken with the differen-
tiation and integration within this context. We will not enter into details here. Interested readers will find
further information in [Bere66, Ohnu78, Fade80].
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1.1.5 Regularization and renormalization

From the equation (1.1.3), we know that QCD depends on Nf + 1 parameters that must be fixed by
experiments: the masses of the Nf quarks and the coupling constant g. For example, we could set them
by using the experimental mass measurements of some hadrons like the ρ- or the π-mesons. Then, we can
normally predict the all QCD spectrum by applying the aforementioned QCD theory. However, even if the
procedure seems simple, it is not the case and some subtleties quickly appear. The purpose of the following
discussion is to highlight them without entering into the deep technical aspects.

From an experimental point of view, the way to access to information about particles is via scattering
or disintegration. In such processes, a good approximation of asymptotic states (well before and after the
scattering or the disintegration) is the free-particle ones. Indeed, the effect of the interactions is limited in
space and time. The probability amplitude for these processes is the transition probability between these two
asymptotic states, |in〉 and |out〉, the link being ensured by the S-matrix:

〈out|S|in〉. (1.1.25)

These matrix elements are the physical observables. They can be computed within the formalism described
in Section 1.1.4 and thus depend on Green’s functions.

The traditional way to compute the Green’s functions of an interactive field theory is to use a perturbative
expansion: The interaction terms inside the Lagrangian are treated like perturbations relative to the free
fields. In QED, it works well since the electromagnetic coupling constant is small at the energy scale of
interest. On the other side, in QCD, g is quite large and we do not know the validity of the perturbation theory
until we perform practical computation. A second problem, this time in both theories, is that some integrals
in the perturbative expansion are divergent. These divergences are not necessary the sign of inconsistency in
the theory: The contribution of one Feynman diagram 3 has not a physical sense. Only the S-matrix elements
have one. We thus need a formulation of perturbative expansion which has finite S-matrix elements and
well-defined Green’s functions at each perturbative order.

This task can be accomplished by using a regularization and renormalization scheme. It means that we
have to redefine fields and QCD parameters in order to eliminate the divergences. Several regularization
ways can be used as the cut-off method, the Pauli-Villars regulator method, the analytic regularization,
the dimensional regularization etc.. The choice of the regularization scheme depends on which physical
principles is important to preserve in the problem. There also exists several renormalization procedures as,
for instance, the on-shell subtraction, the off-shell subtraction, the minimal subtraction (MS), the modified
minimal subtraction (MS). Again, this scheme is not unique but it is worth mentioning and rather logical
to ask that, at the end of the computation, physical observables must be independent of it. That is the case
in QCD: QCD is thus a renormalizable theory. We will not enter here into the details of these mathematical
procedures: Interesting readers can refer to [Muta10]. The main interests for us are the following. The
renormalizability of QCD implies, as already addressed in Section 1.1.2, the form of the QCD Lagrangian
given in (1.1.3). Moreover, all the QCD parameters finally depend on an energy scale µ. Especially, we are
interested in the behaviour of the β-function which encodes the dependence of the coupling parameter g, on
the energy scale µ. This is discussed in what follows.

3. A Feynman diagram is a schematic representation of one Green’s function at a given order.
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1.1.6 QCD β-function: confinement and asymptotic freedom
The β-function of a theory is given by the following expression emerging from the renormalization group

theory:

β(g) =
dg(µ)

dlnµ
. (1.1.26)

The sign of this function is crucial. The different subsequent cases can be encountered:

• β(g) < 0 ; g decreases with the energy scale,

• β(g) > 0 ; g increases with the energy scale,

• β(g) = 0 ; g is independent of the energy scale (conformal theory).

It can be shown from renormalization group method that the β-function at two-loop order has the fol-
lowing form:

β(g) = −β0g
3 − β1g

5 +O(g7), (1.1.27)

with

β0 =
1

(4π)2

11CA − 4TRNf
3

, (1.1.28)

and

β1 =
1

(4π)4

[
34

3
C2
A − 4

(
5

3
CA + CR

)
TRNf

]
. (1.1.29)

Figure 1.3: Behaviour of the running coupling constant of QCD [Beth07].
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In the formulas (1.1.28) and (1.1.29), CA, CR and TR are coefficients depending on the gauge group:

• CA is the quadratic Casimir of the gauge-group adjoint representation,

• CR is the quadratic Casimir of the gauge-group R representation,

• dA is the dimension of the gauge-group adjoint representation,

• dR is the dimension of the gauge-group R representation,

• TR is the Dykin index of the gauge-group R representation given by
CR dR
dA

.

For a SU(Nc) gauge group and (anti)quarks in their usual representations, we have

CA = Nc, CR =
N2
c − 1

2Nc
, dA = N2

c − 1, dR = Nc, TR =
1

2
. (1.1.30)

In QCD, we are in the case β(g) < 0 because Nc = 3 and Nf ≤ 6. At low energy, the coupling constant
is thus quite large. A perturbative expansion is not justified. We are in the confinement world. By increasing
the energy, the coupling constant comes smaller and smaller and then, the strength of interaction decreases.
We are therefore in the region of the asymptotic freedom.

In Fig. 1.3, it is represented the behaviour of the running coupling constant of QCD. Let us define:

αs(µ) =
g2(µ)

4π
=

4π

β0L

[
1− β1lnL

β2
0L

]
, (1.1.31)

with L = ln
µ2

Λ2
QCD

and ΛQCD ≈ 200 MeV [PDG]. This ΛQCD is a typical energy scale below which

perturbative expansion fails. The experimental determination of αs will be addressed in Section 1.3.4.

1.1.7 Chiral symmetry in QCD

The QCD classical Lagrangian given in (1.1.3) exhibits more symmetries than the local SU(3) gauge one
in some limit cases . For example, we can think of

• SU(2) isospin symmetry: mu = md,

• SU(3) flavour symmetry: mu = md = ms,

• chiral symmetry: mu = md = ms = 0.

In this section, we will briefly focus on this last one. For this purpose, the LQCD can be divided in the
following way:

LQCD = Lchiral
QCD + Lmass

QCD, (1.1.32)
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where

Lchiral
QCD = −1

4
F aµνF

µν
a +

Nf∑
f

ψ̄αf (iγµDµ)αβψ
β
f , (1.1.33)

Lmass
QCD = −

Nf∑
f

ψ̄αf (mf )αβψ
β
f . (1.1.34)

In the chiral limit, Lmass
QCD is naturally absent. If we decompose the Dirac spinor representing the (anti)quark

into a right- and left-handed parts, we have

ψ = ψR + ψL, (1.1.35)

with

ψR =
1 + γ5

2
ψ, (1.1.36)

ψL =
1− γ5

2
ψ, (1.1.37)

and with γ5 = iγ0γ1γ2γ3.
ψR (ψL) is an eigenstate of the chirality operator with the eigenvalue 1 (−1). Since the chirality is equivalent
to the helicity h for massless quarks,

h =
~S. ~p

|~p|
, (1.1.38)

where ~S is the spin, ~p the momentum, and ψR (ψL) represents a quark with spin and momentum aligned
(opposite). The next decomposition is therefore allows:

Lchiral
QCD = LRQCD(ψR, Aµ) + LLQCD(ψL, Aµ). (1.1.39)

Right- and left-handed are completely decoupled in the limit of massless quarks. Lchiral
QCD for three quark

flavours is thus invariant under the U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)1 global transfor-
mations:

ψR → eiθ
a
Rλ

a

ψR U(3)R, (1.1.40)
ψL → eiθ

a
Lλ

a

ψR U(3)L, (1.1.41)

where λa = 2ta (for a = 1, . . . , 8) are the Gell-Mann matrices and λ0 = 1/2.
Note that SU(3)R × SU(3)L can also be rewritten SU(3)V × SU(3)A associated respectively to vector

and axial currents. Because of the Noether’s theorem, the vector and the axial currents,

V aµ = ψ̄γµλ
aψ, (1.1.42)

Aaµ = ψ̄γµγ5λ
aψ, (1.1.43)

are conserved in the chiral limit (∂µV aµ = 0 and ∂µAaµ = 0) and associated to conserved charges, QaV and
QaA.
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However, it happens that a conservation law at the classical level can be broken spontaneously by quan-
tum effects. This is called an anomaly. The axial current is affected by this anomaly, ∂µA0

µ 6= 0.
Moreover, the action of the vector and the axial vector charges on the ground state of QCD, the vacuum

|0〉, is

QaV |0〉 = 0, QaA|0〉 6= 0, (1.1.44)

which is called the Nambu-Goldstone realization of the chiral symmetry. Note, for further purposes that

QaV |0〉 = 0, QaA|0〉 = 0, (1.1.45)

is called the Wigner-Weyl realization.
The SU(3)A and U(1)A symmetries are thus not preserved by the QCD vacuum. We speak over a

spontaneous breaking of the chiral symmetry. Such spontaneously broken symmetries of the QCD vacuum
have some consequences on the QCD spectrum. They generate for instance the non-degeneracy of chiral
partner multiplets and massless particles in the QCD spectrum according to the Goldstone’s theorem. Indeed,
this theorem mentions that if a charge associated to a global symmetry of the Lagrangian is conserved, but
that the vacuum is not invariant under the action of the corresponding charge, then a new massless particle
appears in the theory spectrum with the same quantum numbers as the corresponding charge. For example
in QCD, the spontaneous breaking of SU(3)A symmetry generates eight Goldstone’s bosons: π0, π±, K0,
K̄0, K± and η.

Nevertheless, it is worth adding that in experiments, these eight bosons have a mass. This is due to
the fact the the chiral symmetry is explicitly broken at the level of the QCD Lagragian since the quarks
have a mass. However, the masses of the Goldstone’s bosons are weaker than the masses of other hadrons,
reflecting so the spontaneously chiral symmetry breaking.

To finish, we will introduce an important notion that will be useful to understand the chiral phase transi-
tion: the chiral condensate 〈q̄q〉. This last one has a zero value in the Wigner-Weyl phase (chiral symmetry)
and a non-zero one in the Nambu-Goldstone phase (chiral symmetry spontaneously broken). It is associated
to the faculty of the QCD vacuum at low energy to generate quark-antiquark pair. Indeed, from

∂µA0
µ = −

√
2Nf

g2

32π2
εµνλρF

µν
a Fλρ a, (1.1.46)

we can notice that, when g is strong (at low energy), the chiral symmetry is spontaneously broken and that
it is progressively restored when the energy increases since g → 0 (cfr. Fig. 1.3).

1.2 Lattice QCD

Lattice QCD is a powerful approach of QCD in which non-perturbative phenomena like the confinement
or the QGP can be studied. Indeed, as already addressed, perturbative expansions are not allowed at low
energy in QCD because of its too huge coupling constant (cfr. Fig. 1.3). Therefore, it is difficult (even
impossible) to get analytical solutions and so, lQCD is really helpful to compute observables in the QCD
non-perturbative regime. Its formulation was originally proposed by Wilson in 1974. The basic ideas are the
discretization of QCD on a space-time lattice and the concept of Wilson lines.
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1.2.1 The Wilson lines
To compute QCD on a lattice, it is not enough to discretize the QCD action since we need to preserve

gauge invariance. So, a special variable is introduced for representing the gauge field: the Wilson line.
Starting from the QCD gauge theory in Euclidean continuous space-time, we consider a path Γ (parametrized
by the variable s, s ∈ [0, 1]) going from x = Γ(0) to y = Γ(1) space-time points:

U(y, x) = P{exp[ ig

∫
Γ

dzµAµ(z)]}, (1.2.1)

where P orders the product of operators according to the value of a chosen parameter along the path (path-
ordering operator) and Aµ(z) is the gauge field.

The main property of the Wilson line is that under a local gauge transformation Ω(x) defined in (1.1.9),
it transforms covariantly. Indeed,

U ′(y, x) = Ω(y)U(y, x)Ω†(x). (1.2.2)

The Wilson line is therefore an useful tool that allows us to define non-local gauge invariant objects which
will be building blocks of the QCD action on the lattice.

1.2.2 Discretization of the space-time
In lQCD, space-time is no longer continuous but discretized on a hyper-cubic lattice. Space-time coor-

dinates are then given by
xµ = anµ, with nµ ∈ Z et µ ∈ [0, 3], (1.2.3)

where a is the lattice spacing. Naturally, the more a is small, the more the precision is high.
The elementary components of a lattice are

• the sites of the lattice,

• the links: the shortest Wilson line connecting two neighboring lattice sites, n and n+ µ̂,

Uµ̂(n) = exp[ig aAµ(n)], (1.2.4)

where µ̂ is a vector pointing in the direction µ with length a,

• the plaquette: the smallest oriented closed paths on the lattice,

TrUµ̂ν̂(n) = Tr

[
U†ν̂ (n)U†µ̂(n+ ν̂)Uν̂(n+ µ̂)Uµ̂(n)

]
, (1.2.5)

where U†µ̂(n) = U−µ̂(n+ µ̂).
It is worth mentioning that Uµ̂ν̂(n) transforms covariantly under a local gauge transformation, Ω(n),

Uµ̂ν̂(n)→ UΩ
µ̂ν̂(n) = Ω(n)Uµ̂ν̂(n)Ω†(n). (1.2.6)

The plaquette is so a gauge-invariant object. This notion will be crucial to define the gluon action in Sec-
tion 1.2.4.
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1.2.3 Gluons and quarks on lattice
Now that we have defined the main objects in lQCD, we have to connect them to the main ones in real

QCD: gluons and quarks. Quarks and antiquarks are simply represented by their field value on the different
lattice sites :

ψ(xµ) → q(n), (1.2.7)
ψ̄(xµ) → q̄(n). (1.2.8)

Figure 1.4: Representation of quarks and gluons on lattice [Kura14].

Concerning the gluon field, it is a bit more involved. It is expressed by a link between two sites:

Uν̂(n) = P{exp ig

∫ n+ν̂

n

dzρAρ(z)}, (1.2.9)

where ν̂ is the direction in which the field is integrated over. For instance, we have integrated here the gauge
field on the link going from n to n+ ν̂.

1.2.4 QCD action on lattice
In order to build the QCD action, we need pieces that combine them in a gauge-invariant way. Let us

focus first in the pure-gauge sector. We can obtain the SU(Nc) gluon action from the plaquettes since they
are gauge-invariant (cfr. Section 1.2.2). The lattice gluon action is then given by

SW =
2Nc
g2

∑
p

[
1− 1

Nc
Re [TrUµ̂ν̂(n)]

]
, (1.2.10)

where
∑
p denotes the summation over all plaquettes with a definite orientation.

SW is called the Wilson action. The only requirement for building such action is that, at the continuum
limit,

SW −−−→
a→0

1

4

∫
d4xF bµνF

µν
b . (1.2.11)

It is thus evident that (1.2.10) is not unique in the sense that we can add arbitrary non-minimal terms which
vanish when a → 0. The main interest of such terms is to increase the convergence to the continuum limit.
A lattice action with non-minimal terms is called an improved action.
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For completeness and by analogy with the pure-gauge case, the fermion action can also be built with
small-size gauge-invariant objects like

q̄(n)q(n), q̄(n+ µ̂)Uµ̂(n) q(n), q̄(n− µ̂)U−µ̂(n) q(n). (1.2.12)

One may put any γ-matrices between q̄ and q without spoiling the gauge invariance. The Wilson fermion
action is then given by

SW,f = a4
∑
n

[
m q̄(n)q(n)− 1

2a

∑
µ

q̄(n+ µ̂) Γµ Uµ̂ q(n) (1.2.13)

− r

2a

∑
µ

(
q̄(n+ µ̂)Uµ̂ q(n)− q̄(n)q(n)

)]
,

where the summation over µ is taken for both positive and negative directions and Γµ are the Euclidean
γ-matrices [Yagi05]. Naturally, SW,f has to reduce to the QCD fermion action at the continuum limit and it
is not unique.

Note that a more convenient way to give the Wilson fermion action is

SW,f =
∑
m,n

Ψ̄(m)FW (m,n)Ψ(n), (1.2.14)

where the field Ψ and Ψ̄ are a rescaling of q and q̄ in terms of lattice parameters and FW (m,n) is the Wilson
fermion kernel. (1.2.14) is a general way to write an arbitrary lattice fermion action with a particular kernel
F (m,n).

1.2.5 Quantization of the QCD lattice action

Once a QCD classical lattice action is fixed, we have of course to quantize it. The path-integral quanti-
zation formalism, described in Section 1.1.4, imposes itself since it shares the same conceptual picture with
the lattice description. In lQCD, it writes

Z =

∫
[dU ][dΨ̄][dΨ] e−Sg(U)−Sf (Ψ̄,Ψ,U), (1.2.15)

where Sg,f are respectively the pure-gauge and fermion lattice action. Since the gauge fields are represented
by the group element U , the symbolic notation

∫
[dU ] hides an integration over the Haar measure. We

will not enter into these technical details here, interested reader could refer to [Dies14]. The quark (Ψ) and
antiquark (Ψ) fields are Grassmann (anticommutating) variables that can be integrated out to arrive to a more
suitable computational form:

Z =

∫
[dU ]DetF (U) e−Sg(U), (1.2.16)

where Det F (U) encodes the fermionic part. This compact notation takes into account all indices of F ,
namely colour, flavour, spin and space-time coordinates. Det F (U) represents the effects of quark loops. If
Det F (U) has a constant value, we work in the quenched approximation. This means that all virtual quark
and antiquark excitations are ignored. Otherwise, we are in an unquenched lattice computation.
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1.2.6 Monte Carlo simulations
In order to compute (1.2.16), lQCD resorts to a Monte Carlo (MC) integration, which is a statistical

way of evaluating integrals. Indeed, usual numerical integration methods as Simpson method, Gaussian
quadrature, etc. are not well-efficient to support the large number of necessary dimensions. If we suppose a
lattice with a number of temporal sites Nt, and spatial sites Ns, the total number of gluon integrations will
be

(N3
s ×Nt)× 4links × 8colour. (1.2.17)

A moderate lattice (Nt = Ns = 32) leads to a dimension of the order of 107.
The MC method can be divided into two steps. First, we generate a Markov chain of N gauge configu-

rations 4:
U (1) → U (2) → . . .→ U (N), (1.2.18)

where a configuration U (i) is a set of links on the lattice distributed according to a probability,

W (U) =
1

Z
DetF (U)e−Sg(U). (1.2.19)

Once the configurations are generated, expectation values 〈A〉, can be calculated by averaging over those
configurations:

〈A〉 =
1

N

N∑
n=1

A(U (n)). (1.2.20)

Obviously, when N increases, the statistical errors are reduced as 1/
√
N as long as the configurations are

generated independently.
The most challenging and fastidious part of all this procedure is the inclusion of fermions and so, the

computation of Det F (U). Several methods such as the pseudo-fermion and the hydride MC ones has been
developed. We will not enter into details here.

1.2.7 Progression in lattice QCD computations
It is also important to mention the progression followed by lQCD computations since its beginning

[Hash11]. Indeed, until the 1990s, most of lattice simulations were done in the pure-gauge sector within the
quenched approximation. Systematic errors were still important.

During the 1990s, improvements were carried out by including non-constant Det F (U) but with unphys-
ical quark masses (∼ 50 - 100 MeV). Extrapolations to physical quark masses were then a source of large
systematic errors. With the progresses in both algorithms and computers, simulations have involved smaller
and smaller quark masses up to nowadays, wherein the physical light quark masses are reached. It comes
that presently, lQCD is really a reliable and efficient approach to study QCD even if it has also its limits, see
Section 2.3.4.

1.2.8 Lattice QCD versus the experiment
Since lQCD is a computational framework built from first QCD principles, a mandatory test is the com-

parison with experimental data. In this section, we will focus only on one aspect that QCD exhibits: the

4. Passing from U to U
′

in (1.2.18) is called an updating. Typical used method is, for instance, the Metropolis algorithm [Metr53]
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confinement. The way to see whether lQCD leads to quark confinement or not is by studying the behaviour
of the Wilson loop defined by

〈W (C)〉 = 〈Tr
∏

link∈C
Uµ̂(n)〉. (1.2.21)

Figure 1.5: Rectangular Wilson loop C, with temporal size τ and spatial size R.

The Wilson loop is thus the expectation value of the product of links delimiting the closed path C (see
Fig. 1.5).

Figure 1.6: Dimensionless potential between a heavy quark and antiquark pair in function of their dimen-
sionless spatial separation r/r0 with r0, the Sommer scale. β corresponds to different lattice spacings
[Yagi05].

If we consider the physical situation in which a heavy quark and antiquark pair is embedded in the non-
perturbative QCD vacuum, we can extract from a computation of the correlation function [Yagi05], that the
potential between them is linked to the Wilson loop by the following relation:

V (R) = − lim
τ→∞

[
1

τ
ln〈W (C)〉

]
τ�R

, (1.2.22)

where R is the spatial distance between the quark and the antiquark and τ , the time scale of the interaction.
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Lattice numerical simulations, displayed in Fig. 1.6, clearly show that V (R) behaves like

V (r) = ar − b

r
+ c, (1.2.23)

which is the Cornell potential. This potential is composed by a linear confining part at long distance and an
attractive Coulombic part at short distance. It comes that the confinement is sketched by lQCD.

Another main prediction of lQCD related to confinement is, without doubt, the hadron spectrum. The
lQCD hadron spectrum is richer than the one produced by experiments. It includes glueballs (bound states
made of gluons) and exotic hadrons that are not observed yet. In Fig. 1.7, the lQCD light hadron spectrum
is presented and compared to experiments.

Figure 1.7: The light hadron spectrum of QCD. Horizontal lines and bands are the experimental values with
their decay widths. lQCD results are shown by solid circles [BMW08].

1.3 Historical overview of the experiments
The question that naturally comes in mind after having elaborated a theory is: Does it encounter suc-

cessful agreements when one tries to compare it to experiments? In this section, we will pay a particular
attention to the description of main experiments that have highlighted the quarks, the gluons and some QCD
important features.

1.3.1 The discovery of quarks
As we have seen it in Section 1.1.1, quarks were first theoretical tools to classify the hadron zoo observed

in experiments since the beginning of particle physics. It was only some years later that the experimental
evidences came to crown the success of the quark model.

In 1968-69, deep inelastic scattering experiments at the Stanford Linear Accelerator Center (SLAC)
showed that electrons appeared to be bouncing off small hard cores inside the nucleon. An analyse of the
scattering data carried out by Bjorken and Feynamn concluded that the nucleon contained much smaller,
point-like objects and was therefore not an elementary particle. These point-like objects were foremost
called partons by Feynman and some years later identified as quarks.
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This experiment consists to collide electrons (considered as elementary and so, as clear probe) on nu-
cleons at very high energy in order to probe their structure. The philosophy is the same as the pioneer
experiments of probing the atom structure by Rutherford. Hydrogen and deuterium liquid are used as nu-
cleon targets and electrons are accelerated at 20 GeV. Reaching such energy is really a key point because the
principle is the following: The more the energy of the electron beam is huge, the more the wave length is
small and the more the nucleon structure can exhibit sharp details.

Figure 1.8: SLAC at Stanford (USA) [SLAC].

By the early 1970s, detailed analyses of the distribution of the scattered electrons revealed three scatter-
ing centres inside the nucleon. This is the first experimental evidence of quarks. Friedman, Kendall, and
Taylor received the Nobel Prize for this discovery in 1990. From this fact, physicists started progressively
to admit the real existence of quarks.

However, the story of quarks was not finished. Without entering into the details, the existence of a
fourth quark became quickly necessary to accord electroweak theory with experiments but also to satisfy
the symmetry desire of physicists. Quarks are of course sensitive to the strong interaction but likewise to
the electromagnetic and the weak ones. The leptons like electrons, muons and neutrinos are also sensitive
to these two last ones. From a symmetry point of view, two generations of leptons was known at this time:
the electron and its neutrino (e, νe) and the muon and its neutrino (µ, νµ). Concerning the quark, we had
(u, d) and (s, ?). A quark was thus missing. Its discovery (again driven by theoretical predictions) was done
in 1974. Two teams of physicists directed respectively by Ting (Brookhaven National Laboratory, BNL)
and Richter (Stanford, SPEAR), independently highlighted a new particle: the J/ψ 5. This J/ψ is made of
two elementary particles whose mass is around 1.5 GeV. We could thus deduce the existence of this new
heavier quark. It was called “charm” (c) because thanks to it, all the theoretical problems seemed magically
disappear. Nevertheless, because of the “hidden charm” of the J/ψ (indeed, it is a combination of cc̄),
physicists wanted to observe the charm quark in a bare combination like in mixed meson (cū), (cs̄) or (cd̄).
This was done by the discovery of D-meson family at CERN in 1976.

It is worth remembering at this stage that quarks can not be observed as free states. The explanation
results from the QCD property of colour confinement. If we try to extract a single quark out of a nucleon,
a new qq̄ pair will be suddenly created from the vacuum and will generate new hadrons. This is known as
the hadronization. In order to obtain such phenomena, we need to hit the nucleon (or more generally the
hadron) with an energy of about 30 GeV. Indeed, a common description for a meson (the simplest hadron)
is done by a pair of quark-antiquark linked by a flux tube (representing the strength field lines). When the

5. The particle was named J by Ting’s team and ψ by Richter’s one.
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energy goes up, the flux tube starts to stretch up to the breaking. Because of the confinement, we need more
and more energy to stretch this tube and at the moment of the breaking, the energy is sufficient to create a
new qq̄ pair from the vacuum. At minimum, we remain with two mesons, more generally, with two jets of
particles because a cascade of disintegrations starts from this qq̄ pair. The process can be generalized to any
hadron.

Figure 1.9: A radiative 2-jet event detected in the Large Electron Positron (LEP) collider by the ALEPH
collaboration at CERN [Surf].

In the experiments, it is possible to precisely identify the quark flavour that starts the jet thanks to its
lifetime or the disintegration chain that generates. This ability was a precious tool to discover the two last
quarks known up to now: the bottom (or the beauty) b, and the top (or the truth) t .

As often in particle physics, the quarks b and t were first theoretically needed. Indeed, to explain the
CP-violation 6 observed in the decay of neutral kaons (1964), Kobayashi and Maskawa had to introduce, at
minimum, a third generation of quarks and the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which defines
the mixing parameters between quarks, was the result of their work (1973). The flavour of quarks can change
during a weak interaction process.

The quark bwas then discovered at the Fermi National Accelerator Laboratory (Fermilab) by Lederman’s
team in 1977. The experiment consisted to accelerate protons on fix target (of copper for instance) at very
high energy (400 GeV) and to analyse mainly the channel producing muon pairs, privileged decay channel
for the upsilon Υ, a meson made of a bb̄ pair. The b mass is around 4 GeV. Hadrons with a combination of b
and other quarks flavours were also observed thereafter.

The t story is just a matter of repulsing the energy limit of accelerators. The Tevatron (build by the
Fermilab) was the first one to reach an energy of 1.8 TeV at the collision point. Here, two proton beams
collided on each other to increase the energy in the center-of-mass frame. The quark t were highlighted in
1995 with a mass of about 174 GeV.

6. C refers to the charge conjugation symmetry and P to the parity symmetry. CP-symmetry states that the laws of physics should
be the same if a particle is interchanged with its antiparticle (C-symmetry), and if its spatial coordinates are inverted (mirror or P-
symmetry).



34 CHAPTER 1. NOTIONS IN QCD

To conclude this section, we summarize in Table 1.2 some data we have about quarks from experiments
[PDG].

Flavour JP Q (e) I I3 S C B T Mass

u (1/2)+ 2/3 1/2 1/2 0 0 0 0 2.3+0.7
−0.5 MeV

d (1/2)+ -1/3 1/2 -1/2 0 0 0 0 4.8+0.7
−0.3 MeV

s (1/2)+ -1/3 0 0 -1 0 0 0 95± 5 MeV

c (1/2)+ 2/3 0 0 0 1 0 0 1.275± 0.025 GeV

b (1/2)+ -1/3 0 0 0 0 -1 0 4.18± 0.03 GeV

t (1/2)+ 2/3 0 0 0 0 0 1 173.5± 1.4 GeV

Table 1.2: Properties of quarks. JP is the spin-parity. Q is the charge with e, the elementary charge (the
proton one). I is the isospin with the projection I3. S, C, B and T are respectively the strange, charm,
bottom and top charges.

1.3.2 The discovery of gluons
Another important discovery in QCD was the one of the gluon. In the mid-1970s, QCD was considered

as a serious candidate for describing the strong interaction. However, the gluon, the particle that mediates
this interaction, was not still observed. The first experimental evidence of this essential QCD building block,

Figure 1.10: A three-jet event, registered at the PETRA storage ring (DESY) [CERNco].

were obtained in 1979 within the particle accelerator PETRA (Positron-Electron Tandem Ring Accelerator)
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at DESY (Deutsches Elektronen-Synchrotron) in Hamburg. Three-jet events were produced. An even num-
ber of jets is well understood thanks to a qq̄ pair at the origin of the hadronization while the third jet signs
inevitably the presence of one gluon. The allowed and more likely reactions are then the following:

e+e− → qq̄ → 2 jets of hadronization, (1.3.1)
e+e− → qq̄g → 3 jets of hadronization. (1.3.2)

1.3.3 The colour degrees of freedom
The experimental evidence of the colour degrees of freedom was done by studying the cross-section of

the e+e− annihilation into hadrons, given by:

σ(e+e− → hadrons) =

Nf∑
i=1

σ(e+e− → qiq̄i), (1.3.3)

with the summation goes up to the number of present flavours at the reaction energy i.e. 2mf <
√
s where√

s is the center-of-mass energy and mf the mass of f-flavour quark.

Figure 1.11: Annihilation of e+e− in a qq̄ pair.

The cross-section of the qq̄-pair production by the annihilation of e+e− in a photon (or if the energy is
sufficiently high, a Z0) is the same as the one that produces fermion-antifermion pairs. The only difference
results in the counting of the electric charge Q in presence.

At high energy, we have [Fava12]:

σ(e+e− → hadrons) = Nc
4πα2

3s

Nf∑
i=1

Q2
i , (1.3.4)

σ(e+e− → µ+µ−) =
4πα2

3s
. (1.3.5)

Defining the ratio:

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= Nc

Nf∑
i=1

Q2
i , (1.3.6)

we can see that R depends explicitly of the colour number Nc, and thus signs the existence of three colours:
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Figure 1.12: R in the light-flavour, charm, and beauty threshold regions. The full list of references to the
original data and the details of the R-ratio extraction from them can be found in [arXiv:hep-ph/0312114].

• if 2ms <
√
s < 2mc then R = 2,

• if 2mc <
√
s < 2mb then R = 10/3,

• if 2mb <
√
s < 2mt then R = 11/3.

In Fig. 1.12, the comparison with experimental data validate Nc = 3. The theoretical predictions are right if
we exclude resonance peak and hadronization effects at low energy which are out of the scope of the formula
(1.3.6).

1.3.4 The QCD running coupling constant
An important parameter in QCD that must be extracted from experiments, is the strong coupling con-

stant αs = g2/(4π). Only its knowledge at one energy (µ) is needed since its behaviour is given by the
renormalization group equation (1.1.26).

Thanks to perturbative expansions, physical observables can be expanded in power of αs. Some of these
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observables are used in its experimental determination [Beth09]. For instance, we can think of

• the τ -decay,
The hadronic branching fraction of τ -decays,

Rτ =
σ(τ → hadrons)
σ(τ → ντ e− ν̄e)

, (1.3.7)

is theoretically given by (for memory)

Rτ = Nc SEW |Vud|2(1 + δ′EW + δp + δnp), (1.3.8)

with SEW = 1.0189(6) and δ′EW = 0.001(1) are electroweak corrections, |Vud|2 = 0.97418(27),
δp and δnp are perturbative and non-perturbative QCD corrections. δp was calculated to complete
N3LO perturbative orderO(α4

s). Based on the operator product expansion (OPE), the non-perturbative
corrections are estimated to be small, δnp ≈ −0.007±0.004 . The final result from τ -decays, leads to

αs(Mτ ) = 0.330± 0.014.

• heavy quarkonia (cc̄ or bb̄),
Heavy quarkonia masses and decay rates are observables which can be accurately measured and pre-
dicted by QCD perturbation theory and lQCD calculations:

αs(MZ0) = 0.119+0.006
−0.005 from radiative Υ-decays,

αs(MZ0) = 0.1183± 0.0008 from lQCD.

• jet production in deep inelastic scattering,
Measurements at HERA determine αs from fits of NLO QCD predictions to data of inclusive jet
cross-sections in neutral current deep inelastic scattering at high Q2. The result is

αs(MZ0) = 0.1198± 0.0032.

• hadronic event shapes and jet production in e+e− annihilation,
Data from the PETRA and the LEP collider which operated from 1979 to 1986 and from 1989 to 2000,
respectively were re-analyzed in the light of new theoretical improved calculations:

αs(MZ0) = 0.1224± 0.0039.

• ...

The QCD running coupling constant has been already presented in Fig. 1.3. It is a really important
feature that will be in the centre of the QCD phase diagram understanding.
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Chapter 2

QCD at Finite Temperature and
Chemical Potential

Now that we have rapidly reviewed the main aspects of QCD, formally at zero temperature, we are able
to approach its extensions at finite temperature (T ) and chemical potential (µ). Studying these extensions
will be thus the goal of this chapter.

Firstly, we will briefly recall some basic principles in quantum statistical mechanics [Kapu06, LeBe96].
The most important mathematical tool, i.e. the partition function, will be formulated within the framework
of the path-integral quantization. Then, the QCD partition function, from which the whole QCD thermo-
dynamics can be derived, will be built. Note that thermal quantum field theory has been formulated in
the imaginary as well as real time. In this thesis, we focus on the imaginary time formulation since it is
well-suited for computing time independent quantities such as the partition function. However, for time
dependent quantities, the real time formulation is a more convenient framework. This latter case will be not
considered within this thesis. Interested readers can refer to [Kapu06, LeBe96].

Secondly, we will discuss the phase transitions that QCD exhibits: the confinement/deconfinement and
the chiral ones [Yagi05]. A conjectured QCD phase diagram is presented to close this section.

Again, the most powerful technique to get results at finite temperature is lQCD because strongly-
interacting effects are still present, mostly around the critical temperature of the phase transitions. However,
as we will partially address, lQCD has some troubles to compute at finite chemical potential [Yagi05].

Then, some aspects of heavy ion experiments, which are used to explore the QCD phase diagram, are
introduced in order to give a general overview of the main directions investigated nowadays to characterize
the QGP [Yagi05].

Finally, a brief state of art in quasiparticle approaches is proposed. This section is intended to highlight
our original contributions in the field.

2.1 Theoretical principles

2.1.1 Brief review in quantum statistical mechanics

At a macroscopic level, thermodynamics is used to describe the bulk properties of matter in or near
equilibrium. Several quantities like the temperature (T ), the pressure (p), the entropy (S), etc. can be

39
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defined and have to respect thermodynamic laws. At a microscopic stage, motion is dictated by quantum
mechanics (even if classical mechanics can be a correct approximation for several problems). Unfortunately,
because of the large number of particles considered in thermodynamic systems, it is of course impossible
to solve simultaneously the numerous equations of motion. This is even more true that they are generally
coupled. That is the reason why we resort to quantum statistical mechanics.

There are usually three types of ensemble in equilibrium statistical mechanics:

• The microcanonical ensemble (used to describe an isolated system with a fixed energy E, a fixed par-
ticle number N , and a fixed volume V ),

• The canonical ensemble (used to describe a system in contact with a heat reservoir at temperature T ;
The temperature, the number of particles and the volume of the system are fixed),

• The grand canonical ensemble (used to describe a system that can exchange energy and particles with
a reservoir; The temperature, the volume and the chemical potential of the system are fixed).

In our case, we restrict ourself to a description of thermodynamics in the grand canonical ensemble. Indeed,
in a relativistic quantum system, particles can be created and destroyed and so, their number can not be fixed.

Let us thus consider a system described by a Hamiltonian Ĥ , and a set of conserved numbers N̂i 1. For
instance in QCD, a possible conserved number is the difference between the number of quarks and antiquarks
inside the system. Indeed, they always emerge in pairs from the vacuum. The central object in equilibrium
statistical mechanics is the statistical density matrix ρ̂, given by

ρ̂ = e−β(Ĥ−
∑
i µiN̂i), (2.1.1)

where β = 1/T .
This statistical density matrix is used to compute the ensemble average of any observable A:

A = 〈Â〉 =
Tr Âρ̂
Tr ρ̂

, (2.1.2)

where Tr denotes the trace over all the accessible states of the system.
The partition function is the most important function to link statistical mechanics to thermodynamics

and is defined, in the grand canonical ensemble, as

Z = Z(V, T, µi) = Tr ρ̂, (2.1.3)

and the grand canonical potential Ω, is given by

Ω = −T lnZ . (2.1.4)

From (2.1.3), all thermodynamic quantities can be expressed:

1. The hat is to emphasize the fact that the quantity is an operator.
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p =
∂(T lnZ)

∂V

∣∣∣∣
T,µi

, (2.1.5)

Ni =
∂(T lnZ)

∂µi

∣∣∣∣
T,V

, (2.1.6)

S =
∂(T lnZ)

∂T

∣∣∣∣
V,µi

, (2.1.7)

E = −pV + TS +
∑
i

µiNi. (2.1.8)

2.1.2 Partition function in the path-integral quantization formalism
In this section, the partition function is expressed in terms of the path-integral quantization formalism.

Formally, (2.1.3) becomes

Z = Z(V, T, µi) = Tr e−β(Ĥ−
∑
i µiN̂i) =

∑
a

∫
dΦa〈Φa|e−β(Ĥ−

∑
i µiN̂i)|Φa〉, (2.1.9)

where the sum runs over all the states Φa, accessible to the system [Kapu06].
The integrand of (2.1.9) is similar to the transition amplitude in quantum mechanics,

〈Φb|e−iĤtf |Φa〉, (2.1.10)

for going from a state |Φa〉 at time t = 0 to a state |Φb〉 at t = tf . In the path-integral quantization formalism,
this transition amplitude is given by [Kapu06]

〈Φb|e−iĤtf |Φa〉 =

∫
[dπ]

∫ Φb(tf ,~x)

Φa(0,~x)

[dΦ] (2.1.11)

× e

[
i

∫ tf

0

dt

∫
d3x

(
π(t, ~x)

∂Φ(t, ~x)

∂t
−H(π(t, ~x),Φ(t, ~x))

)]
,

with

Ĥ =

∫
d3xH(π̂(t, ~x), Φ̂(t, ~x)) , (2.1.12)

and Φ̂(t, ~x) is a Schrödinger-picture field operator and π̂(t, ~x), its conjugate momentum operator. Through
the Legendre transformation, we can relate the argument of the exponential with the Lagrangian density of
the system. Indeed,

L = π
∂Φ

∂t
−H. (2.1.13)

In order to connect the transition amplitude to statistical quantum mechanics, we need to exploit the
similarity between the Boltzmann operator e−βH and the time evolution operator in quantum mechanics.
Two main things have to be carried out. First, we perform an analytical continuation from real to imaginary
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time (Wick rotation): τ = it. This means that we go from Minkowski space to Euclidean one, since the
metric becomes euclidean (up to a sign):

t2 − ~x 2 → −(τ2 + ~x 2). (2.1.14)

Then, we impose two types of boundary conditions in (2.1.11):

• If the system returns to its initial state after a time tf (periodic conditions, bosonic-like system):

Φ(τ, ~x) = Φ(τ + β, ~x), (2.1.15)

with β = itf .

• If the system returns to its initial state with an opposite sign after a time tf (anti-periodic conditions,
fermionic-like system):

Φ(τ, ~x) = −Φ(τ + β, ~x). (2.1.16)

Moreover, if the system admits conserved numbers, we must make the substitution

H → H−
∑
i

µiNi, (2.1.17)

where N is the particle number density.
Finally, we arrive at the following expression 2

Z =

∫
B.C.

[dΦ] e−SE , (2.1.18)

where B.C. are the aforementioned boundary conditions and

SE =

∫ β

0

dτ

∫
d3xLE , (2.1.19)

is the Euclidean action. The equivalent to (1.1.20) for finite temperature quantum field theory is

〈0|T [Φ̂(τ1, ~x1) . . . Φ̂(τn, ~xn)]|0〉 =
(−i)n

Z[β, 0]

δnZ[β, J ]

δJ(τ1, ~x1) . . . δJ(τn, ~xn)

∣∣∣∣
J=0

, (2.1.20)

which allows to calculate the Green’s functions.
The equation (2.1.18) can be interpreted as a field theory in a four-dimensional “box”. Indeed, the

spatial size is infinite while the temporal one is 1/T . We recover the four-dimensional Euclidean space
when T → 0.

2.1.3 QCD partition function
The QCD classical partition function is given by the following expression:

ZQCD =

∫
B.C.

[dAµ] [dψ̄] [dψ] e−S
g
E(Aµ) e−S

f
E(Aµ,ψ,ψ̄), (2.1.21)

2. Note that the integration over conjugate momenta π, gives a multiplicative constant that will not change the thermodynamics of
the system. This constant is simply rescaled to one here.
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with

SgE(Aµ) =

∫ β

0

dτ

∫
d3x

1

4
F aµνF

µν
a (2.1.22)

SfE(Aµ, ψ, ψ̄) =

∫ β

0

dτ

∫
d3x

Nf∑
f=1

ψ̄αf (ΓνDν +mf − µf Γ0)αβψ
β
f , (2.1.23)

and where µf is the chemical potential for the f -quark 3. This extra-term containing µf comes from the
substitution (2.1.17) and is aimed to count the difference between the number of quarks and antiquarks
inside the plasma while the Γ0-matrix is introduced to take into account the fact that the quark and the
antiquark have an opposite chemical potential. The boundary conditions for the fields in (2.1.21) are

Aµ(τ, ~x) = Aµ(τ + β, ~x), (2.1.24)
ψf (τ, ~x) = −ψf (τ + β, ~x). (2.1.25)

The simple case that it is possible to compute from (2.1.21) is the black body radiation for a non-
interacting gas made of quarks and gluons [Yagi05]. That means that g = 0 in the QCD action. The grand
potential is then given by

Ω0(T, V, {µf}) = −T lnZ0
QCD, (2.1.26)

= V

∫
d3k

(2π)3

[
2(N2

c − 1)

(
Eg(k)

2
+ T ln(1− e−Eg(k)/T )

)

+2Nc

Nf∑
f=1

(
−
Eqf (k)

2
− T ln(1 + e−(Eqf (k)−µf )/T )

)

+2Nc

Nf∑
f=1

(
−
Eq̄f (k)

2
− T ln(1 + e−(Eq̄f (k)+µf )/T )

)]
,

where Eg , Eqf and Eq̄f are respectively the energy of the gluon, the f -quark and the f -antiquark; E =√
k2 +m2 where m is the mass of the considered particle. Each line of (2.1.26) is composed by the zero-

point energy 4 and the associated statistics. For the gluon (first line), we have a degeneracy factor 2(N2
c −1),

depending on the (spin)× (colour) degrees of freedom and we recognize the Bose-Einstein statistics. For the
f -quark (second line) and the f -antiquark (third line), we have 2Nc degrees of freedom ((spin) × (colour))
and the Fermi-Dirac statistics with respectively µf and −µf as chemical potential.

If we assume massless particles and µf = 0 in (2.1.26), we remain with

Ω0(T, V, {0})
V

= −π
2

90
T 4

[
2(N2

c − 1) +
7

8
4NcNf

]
. (2.1.27)

This equation is usually referred as the Stefan-Boltzmann (SB) limit and is conventionally used as a normal-
ization for the thermodynamic quantities.

3. Remember that Γν are the euclidean γ-matrices.
4. This latter can be fixed in an ad hoc manner and set to zero for convenience.
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2.2 QCD phase transitions

2.2.1 Chiral symmetry restoration
Let us recall the equation (1.1.32):

LQCD = Lchiral
QCD + Lmass

QCD. (2.2.1)

We have seen in Section 1.1.7 that the classical LQCD is invariant under the UL(Nf )×UR(Nf ) symmetry if
the mass term is set to zero. Therefore, the chiral condensate 〈q̄q〉 = 〈ψ̄LψR+ψ̄RψL〉, which is proportional
to the mass term, can be used as order parameter of the chiral symmetry restoration. Two cases can occur:

• If 〈q̄q〉 = 0, we are in the Wigner-Weyl phase and the chiral symmetry is restored,

• If 〈q̄q〉 6= 0, we are in the Nambu-Goldstone phase and the chiral symmetry is broken.

At low temperature and baryonic potential, the QCD vacuum is made of quark/antiquark pairs which
condensate. It is in analogy with Cooper pairs in superconductivity. As the magnitude of these quantities
increase, these pairs are dissolved inside the medium and 〈q̄q〉 → 0. The chiral symmetry is then restored.
The estimated critical temperature Tχ, for this transition is between 165 and 190 MeV according to lQCD
simulations while the value of µχ can not be obtained in lQCD up to now (see Section 2.3.4). Several
approaches, as PNJL models, can be then used to characterize it. Such models will be discussed in Chapter 7.

2.2.2 Colour confinement/deconfinement phase transition
As mentioned in Chapter 1, QCD relies on two main features: the confinement and the asymptotic

freedom. These two characteristics, encoded in the behaviour of the running coupling constant (see Fig. 1.3),
are at the centre of our understanding of the confinement/deconfinement phase transition.

A deconfined phase can be reached either by increasing the temperature, or by increasing the baryonic
potential. At low temperature and/or baryonic potential, hadrons such as pions, kaons etc., govern the
thermodynamics (confined phase). When these intensive variables increase and exceed some critical values,
gluons and quarks becomes the real thermodynamic degrees of freedom (deconfined phase).

In order to understand what happens with an increase of the temperature, let us assume that it can be seen
as a measure of the average energy inside the medium. When the energy (or an average of it) increases, the
running coupling constant becomes smaller and smaller. At a certain point, called the critical temperature
Tc, the strength of the interaction is no more sufficient to keep quarks and gluons confined. So, they can
move freely. We are faced to new degrees of freedom inside the medium and the quark-gluon plasma (QGP)
is formed.

In the baryonic potential case, it is more an effect of compression of the QCD matter that drives us to
a deconfinement state. Indeed, increasing the baryonic potential means increasing the baryon density. Let
us consider a large number of hadrons within a certain volume and let us start to compress it adiabatically
at T = 0. The hadrons begin to overlap at a certain baryon density ρc. The distance between quarks and
gluons are then really small. The running coupling constant is therefore in the asymptotic-freedom regime.
A state of degenerate quark matter is reached.

2.2.3 The conjectured QCD phase diagram
A representation of the QCD phase diagram is given in Fig. 2.1.
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Figure 2.1: Conjectured QCD phase diagram [Jicf].

It is important to stress on the fact that it is a theoretical conjecture since only few points are given by heavy
ion experiments (see Section. 2.4). The quantitative features as well as the orders of the phase transitions
for the different regimes (T , µ) are not well-determined. Several phases are expected as the QGP at large
temperature and the neutron-star core and colour superconductor regimes at large baryonic potential.

2.3 Lattice QCD

In the section, we will summarily introduce lQCD at finite temperature and chemical potential following
[Yagi05, Gatt10]. We will be much more interested in the results for the confinement/deconfinement phase
transition since it will be a comparison point for the approach that we have developed in Chapter 5.

2.3.1 Extension at finite temperature

We have seen in Section 1.2 how the QCD action is discretized on a lattice. The extension at finite
temperature is based on the same procedure apart from the fact that the time-integration has finite boundaries
in order to reproduce the QCD partition function given in (2.1.21).

In this vision, working in QCD as described in Chapter 1, formally at T = 0, means that we are interested
in results in the infinite space-time volume limit. The finite size effects are just deviations of what we would
like to obtain. At finite temperature, the space volume is still formally infinite, but the physical extent of the
euclidean time is limited to 1/T .

The temperature and the spatial volume can be defined, in terms of lattice parameters, by the following
relations

1

T
= Nt a, V = (Ns a)3, (2.3.1)

where a is the lattice spacing of the hyper-cube with Nt (Ns) temporal (spatial) sites. It comes naturally
from (2.1.24) and (2.1.25) that the link variable and the quark field have to respect the following boundary
conditions:

Uµ(n0 +Nt, ~n) = Uµ(n0, ~n), (2.3.2)
q(n0 +Nt, ~n) = −q(n0, ~n). (2.3.3)
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The fact that the temporal extent is kept finite implies discrete Matsubara frequencies [LeBe96]. Indeed,
if we apply a Fourier transformation to the finite time direction, we remain with discrete energy levels:

ωn = 2nπT for gluons, (2.3.4)
= (2n+ 1)πT for quarks and antiquarks. (2.3.5)

On lattice, the Matsubara frequencies are not only discrete but also limited to the range [−π/a, π/a].

2.3.2 Polyakov loop

Let us first focus on the SU(Nc) gauge theory without dynamical quarks (i.e. Nf = 0). We introduce
here an important observable: the Polyakov loop L(~x) defined by

L(~x) = Pe
ig

∫ 1/T

0

dτA0(τ, ~x)
, (2.3.6)

and discretized on lattice as 5

φ =
1

Nc
Tr

Nt−1∏
j=0

U0(j, ~x). (2.3.7)

The expectation value of the Polyakov loop can be interpreted as the probability to observe a single static
infinitely heavy quark at point ~x in a pure-gauge system. It is proportional to

|〈φ〉| ∼ e−Fq/T , (2.3.8)

where Fq is the free energy of the quark. This one thus acts as a probe to see if the system is in a confined
or a deconfined phase. Indeed, in the confined phase, the probability to observe a single quark is nul since
its free energy tends to infinite. In the deconfined phase, the quark free energy is finite and |〈φ〉| 6= 0.

In summary, the Polyakov loop can be used as an order parameter to characterize the confinement/deconfi-
nement phase transition in pure-gauge theory:

Confined phase T < Tc |〈φ〉| = 0 Fq →∞
Deconfined phase T > Tc |〈φ〉| 6= 0 Fq is finite

Usually, the change in value of an order parameter is associated to a change of the symmetry underlying the
system; This latter can be broken or restored in function of it. As we see hereafter, we can also interpret the
QCD pure-gauge phase transition in terms of the breaking or not of the Z(3) centre symmetry of SU(3).

Let us consider the SU(Nc) gauge transformation Ω:

Ω(τ + 1/T, ~x) = zΩ(τ, ~x), (2.3.9)

5. On lattice, the Polyakov loop is traced over colour indices. (2.3.6) and (2.3.7) will be indifferently called Polyakov loop.
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where z is an element of the centre 6 of SU(Nc), that is to say an element of Z(Nc)
7. So, we have

AΩ
µ (τ + 1/T, ~x) = Ω(τ + 1/T, ~x)

(
Aµ(τ + 1/T, ~x)− i

g
∂µ

)
Ω†(τ + 1/T, ~x),

= z AΩ
µ (τ, ~x) z† − i

g
z ∂µz

†,

= AΩ
µ (τ, ~x). (2.3.10)

The gauge field is thus invariant under (2.3.9). However, the Polyakov loop is not since

L(~x)→ z L(~x). (2.3.11)

A zero value of the Polyakov loop means that the Z(Nc) centre symmetry is realized unlike a non-zero value
means that this symmetry is broken. Two cases for the pure-gauge phase transition can be then imagined:
either first or second-order 8 phase transition. It can be shown that the situation depends on the colour number
[Yagi05]. If Nc = 2, it is a second-order phase transition, while if Nc ≥ 3, it is a first-order one.

When quarks are added, theZ(Nc) symmetry is explicitly broken at the level of the action. The Polyakov
loop can not be formally used as order parameter. The confinement/deconfinement phase transition is much
more seen as a crossover.

2.3.3 Thermodynamic properties of the confinement/deconfinement phase transi-
tion

On lattice, some thermodynamic quantities can be computed such as the pressure p, the energy density
ε, the entropy s, or the trace anomaly ∆ = ε− 3 p, by using a discretized version of the usual relations given
in Section 2.1.1. Several comments can be done from the results.

Figure 2.2: Pressure normalized to the SB limit p/pSB versus T/Tc, obtained from simulations of SU(Nc)
lattice gauge theories on Nt = 5 lattices. Error bars denote statistical uncertainties only. The results
corresponding to different gauge groups are presented by different colours, according to the legend [Pane09].

In Fig. 2.2 and Fig. 2.3, we can notice that the pressure is far from the SB limit (see (2.1.27)) in the
considered temperature range, meaning far from the non-interacting gas with massless particles. The SB

6. The centre of a group is the set of elements in the group which commute with all the elements of the group.
7. Z(Nc) is the group of unity roots: z = e2πi n/Nc1 with n = 0, 1, . . . , Nc − 1.
8. A first (second) order phase transition is a discontinuity in the first (second) derivative of the partition function.
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Figure 2.3: (Left) Pressure normalized to T 4 and determined from lattice simulations [Kars00] for QCD
with two or three light quarks or two light and one heavy quarks (2 + 1) calculated with the p4-action versus
T/Tc. The arrows indicate the SB limit for two- and three-flavour QCD with quarks of mass m/T = 0.4 as
well as the case of two-flavour QCD with m/T = 0.4 and an additional heavier quark of mass ms/T = 1.
(Right) p/pSB versus T/Tc.

pressure is expected to be reached at very high temperature as it is suggested by the asymptotic-freedom
property. In Fig. 2.3, we can observe that the hierarchy of the pressure naturally follows the number of
degrees of freedom present inside the plasma. However, when the pressure is normalized to the SB limit,
the situation changes and the curves are nearly superimposed. It is also worth mentioning the determination
of Tc, which depends of the number of quark flavour present inside the plasma. Indeed, for the pure-gauge
sector, lattice computations find that Tc ≈ 270 MeV, while when quarks are added, Tc is between 130 and
200 MeV.

Figure 2.4: ∆/T 4 calculated on lattices with temporal extent Nt = 6, 8. Asqtad and p4 are two different
prescriptions for the fermionic action. The upper x-axis shows the temperature scale in units of the scale
parameter r0 which has been determined in studies of the static quark potential. The lower x-axis gives the
temperature in MeV [Baza09].

In Fig. 2.2, the pure-gauge pressure is computed for different SU(Nc) gauge groups. Normalized quan-
tities seem to be superimposed. This behaviour will be also investigated within our approach in Chapter 5.
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It suggests that the role of the gauge structure leads mainly to an overall statistical factor given by a correct
counting of the freedom degrees.

Finally, let us conclude this section by an analysis of the trace anomaly. In the SB case, this latter must
be simply equal to zero. In Fig. 2.4, we can observe that it has its maximum of deviation from the SB
limit around Tc and tends to zero at high temperature. It enforces the fact that strongly-interacting effects
play an important role around Tc and that the interactions are gradually turned off at high temperature.
This is expected since the running coupling constant of QCD is small at large temperature and a picture of
non-interacting gas of quarks and gluons should be justified [Buis10a].

2.3.4 Introduction of the chemical potential
The chemical potential is introduced within the fermionic euclidean action given in (2.1.23). For our

purposes, we schematically rewrite it [Yagi05] :

LfE =

Nf∑
f=1

ψ̄f
[
Γ0(∂0 − i(gA0 − iµf )) + ΓiDi +mf

]
ψf . (2.3.12)

It implies that the temporal gauge potential acquires an extra imaginary part. Indeed,

gA0 → gA0 − iµf . (2.3.13)

Although it is formally simple to introduce the chemical potential, the task is hard on lattice. Because
of the replacement (2.3.13), the fermionic lattice determinant Det F (U ;µf ), becomes complex for Nc = 3.
MC simulations are thus not well-justified since the probability given in (1.2.19) is not well-defined. We are
faced of what we call the complex phase problem.

Also for µf = 0, we have some troubles with Det F (U ;µf ) since it can be either a positive or a negative
real. It is called the sign problem. However, when Nf is even and the quark masses (m) are degenerate,
we have (Det F (U ; 0))Nf and the sign problem does not appear. Also when m � µ, Det F (U ;µf ) barely
changes its sign and computations at low chemical potential are still possible. This is not the case at finite
and large µf .

Several approaches are used to overcome the problem. We can mention, for the record, the reweighting
method or the imaginary-µf computations, for instance (see [Yagi05] and references therein).

2.4 Heavy ion collision experiments
Heavy ion collisions are experiments that consist to collide heavy ion beams in order to produce a

thermalized partonic 9 medium and so, to study QGP. Such experiments started at the end of 1980s at BNL-
AGS (Alternating Gradient Synchrotron) and at CERN-SPS (Super Proton Synchrotron). During these first
experimental rounds, AGS accelerated beams of 28 Si at 14 GeV per nucleon, while SPS reached an energy
of 200 GeV per nucleon for 32 Si, and then, 158 GeV per nucleon with 208 Pb. These conditions were already
favourable to produce QGP. During 2000s, BNL-RHIC supplanted these preliminary experiments and gold
ions were used. The center-of-mass energy per nucleon pair was around 200 GeV. Nowadays CERN-LHC
holds the energy record with Pb-Pb collisions and almost 8 TeV per nucleon.

The main difficulty in such experiments, other than to reach higher and higher center-of-mass energy, lie
in the manner of extracting the information. Indeed, the QGP is confined in a really small space volume and

9. The term “parton”was originally used by Feynman. It is a generic word to designate quarks and gluons.
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the lifetime does not exceed 10−23 s. It is thus not possible to directly observe the QGP. However, the QGP
leaves us some signatures of its formation as, for example, the jet quenching, the azimuthal anisotropy, the
J/ψ suppression and the strange-particle production. Without entering into too much technical details (since
it is not the purpose of this thesis), we will try to give a brief overview of the main experimental results in
this section. For more details, interested readers can refer to [Frim11, Sark10].

2.4.1 Jet quenching
We have seen in Section 1.3 that collisions of ultra-high-energy particles involving partons produce jets.

This is due to the hadronization. However, during heavy-ion collisions, if the QGP is created, these jets
interact strongly with the hot and dense partonic medium: High-momentum partons produced in the initial
state of the nucleus-nucleus collision undergo multiple interactions and lose energy. It leads to a remarkable
reduction of the jet energy. This phenomenon is called the jet quenching.

RHIC experiments observed the first evidences of this parton energy loss from the suppression of high-
pT (transverse momentum) particles, while in November 2010, CERN announced its first direct observation
of jet quenching after only three weeks of runs (see Fig. 2.5).

Figure 2.5: LHC lead-lead collision in the CMS detector showing particles (yellow and red tracks) radiating
from the collision point. The particles deposit their energy in the calorimeters (salmon, mauve, red and blue
towers, with a height proportional to energy). Two back-to-back jets are seen with a large energy asymmetry,
as expected from the jet-quenching mechanism [CERN] (2010).

2.4.2 Azimuthal anisotropy and elliptic flow
In relativistic heavy-ion collisions, a very huge number of particles are produced in all directions. The

momentum, the energy and the particle distributions naturally vary with the direction and give us some
important experimental information about the behaviour of matter.

To study QGP, we are particularly interested in non-central heavy-ion collisions. In this case, the ions
do not collide face to face and only some nucleons participate in the collision while the others are specta-
tors. Moreover, such collisions generate asymmetries in the geometry of the system and these initial spatial
asymmetries within the nuclear overlap affects the transverse momentum distribution of particles. In such
experiments, an azimuthal momentum space anisotropy of the particle emissions in the plane transverse to
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the ion beam is observed. It can be characterized by the second harmonic coefficient of the azimuthal Fourier
decomposition v2, which is called the elliptic flow.

Since the elliptic flow directly reflects the initial spatial anisotropy, it is especially sensitive to the early
stages of the system evolution, that is to say the formation of the QGP. The elliptic flow is thus a fundamental
observable to characterize QGP and it is one of the key observations done by RHIC and LHC.

Using relativistic hydrodynamics and transport coefficient, it was extracted from elliptic flow measure-
ments that the QGP behaves like a nearly perfect liquid with a small ratio shear viscosity over entropy (η/s)
around Tc. This means that the strong interactions remain important in this region of temperature. Indeed,
instead of dissipating randomly, as expected in a gas, the particles tend to move collectively (like a liquid
flow) in response to the pressure gradient generated by the initial spatial asymmetry. Moreover, unlike ordi-
nary liquids, in which individual molecules move about randomly inside the collective modes, QGP seems
to move in a way in which a high degree of coordination among the particles is required. It is the notion of
“nearly perfect fluid”.

It is also worth adding that the connection between the N = 4 supersymmetric SU(N) Yang-Mills
theory at large N and the classical ten-dimensional gravity on the background of black three-branes allows
one to perform analytical calculations in a strongly coupled four-dimensional gauge theory. In particular,
the ratio η/s has been computed in [Poli01]. Moreover, η/s has been also calculated using the AdS/CFT
correspondence 10. It suggests that in all thermal field theories in the regime described by gravity duals
[Kovt04],

η

s
=

1

4π
. (2.4.1)

More generally, all known fluids or gas in nature are expected to follow

η

s
≥ 1

4π
. (2.4.2)

2.4.3 J/ψ suppression
In the usual proton-proton collisions, c and c̄ are bound together in order to form the J/ψ. The mean

lifetime of such bound states is at the order of 10−21 s. This is quite huge for strong interaction processes (∼
10−23s). This can be explained by the fact that the hadronic decay modes of the J/ψ are strongly suppressed
because of the OZI Rule. Therefore, electromagnetic decays begin to compete with hadronic ones. This is
why the J/ψ has a significant branching fraction to leptons and annihilates in a lepton/antilepton pair (whose
µ+µ−).

At the energy range in which we are interested in heavy-ion collisions, cc̄ pairs can be quite easily
created. However, they are produced inside a medium which screens the colour interaction. This causes the
J/ψ suppression [Mats86] since it will be more difficult for a c and a c̄ to bound together. This phenomenon
were observed in NA38 and NA50 experiments at CERN.

2.4.4 Strange-particle production
In heavy-ion collision regime, the energy density is sufficiently high to produce heavier quarks as s and

c. As explained in the previous section, the strong interaction is screened by the medium and such particles
are then able to move quasi-freely inside the medium up to the beginning of the hadronization phase (i.e.

10. The AdS/CFT correspondence is a conjectured duality between closed string theory in Anti-de Sitter (AdS) space and conformal
field theory (CFT) in Minkowski space [Mald98].
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Figure 2.6: Measure of the J/ψ production normalized by the ordinary nuclear absorption as a function of
the energy density (Abreu et al., 2000)

when the medium is cooled). Since the strange production is higher within the QGP, the strange hadrons are
then expected to be more numerous [Rafe82]. This phenomenon were observed in heavy-ion experiments.

2.5 Quasiparticle approaches

As we have just seen, the QCD phase transitions are intensively studied in experiments through heavy
ion collisions while lQCD deeply investigates QCD at finite temperature and baryonic potential. Among
all the other approaches used to study QCD under extreme conditions, quasiparticle ones will deserve our
attention. Indeed, they are part of phenomenological models used to describe the different QCD phases.
Such models have the advantage to give some intuitions concerning the physics underlying the different
regions of the QCD phase diagram.

Quasiparticle approaches have their origin in the experience gained from the study of phase transitions
in solid state physics. In these models, the particles acquire effective masses generated through the interac-
tions with the other constituents inside the medium. The basic idea is the following: If a large part of the
interactions can be included into the effective masses, then the matter under study can be described thanks
to a gas of quasiparticles moving freely or interacting only weakly.

This assumption was applied in QCD within many studies such as [Gore95, Leva98, Pesh96]. In these
latter references, the used thermal masses are usually based on perturbative calculations carried out in the
Hard Thermal Loop (HTL) scheme [Braa90]. The gluon and quark thermal masses are thus given by

m2
g(T ) = (Nc + TRNf )

g2T 2

6
+ TRNf

g2µ2

2π2
, (2.5.1)

m2
q(T ) =

CRg
2

4
(T 2 +

µ2

π2
), (2.5.2)
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where all the symbols entering its formula are detailed in Section 1.1.6. Note that in [Buis10a], such thermal
masses were also used to build a quasiparticle approach allowing to compute the EoS of a generic gauge
theory with gauge group SU(Nc) and quarks in an arbitrary representation.

However, these quasiparticle models are only expected to correctly reproduce the physics of the QCD
matter at very high temperature. Indeed, according to experimental evidences, such as collective flow
[Stoe05], the non-perturbative interactions are still important around Tc. Moreover, it has be shown in
[Plum11] that the behaviour of the quasiparticle thermal masses directly extracted from lQCD EoS is com-
patible with perturbative HTL calcultations (m ∼ T ) from T ≈ 2Tc while an increase of the thermal masses
is observed when the temperature is down, reaching Tc.

In order to account non-perturbative effects, some quasiparticle models are completed by adding a so-
called bag constant to the pressure [Leva98]. Such a constant has to be temperature-dependent, in order
to ensure the thermodynamic consistency. Indeed, when a quasiparticle thermal mass is introduced at the
level of the Hamiltonian of the system, thermodynamic relations must be adapted in order to ensure the
respect of the thermodynamic laws, as for instance (2.1.8). Different procedures have been proposed to
treat such systems, see for instance [Golo93, Gore95]. Their common point is to keep invariant one of the
thermodynamic relations, for example the pressure or the entropy, and to modify the other thermodynamic
quantities in order to respect the thermodynamic laws. It is worth adding that in [Brau09], the authors
briefly reviewed these different procedures and proposed a new formulation where the expression of the
thermodynamic quantities remain invariant but where the Lagrange’s multiplier β is no longer equal to T−1.
Ensuring the thermodynamic consistency of the results is a procedure that is not uniquely defined and is still
a matter of debate.

On another hand, there exists some works in which the thermodynamics of the strongly-coupled region
around the phase transition, is studied by taking into account the possible existence of bound states beyond
Tc [Bann95, Gelm06, Liao06, Shur04]. In particular, in [Shur04], they have studied the different binary
bound states (mostly coloured) that can be formed in the plasma beyond Tc: gg, gq, qq, on top of the usual
q̄q mesons. The study was done by using Klein-Gordon equation whose the potential is the internal energy
directly extracted from the lQCD free energy between heavy quarks in the singlet channel (obtained by
the Bielefeld group) and by assuming a Casimir scaling in order to deal with all the other coloured states.
Then, they have estimated their contributions to the bulk thermodynamics by adding bound states as free
additional species to the EoS. A good agreement with lQCD data was found. The contribution of bound
states seems to be significant between 1-3 Tc even if the main contribution to the total pressure is due to
unbound quasiparticles.

Within Chapter 5, we propose to the reader a new quasiparticle approach to describe the QCD medium
beyond Tc. Its peculiarity is to explicitly and non-perturbatively take into account the interaction between
quasiparticles thanks to the use of the Dashen, Ma and Bernstein formalism of statistical mechanics; This
interaction may lead to the formation of bound states within the plasma.
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Chapter 3

Thermodynamics of the Confined Phase

Now that we have sketched the background of this thesis, we can get into the various approaches we have
studied and/or developed in order to better understand the different regions of the conjectured QCD phase
diagram presented in Section 2.2.3. In this chapter, we will be interested in what happens below Tc and we
will mainly focus on a thermodynamic description of the confined phase.

As we will show it, it is possible to describe the equations of state (EoS) provided by lQCD thanks to
the use of a Hadron Resonance gas (HRG) model. This will be discussed in the pure-gauge and in the 2 + 1
QCD plasma following respectively the papers of [Meye09] and [Bors10, Kars03].

Then, we will present our original work [Buis11b]. This latter consists to generalize to an arbitrary
simple gauge algebra the Meyer’s proposal [Meye09] of modelling the Yang-Mills (YM) matter by an ideal
glueball gas in which the high-lying glueball spectrum is approximated by a Hagedorn spectrum of closed-
bosonic-string type.

3.1 Hadron Resonance Gas model and Hagedorn spectrum
At low temperature, in the confined phase, the low-lying glueballs are the relevant degrees of freedom of

the YM matter while the QCD matter is dominated by pions. As the temperature T increases (but still below
Tc), heavier states become more relevant and need to be taken into account. These two situations can be
modelled in a first approximation by an ideal gas of hadrons and their resonances, assuming that the residual
interactions between the colour-singlet 1 states are weak enough to be neglected [Dash69]. For the pion gas,
this assumption is supported by the Goldstone’s theorem which implies weak interactions between pions at
low energies. For the glueball one, it emerges from a strong coupling expansion in the case of large-Nc
SU(Nc) YM theory [Lang10], where glueballs are exactly non-interacting since their scattering amplitude
scales as 1/N2

c [Witt79].
To compute thermodynamic quantities with a HRG model, we have to express the partition function

Z(T, V, µ) (see (2.1.3)) with the above hypothesis. Thus, lnZ(T, V, µ) is a sum over one-particle partition
functions lnZ1(T, V, µ),

lnZ(T, V, µ) =
∑
i

lnZ1
i (T, V, µ), (3.1.1)

1. The colour-singlet representation, appearing in some peculiar tensor products of the (anti)quark and gluon representations, is the
only gauge-group representation allowed below Tc because of the confinement property.
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where the summation over i means that we have formally to include all the hadrons and their resonances.
For a hadron of mass mi and di degrees of freedom, lnZ1

i (T, V, µ) reads

lnZ1
i (T, V, µ) =

di V

2π2

∫ ∞
0

dp p2η ln(1 + ηe−β(Ei−µ)), (3.1.2)

with Ei =
√
p2 +m2

i and η = −1 for bosons and +1 for fermions.
Of course, it is difficult to properly count all the states. Indeed, from experimental point of view, infor-

mation about resonances above 3 GeV is still lacking. That is the reason why a Hagedorn spectrum is often
used to describe the high-lying hadronic matter [Hage65]. Such spectrum has the following form:

ρ(m) ∝ ma em/Th with a, real. (3.1.3)

So, the number of hadrons with a certain mass m is found to increase as ρ(m) and the thermodynamic
quantities, using such spectrum, are then undefined for T > Th, the Hagedorn temperature. Therefore, Th
is a limiting temperature for a gas with hadronic degrees of freedom. Other degrees of freedom are then
needed at higher temperatures, it is thus tempting to guess that Th ≈ Tc and that the new degrees of freedom
are deconfined quarks and gluons.

Although the current lattice studies agree on a value of Tc in the range (150 − 200) MeV when 2 + 1
light quark flavours are present [Bors10, Chen06], there is currently no consensus concerning the value
of Th. Indeed, to reach values of Th as low as 200 MeV demands an ad hoc modification of ρ(m): By
introducing an extra parameter m0 and setting ρ(m) ∝ (m2 + m2

0)a/2 em/Th , one can reach values of Th
in the range (160 − 174) MeV, that agree with lattice computations, see e.g. [Cley11, Hage68]. However,
by taking the original form m0 = 0, one rather ends up with values of Th around (300 − 360) MeV, see
[Bron04, Dien94]. Moreover, it has been observed in some pure-gauge lattice simulations with the gauge
algebra su(Nc) that Tc . Th [Brin06, Luci05] as intuitively expected. It has to be said that the value of Th
and its relation to Tc are still a matter of debate.

Finally, it is worth mentioning that open strings as well as closed strings naturally lead to a Hagedorn
spectrum, see e.g. [Zwie04]. Modelling mesons as open strings is a way to make appear a Hagedorn spec-
trum in QCD [Cohe06]. The question of showing that a Hagedorn spectrum arises from QCD itself is
still open but, under reasonable technical assumptions, it has recently been found in the large-Nc limit of
QCD [Cohe10]; Glueballs and mesons have a zero width in this limit.

3.2 Thermodynamics of the 2 + 1 QCD plasma
In this section, we summarize the results of different lattice collaborations that compare their thermody-

namic observables with the ones obtained within a HRG model. The point of this discussion is to illustrate
the compatibility between lQCD data and such models.

The first analysed results are the ones proposed in [Kars03]. In this paper, they compare their data for
2 + 1 quark flavours with a HRG model in which meson and baryon resonances are taken into account up
to 1.8 and 2 GeV respectively [PDG]. This means 1026 resonances. As it can be observed in Fig. 3.1, their
results match very well with the HRG model previously described. However, it is important to point out that
since this study dates from 2003, physical quark masses were not yet reached by lQCD.

This is nowadays the case. That is the reason why we also analyse [Bors10]. In this paper, the lQCD
data obtained by the BMW (Budapest-Marseille-Wuppertal) collaboration, in which physical quark masses
are reached, are compared with the hotQCD collaboration ones using a HRG model including meson and
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Figure 3.1: (Left) The figure shows the energy density ε in units of T 4 calculated on the lattice with (2+1)
quark flavours as a function of the T/Tc ratio. The vertical lines indicate the position of the critical temper-
ature. (Right) The figure represents the corresponding results for the reduced trace anomaly (ε − 3p)/T 4.
The full lines are the results of the HRG model that accounts for all mesonic and baryonic resonances. This
figure is extracted from [Kars03].

Figure 3.2: (Left) Strange quark susceptibility as a function of T . Full symbols correspond to results ob-
tained with the asqtad, p4 and hisq actions [Baza09, Baza10]. The continuum result [Bors10] is indicated
by the gray band. The solid line is the HRG model result with physical masses. The dashed and dotted lines
are the HRG model results with distorted masses corresponding to Nt = 12 and Nt = 8, which take into
account the discretization effects and heavier quark masses, which characterize the results of the hotQCD
Collaboration. (Right) (ε − 3p)/T 4 as a function of T . Open symbols are the results from [Bors10]. Full
symbols are the results for the asqtad and p4 actions at Nt = 8 [Baza09]. Solid line: HRG model with
physical masses. Dashed lines: HRG model with distorted spectra. This figure is extracted from [Bors10].

baryon resonances up to 2.5 GeV. As it can be shown in Fig. 3.2, the BMW results are in agreement with this
HRG model while for hotQCD data, some distorted one has to be used in order to take into account lattice
artefacts as discretization effects and heavier quark masses.
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Finally, the lesson of all this is that with a HRG model, lQCD thermodynamic observables are well
interpolated. Non-interacting gas models of hadrons seem to reproduce the main features of the confined
phase computed by lQCD.

3.3 Thermodynamics of the pure-gauge sector
In the pure-gauge sector, the SU(3) EoS computed on the lattice have been shown to be compatible with a

glueball gas model in which the high-lying spectrum is modelled by the density of states of a closed bosonic
string [Meye09].

As mentioned in Section 3.1, the glueball gas picture implies that the total pressure p, should be given
by

p =
∑
JPC

p0(2J + 1, T,MJPC ), (3.3.1)

where the sum runs on all JPC glueball states of the SU(3) YM theory and where [Meye09]

p0(d, T,M) =
d

2π2
M2T 2

∞∑
j=1

1

j2
K2(j M/T ) (3.3.2)

is the pressure associated with a single bosonic species with mass M and d degrees of freedom. K2 is a
modified Bessel function.

Performing the sum
∑
JPC demands the explicit knowledge of all the glueball states, not only the lowest-

lying ones that can be known from lattice computations or from effective approaches. To face this problem,
it has been proposed in [Meye09] to express the total pressure of SU(3) YM theory as

p =
∑

MJPC<2M0++

p0(2J + 1, T,MJPC ) +

∫ ∞
2M0++

dM p0(ρ(M), T,M), (3.3.3)

where the high-lying glueball spectrum (above the two-glueball threshold 2M0++ ) is approximated by a
closed-string Hagedorn density of states. In four dimensions [Zwie04, Meye09], this density reads

ρ(M) =
(2π)3

27Th

(
Th
M

)4

eM/Th . (3.3.4)

The idea of modelling glueballs as closed fundamental strings was actually already present in the cele-
brated Isgur and Paton’s flux-tube model, inspired from the Hamiltonian formulation of lQCD at strong
coupling [Isgu85]. Moreover, it has also been shown within a constituent picture that, in the SU(3) case, a
many-gluon state (typically more than three gluons in a Fock-space expansion) tends to form a closed gluon
chain [Buis09].

In (3.3.4), Th is the Hagedorn temperature, which reads in this case

T 2
h =

3

2π
σ(f), (3.3.5)

where σ(f) is the fundamental string tension, here defined as the slope of the static energy between two
sources in the fundamental representation of a given gauge algebra.

Meyer has computed the entropy density, s = ∂p/∂T , which is presented in Fig. 3.3. Several cases
are displayed. If we only consider the low-lying glueballs, the curve is consistent at very low temperature
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Figure 3.3: The entropy density in units of T 3 as a function of T/Tc [Meye09].

and fails to reproduce s when T → Tc. We can also notice that the 0++ and the 2++ states account for
about three quarters of the glueball contribution below the threshold. In this figure, we see in particular the
importance of the high-lying spectrum inclusion. Lattice data are correctly interpolated by the addition of
this spectrum to the low-lying glueballs. It appears that the best agreement is reached for Th/Tc = 1.069(5).
What is striking is that the high-lying spectrum analytic form is completely predicted by free bosonic closed-
string theory. The main thermodynamic features of the YM matter below Tc are thus well described with a
non-interacting glueball gas and its resonances.

3.4 Generalization to any gauge algebra
Besides the SU(3) case, YM thermodynamics with an arbitrary gauge group is challenging too. A clearly

relevant case is the one of su(Nc)-type gauge algebras, linked to the large-Nc limit of QCD. Moreover, a
change of gauge algebra may lead to various checks of the hypothesis underlying any approach describing
SU(3) YM theory. To illustrate this, let us recall the pioneering work [Svet82], suggesting that the phase
transition of YM theory with gauge algebra g is driven by a spontaneous breaking of a global symmetry
related to the centre of g. Effective Z(3)-symmetric models are indeed able to describe the first-order
phase transition of SU(3) YM thermodynamics [Pisa00]. However, a similar phase transition has also been
observed in lattice simulations of G2 YM theory [Pepe07] even though the centre of G2 is trivial, meaning
that the breaking of centre symmetry is not the only mechanism responsible for the deconfinement 2. In this
case, still under active investigation, studying different gauge algebras helps to better understand the general
mechanisms of (de)confinement in YM theory.

3.4.1 Gauge-dependent quantities
In this section, we generalize to an arbitrary simple gauge algebra the aforementioned Meyer’s proposal.

We have thus to correctly identify the quantities that depend on the gauge group. There are essentially two
things: the number of glueballs and the string tension.

2. For example, it is argued in [Diak11] that the YM phase transition for any gauge group is rather driven by dyons contributions.
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For this latter, the Casimir scaling, which is an analytic prediction from the strong coupling expansion
of the Wilson loop, says that the string tension is given by [Deld02, Shos03]

σR = CR2 Θ, (3.4.1)

where the colour sources are in a given representation R of the gauge algebra, CR2 is thus the value taken
by the quadratic Casimir in the R-representation, and where Θ reads, in a lattice formulation of the the-
ory [Deld02],

Θ =
g2(aΛ)

2a
. (3.4.2)

a is the lattice spacing and g(aΛ) is the running coupling with the renormalization scale Λ. Following well-
known two-loop calculations, one can extract the explicit gauge-algebra dependence in the running coupling
as follows: g2(aΛ) = λ(aΛ)/Cadj2 [Casw74], where λ is nothing else than the ’t Hooft coupling when the
gauge algebra is su(Nc). One can finally define

σR =
CR2

Cadj2

σ0, (3.4.3)

where σ0, that can be interpreted as the adjoint string tension, does not depend explicitly on the gauge
algebra. However, an implicit dependence in the renormalization scale Λ may be present. Throughout this
work we consider a gauge-algebra independent value for Λ.

The structure of the low-lying glueball spectrum for an arbitrary simple gauge algebra has been discussed
in detail in [Buis11a] within a constituent picture. Let us recall here those results:

• The lightest glueballs are the scalar, pseudoscalar and tensor ones, whose masses are ordered as
M0++ < M2++ , M0−+ in agreement with lattice results in the su(Nc) case [Morn99, Luci10]. Those
states are found to be lighter than 2M0++ in these last works. Note that it has been proved in [West96]
that the 0++ glueball is always the lightest one in YM theory.

• At masses typically around (3/2)M0++ , states that can be seen as mainly three-gluon ones in a Fock-
space expansion appear: They can have C = + for any gauge algebra, but C = − for Ar≥2

(su(Nc ≥ 3)) only. In this last case, the 1+− glueball is still lighter than 2M0++ [Morn99, Luci10].

• Higher-lying states (containing more than three gluons in a Fock space expansion) obviously exist,
but their exhaustive study cannot be performed explicitly, eventually justifying the use of a Hagedorn
spectrum. An important remark has nevertheless to be done: If all the representations of a given gauge
algebra are real, the gluonic field Aµ is its own charge-conjugate, forbidding C = − glueball states.
This happens for the algebras A1, Br≥2, Cr≥3, Deven−r≥4

3, E7, E8, F4, and G2.

It is worth noticing that a closed-string picture for high-lying glueballs is not only a consequence of Isgur
and Paton’s flux-tube-like approaches but may also be compatible with constituent approaches such as the
one used in [Buis11a]: An excited closed string is then alternatively viewed as a closed chain of quasigluons
where the quasigluons are linked by fundamental strings. In the case of E8, the lowest-dimensional repre-
sentation, that we have called fundamental before, is the adjoint one, so the closed-string picture seems less
justified by comparison to a constituent picture. We therefore prefer not to investigate further the case of E8

in the following.

3. Another nomenclature can be used. Indeed, the algebra class Ar can be also written sl(r + 1), Br≥2 is so(2r + 1), Cr≥3 is
sp(2r) and Dr≥4 is so(2r).
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3.4.2 Linking Th to Tc

To continue, the link between Th and Tc has to be fixed. A straightforward way to do it is to briefly
recall Meyer’s results in the pure-gauge SU(3) case [Meye09] (see Section 3.3). We have seen that the best
agreement is reached for Th/Tc = 1.069(5). Finding Th > Tc is actually an indication that a metastable,
superheated, hadronic phase of matter exists at temperatures between Tc and Th; This phase has actually
been studied on the lattice in [Brin06], where, for example, Th/Tc = 1.116(9) has been found for the gauge
algebra su(12), and discussed within the framework of an open-string model in [Cohe06].

From the above discussion, we realize that an accurate determination of the ratio Th/Tc is of great
phenomenological interest. However, such a study is not the main purpose of the present study, where we
aim at giving reliable predictions for the EoS of YM theory with an arbitrary gauge algebra. As observed
in [Meye09], typical values Th ≈ Tc give very good results in fitting the lattice data. Setting Tc = Th, as
we will do in the rest of this work, means that the deconfinement temperature may be identified with the
maximal allowed temperature for the confined hadronic phase. This assumption has two advantages. First,
it will reproduce accurately the latest SU(3) lattice data of [Bors11] (see next section), and it is not in strong
disagreement with current SU(Nc) results, where Th is at most far from around 10% of Tc [Brin06, Luci05].
Second, it is applicable to any gauge algebra without having to guess a value for Th/Tc, that can not be fitted
on lattice results since no EoS is available for gauge algebras different from su(Nc) so far. The drawback
of this choice is that it forbids any discussion about a superheated hadronic phase in generic YM theories.
Such a refinement of the model will rather be the topic of a separate study.

For completeness, we notice that the somewhat surprising value Th = 2.8Tc � Tc has been found
in [Megi07] by using a Hagedorn picture too. The difference with our approach comes from the fact that,
in [Megi07], Th is fitted by assuming that the low-lying glueballs currently known from lattice simulations
should exhibit a Hagedorn-type spectrum. On the contrary, we think here that the Hagedorn-like behaviour
only appears in the high-lying sector, that mostly concerns the glueballs that are not known so far by lattice
calculations, see (3.3.3).

3.4.3 Numerical results

According to standard SU(3) studies, it is relevant to set σ0 ≈ (9/4) 0.2 GeV2, leading to Th =309 MeV.
The masses of the lightest glueballs are proportional to

√
σ0 [Buis11a], so they can be thought as constant

with respect to a change of gauge algebra in our approach. Consequently, the sum
∑
MJPC<2M0++

should
run on all the states below 3.46 GeV found in the SU(3) lattice work [Morn99]. There is an exception
however: The 1+− glueball, whose mass is below the two-glueball threshold, only exists when the gauge
algebra is Ar≥2 [Buis11a]; Hence its contribution will be omitted in the other cases. Concerning the Hage-
dorn spectrum, it is worth recalling that the density (3.3.4) is able to reproduce the SU(3) lattice EoS with
Tc ≈ Th [Meye09]. But ρ(M) accounts for both the C = + and C = − glueballs. When the gauge algebra
has only real representations, the C = − sector is absent as said before. So in such cases, the substitution
ρ(M) → ρ(M)/2 will be done. The validity of this prescription has been explicitly checked in [Case11]
by computing the EoS of 2 + 1-dimensional YM theory below Tc with su(Nc) gauge algebras: ρ(M) cor-
rectly describes the data for su(3− 6), while ρ(M)/2 must be used for su(2) in order to compensate for the
absence of C = − states in the theory.

We are now in position of explicitly computing the pressure (3.3.3) for any gauge algebra, E8 excepted.
We actually compute from p the trace anomaly using

∆ = T 5∂T

( p

T 4

)
. (3.4.4)
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Figure 3.4: (Colour online) Trace anomaly below Tc, computed using Eqs. (3.3.3) and (3.4.4) with Th = Tc
and σ0 = (9/4)0.2 GeV2, for the gauge algebras A2 (solid line), ANc→∞ and DNc→∞ (dashed line), G2

and CN→∞ (dotted line). All the possible cases are located within the grey area, whose upper and lower
borders are E6 and A1 respectively. SU(3) lattice data from [Bors11] are plotted for comparison (orange
points and area). The orange points correspond to Nt = 8 data.

This above expression can be easily derived from the Euler relation (remember (2.1.8)) and is preferentially
used in our computations. Our results are compared to the recent and accurate su(3) lattice data of [Bors11],
displayed in Fig. 3.4.3.

As a first check, we can see that the proposed model compares well with the SU(3) lattice data of
[Bors11]. In a first approximation, the choice Tc = Th thus gives good results. A generic feature of p and
∆ is that they are finite in Th, and mostly located between the E6 and A1 cases at any T . This finiteness
is due to the M−4 factor in (3.3.4) [Frau71], which is a consequence of the closed-string picture used here.
Note that this finiteness is present in 2 + 1 dimensions too [Case11]. An interesting feature is that the
large-Nc limits of the ANc and DNc (when Nc is odd) cases are equivalent, in agreement with the large-Nc
orbifold equivalence between su(Nc) and so(2Nc) YM theories, see e.g. [Cher11]. The large-Nc limit of
the CNc (sp(2Nc)) case is however inequivalent to the ANc one, but equal to the G2 case. The observed
significant numerical differences between the gauge algebras are moreover relevant from a physical point
of view since they come from changes in the structure of the glueball spectrum, mainly at the level of the
allowed quantum numbers. Remember that the density of state ρ(M), is divided by two for a class of gauge
algebra that forbids C = − glueballs.

To summarize, we have discussed a picture of YM matter that allows to compute its thermodynamic
properties for any gauge algebra. In the confined phase, the relevant degrees of freedom are glueballs, whose
low-lying states can be separately described, while the high-lying states are modelled by a closed bosonic
string Hagedorn spectrum. Such a spectrum exhibits a Hagedorn temperature, above which hadronic matter
ceases to exist: The partition function of a glueball gas with Hagedorn spectrum is not defined above Th,
suggesting a phase transition to a deconfined regime. The study of such regime for the YM matter as well as
the full QGP will be in the centre of the following chapters.



Chapter 4

QCD Spectrum within a T -matrix
Approach

The main goal of this chapter is to study and to solve two-body relativistic scattering problems in order
to obtain the glueball and the meson spectra of QCD at zero and finite temperature.

The first section will aim to familiarize the reader with scattering problems. To make it simple, we will
place in the framework of non-relativistic quantum mechanics and we will analyse the textbook case of a
light particle that scatters on a heavy fix target. This study will allow us to define some central concepts
as, for instance, the S-matrix, the T -matrix and the total cross-section. All these important notions will be
introduced following [Tayl83]. Then, we will derive from the integral formulation of the usual Schrödinger
equation, the Lippmann-Schwinger (LS) equations. Solving such equations is one of the possible ways to
deal with scattering problems. It will be the main technical part of our work. Note that initially, we thought to
address such problems by using the Lagrange-mesh method (LMM) and performing the resulting R-matrix
elements. This way was finally given up. Nevertheless, it led us to develop the LMM in momentum space
and to publish two referenced articles [Lacr11, Lacr12] summarized in Appendix D.

In the next section, we will study the two-body relativistic scattering problems. Formally, these ones
are described within the quantum field theory. Feynman diagrams are used to represent schematically the
interactions between particles and the scattering amplitudes are usually computed in perturbation theory.
Unfortunately in QCD, the strength of the interaction is so strong that, at low energy (i.e. an energy at the
order of the hadron masses), the perturbation theory fails. This problem is increased when one wants to
analyse the hadron spectrum. Indeed, since particles are supposed to interact infinitely together in bound
states, higher perturbative orders have to be considered. The formal way for addressing such processes is
given by the Bethe-Salpeter (BS) equation. This one will be introduced following [Grei99].

Although the BS equation is exactly derived from the quantum field theory, it is really difficult to solve
in practice. That is the reason why approximations must be done. We have chosen to work here within the
Blankenbecler-Sugar (BbS) three-dimensional reduction scheme [Blan66]. This latter procedure leads to the
resolution of a LS equation that will be computed thanks to the Haftel-Tabakin algorithm [Haft70]. These
technical considerations will be explained in the third section.

Finally, our results for glueball and meson spectra will be presented in the fourth and fifth sections. The
fourth one will be dedicated to the zero-temperature spectra while the fifth one will deal with temperature
effects.
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4.1 Non-relativistic scattering problems

4.1.1 General description
Let us consider the simple following process [Tayl83]: the elastic scattering of a spinless particle by a

fixed target. Obviously, it is not a situation that happens inside a plasma since the particles are in random
motion and multiple interactions can occur. However, it will help us to define the most important concepts
encountered in all scattering problems without complicating them by taking into account too much details.

In quantum mechanics, the evolution of a particle within a potential V (~x), generated here by a fixed
target is given by the time-dependent Schrödinger equation,

i
∂

∂t
|Ψ〉 = H|Ψ〉, (4.1.1)

where H is the Hamiltonian of the system. If H is time-independent, (4.1.1) admits stationary states of the
form

|Ψ〉 = e−iHt|ψ〉 ≡ U(t)|ψ〉, (4.1.2)

where U(t) is the evolution operator and |ψ〉 is a vector in the Hilbert space.
In a scattering problem, three different regions can be distinguished:

• the infinite-past region (before the collision, t→ −∞),

• the interaction region (during the collision, t ≈ 0),

• the infinite-future region (after the collision, t→ +∞).

Well before the scattering, the particle is represented by a free wave packet since it is far from the interaction
range. Therefore, U(t)|ψ〉 has to follow the infinite-past constraint:

U(t)|ψ〉 −→
t→−∞

U0(t)|ψin〉, (4.1.3)

where U0(t) = e−iH0t with H0, the free Hamiltonian and |ψin〉 is any incoming free state.
Similarly, after the scattering, the particle is also free and so, in the infinite-future region, we have

U(t)|ψ〉 −→
t→+∞

U0(t)|ψout〉, (4.1.4)

with |ψout〉, any outgoing free state.
In the aforementioned case, we do not consider the possible formation of a bound state (i.e. here, the

absorption of the particle by the target), it will be discussed later in Section 4.2. We assume that the potential
V (~x) falls off sufficiently fast in order to admit the asymptotic free states, (4.1.3) and (4.1.4), as boundary
conditions. Since U(t) is an unitary operator, we can rewrite these boundary conditions as

|ψ〉 = lim
t→−∞

U†(t)U0(t)|ψin〉 ≡ Ω+|ψin〉, (4.1.5)

|ψ〉 = lim
t→+∞

U†(t)U0(t)|ψout〉 ≡ Ω−|ψout〉, (4.1.6)

where Ω± are called the Møller wave operators.
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Let us now define the scattering operator S as

|ψout〉 = S|ψin〉. (4.1.7)

Naturally S = Ω†−Ω+. S contains all the information about the scattering process and its matrix elements
are linked to the probability w that a particle with an ingoing state |ψin〉, emerges in the detector with an
outgoing state |ψout〉:

w (|ψin〉 → |ψout〉) = |〈ψout|S|ψin〉|2. (4.1.8)

In practice, w(|ψin〉 → |ψout〉) can not be directly observed. Indeed, it is impossible to produce a wave
packet with a well-defined quantum state and it is also impossible to identify the outgoing state with an
infinite precision. The quantity that is experimentally an observable is the differential cross-section i.e. the
section of the plane at infinity that scatters |ψin〉 in the solid angle dΩ. In the experiments, |ψin〉 (resp.
|ψout〉) is so a wave packet with a momentum peaked around ~k0 (resp. ~k ) and the differential cross-section
is defined as

dσ

dΩ
(~k0 → ~k) = |f(~k0 → ~k )|2, (4.1.9)

with f(~k0 → ~k ) the scattering amplitude.
Now, the point is to link the theoretical S-matrix elements with the experimentally-measured scattering

amplitude. Conventionally, S is decomposed as S = 1 + R with R representing the difference between the
values of S with and without interactions. The R-matrix elements are given in momentum space by

〈~q |R|~p 〉 = −2πi δ(E~q − E~p) t(~p→ ~q ), (4.1.10)

and it follows that,
〈~q |S|~p 〉 = δ(~q − ~p )− 2πi δ(E~q − E~p) t(~p→ ~q ). (4.1.11)

In the first term of (4.1.11), δ(~q − ~p ) obviously expresses the fact that the particle is not scattered while, in
the second term, δ(E~q − E~p) ensures the energy conservation. The factor −2πi is for convenience and the
function t(~p → ~q ) depends on the interaction process. The second term is thus only defined for E~q = E~p
or equivalently, on the shell ~q 2 = ~p 2 1. We will see thereafter that it is convenient to introduce an operator
T for all momenta ~p, ~q and coinciding with t(~p→ ~q ) on the shell. The matrix elements 〈~q |T |~p 〉, with(out)
the condition ~q 2 = ~p 2 define then the on-(off-) shell T -matrix.

The on-shell function t(~p→ ~q ), is related to the scattering amplitude in the non-relativistic case by

f(~p→ ~q ) = −(2π)2mt(~p→ ~q ), (4.1.12)

where m is the mass of the particle. From (4.1.12), we understand that knowing t(~p → ~q ) is equivalent to
solve the scattering problem. We thus need a way to extract it from the theory. The purpose of the following
subsections will be to put to the foreground t(~p→ ~q ) from the foundation of quantum mechanics.

4.1.2 Schrödinger equation and its integral formulation
In order to fix a situation for the discussion below, let us start by expressing the time-independent

Schrödinger equation for a central potential in configuration space [Tayl83], i.e.[
− 1

2m
∆~r + V (~r)

]
ψ(~r) = Eψ(~r), (4.1.13)

1. The on-shell condition is of course modified if relativistic processes are considered.
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where ∆~r is the Laplacian in spherical coordinates, m is the particle mass and V (~r) is the potential.
Since this equation is a corner stone of quantum mechanics, a lot of methods have been developed to

solve it. Here, we are mainly interested in its integral formulation because we want to easily connect it to
t(~p→ ~q ). Therefore, (4.1.13) can be rewrite as

(E +
1

2m
∆~r)ψ(~r) = V (~r)ψ(~r). (4.1.14)

Mathematically, (4.1.14) is equivalent to the following problem 2:

Dφ(x) = j(x), (4.1.15)

where D is a linear differential operator and j(x) is a given function called “source of φ(x)”.
Let us define the Green’s function G0(x), as the solution of

DG0(x) = δ(x). (4.1.16)

If G0(x) is known, the solution of (4.1.15) is given by

φ(x) = φ0(x) +

∫
G0(x− y) j(y) dy, (4.1.17)

where φ0(x) is the solution of Dφ0(x) = 0.

In our case, D is the operator (E +
1

2m
∆~r) and j(x) is V (~r)ψ(~r). It naturally comes the integral

equation:

ψ(E,~r) = ψ0(E,~r) +

∫
G0(E,~r, ~r

′
)V (~r

′
)ψ(E,~r

′
) d~r

′
. (4.1.18)

G0(E,~r, ~r
′
) is thus a Green’s function associated to the linear operator E +

1

2m
∆~r since it satisfies the

equation: [
E +

1

2m
∆~r

]
G0(E,~r, ~r

′
) = δ(~r − ~r

′
). (4.1.19)

G0(E,~r, ~r
′
) is called the free propagator of the system. We can also define G(E,~r, ~r

′
) by[

E +
1

2m
∆~r − V (~r)

]
G(E,~r, ~r

′
) = δ(~r − ~r

′
). (4.1.20)

G(E,~r, ~r
′
) is the full propagator of the system.

From the aforementioned mathematical manipulations, we bring out another fully equivalent way to
solve the Schrödinger equation. (4.1.18) is called the Lippmann-Schwinger equation for the wave function.

4.1.3 Green’s functions and its Lippmann-Schwinger equation
In the previous subsection, we have just extracted from quantum mechanics a crucial tool that we have

already met in the context of quantum field theory: the two-point Green’s functions or equivalently, the
propagator. As seen in Section 1.1.3, such functions are the building blocks of any quantum field theory.

2. The problem is well-posed once the boundary conditions have been specified.
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The link between these ones and the scattering problems is thus an important connection to establish. In
what follows, we will continue to study it in the framework of the non-relativistic quantum mechanics in
order to make this link easier.

Let us rewrite (4.1.19) and (4.1.20) in momentum space by doing a Fourier’s transformation and by
making complex the variable E (E → z):

(z −H0)G0(z) = 1, (4.1.21)
(z −H)G(z) = 1. (4.1.22)

If (z −H0) and (z −H) are invertible, G0(z) and G(z) are Green’s operators 3 defined by

G0(z) = (z −H0)−1, (4.1.23)
G(z) = (z −H)−1. (4.1.24)

Nevertheless, it is worth noticing that the inverses of z − H0 and z − H are not defined for any value
of z. The values for which z − H0 and z − H are not invertible are precisely the eigenvalues of the
associated Hamiltonian. Therefore, its spectrum coincides with the poles of the corresponding Green’s
operator. Unfortunately, this observation does not make easier the resolution of the eigenvalue problem.
Only for H0, the spectrum is well-known. That is the reason why it is useful to have a relation that links the
unknown analytic structure of G(z) to the well-known one of G0(z). This link is given by the LS equation
for the propagator and it is derived for the simple operator identity,

A−1 = B−1 +B−1(B −A)A−1, (4.1.25)

that becomes, if A = z −H and B = z −H0,

G(z) = G0(z) +G0(z)V G(z). (4.1.26)

4.1.4 T -matrix and its Lippmann-Schwinger equation
In scattering theory, it is also convenient to define another operator T (z), by the relation

T (z) = V + V G(z)V . (4.1.27)

It is obvious that T (z) as the same analytic structure as G(z). So, T (z) has poles that correspond to the
eigenvalues of the associated Hamiltonian. After some algebraic manipulations, it is also possible to write a
LS equation for T (z). That is to say,

T (z) = V + V G0(z)T (z). (4.1.28)

Note that (4.1.28) is particularly simple to compute when V is sufficiently weak. In this case, we can
hope to have a satisfactory solution of the problem by iteration in which the Born approximation, T ≈ V ,
can be used as a starting point. The procedure can be then refined by expanding the other terms of the infinite
series,

T = V + V G0V + . . . . (4.1.29)

3. It is worth mentioning the fact that here, the notation G0(z) and G(z) defined operators. In the section 4.1.2, G0(E,~r, ~r
′
) and

G(E,~r, ~r
′
) are the functions associated with the matrix elements 〈~r ′ |G0(E)|~r 〉 and 〈~r ′ |G(E)|~r 〉, expressed in the configuration

space.
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However, the most important advantage to introduce T (z), is that it can be proved that the on-shell
t(~p→ ~q ) is given by [Tayl83]

t(~p→ ~q ) = lim
ε→0
〈~q |T (E~p + iε)|~p 〉, (4.1.30)

where 〈~q |T (z)|~p 〉 are the off-shell T -matrix elements expressed in momentum space. From (4.1.28), we
have

〈~q |T (z)|~p 〉 = 〈~q |V |~p 〉+

∫
d~p
′ 〈~q |V |~p ′ 〉
z − E~p ′

〈~p
′
|T (z)|~p 〉. (4.1.31)

This equation is precisely the one we will solve to get information about the Hamiltonian spectrum. It is
important to notice that (4.1.31) requires the knowledge of the entire off-shell T -matrix since it is only at
the end of the computation that the on-shell condition can be applied.

With (4.1.30), the link between the experimental differential cross-section (introduced in Section 4.1.1)
and the theoretical tools is now fully-determined. We are thus equipped to extend these concepts to the
two-body relativistic scattering.

4.2 Bethe-Salpeter equation
Let us now have a look to the full two-particle propagator. Schematically, it can be represented by

Fig. 4.1 at first approximation. It connects four lines depicting the propagation of four fields. By using the
Feynman rules, Fig. 4.1 can be mathematically translated into [Grei99]

Sab(x3, x4;x1, x2) = iS0
a(x3, x1) iS0

b (x4, x2) (4.2.1)

+

∫
d4x5d

4x6

[
iS0
a(x3, x5) iS0

b (x4, x6)
]

× (−igγaµ)iDµν
F (x5, x6)(−igγbν)

[
iS0
a(x5, x1) iS0

b (x6, x2)
]

+ . . . ,

where S0 represents the free one-particle fermion propagator and DF is the free one-particle boson propa-
gator. a and b are spinor indices. For simplicity, the vertices used in (4.2.1) are the ones of QED.

Figure 4.1: Pertubation expansion of the full two-particle propagator. The blob represents the full two-
particle propagator.

Nevertheless, in many situations, we need a better description for the interaction between two particles
than the one provides by the perturbation expansion. It is especially right in the non-perturbative range of
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QCD because the strength of the interaction is too strong but also when one wants to deal with bound states,
regardless of the interaction strength of the underlying theory. In the following subsection, we will focus on
this latter case.

Let us take back the example given in Fig. 4.1 and let us formally consider the impact of the infinite
series by the schematic view displayed in Fig. 4.2, which explicitly reads [Grei99],

Figure 4.2: The blob represents the full two-particle propagator. The empty circle stands for the impact of
the infinite series of interactions.

Sab(x3, x4;x1, x2) = iS0
a(x3, x1) iS0

b (x4, x2) (4.2.2)

+

∫
d4x5 d

4x6 d
4x7 d

4x8

[
iS0
a(x3, x5) iS0

b (x4, x6)
]

× Kab(x5, x6;x7, x8)
[
iS0
a(x7, x1) iS0

b (x8, x2)
]

.

Kab(x5, x6;x7, x8) is called the interaction kernel.
At the first perturbation order, Kab(x5, x6;x7, x8) is given by

Kab(x5, x6;x7, x8) = (−igγaµ)iDµν
F (x5, x6)(−igγbν)δ(x5 − x7)δ(x6 − x8), (4.2.3)

as seen in the previous section. (4.2.3) is a rather good approximation if the interaction is weak. One can
naturally improve its computation by adding any subset of diagrams to K but the whole infinite series has
formally to be considered, especially if we want to describe bound states.

However, a minor condition can be applied in order to get the bound-state spectrum. It consists to only
take into account some diagrams at any order. This last option is computationally manageable if all the
diagrams are sorted in an clever way. Indeed, among all the diagrams, two types can be distinguished :
the reducible and the irreducible ones. A reducible diagram is characterized by the fact that it can be split
into two unconnected parts by cutting two fermion lines. On the other hand, an irreducible one is so deeply
interwoven that it is impossible to cut (see examples in Fig. 4.3).

Thanks to this classification, the interaction kernel K can be expressed as a sum of a reducible and an
irreducible interaction kernels. This splitting make sense if we realize that each reducible diagram can be
obtained from irreducible pieces. Therefore, the schematic view displayed in Fig. 4.2 can be rearranged as
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Figure 4.3: (Left) Irreducible diagram. (Right) Reducible diagram. [Grei99]

shown in Fig. 4.4, and (4.2.2) can be rewritten

Sab(x3, x4;x1, x2) = iS0
a(x3, x1) iS0

b (x4, x2) (4.2.4)

+

∫
d4x5 d

4x6 d
4x7 d

4x8

[
iS0
a(x3, x5) iS0

b (x4, x6)
]

× K
ab

(x5, x6;x7, x8)Sab(x7, x8;x1, x2),

where K
ab

(x5, x6;x7, x8) is the irreducible interaction kernel.

Figure 4.4: Rearrangement of Fig. 4.2 by using the irreducible interaction kernel.

Of course, (4.2.4) is fully equivalent to (4.2.2). It is particularly obvious if we represent it iteratively.
However, K is still difficult to evaluate since it is an infinite sum of irreducible diagrams. The main advan-
tage of (4.2.4) is the following: Even if K is computed within the perturbation theory, the solution of (4.2.4)
contains an infinite series of interactions. As seen previously, this is the crucial point for obtaining bound
states. Moreover, the unitarity of the expressions is always preserved, regardless of the chosen kernel.

(4.2.4) is thus the master idea from which all Bethe-Salpeter equations are established. Note that, as for
the LS equations, a BS equation can be expressed for different quantities as, for instance, the wave function,
the vertex or the T -matrix. This last case is the one that deserves interests for us.
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Figure 4.5: LS equation for the amplitudeM.

As seen in Section 4.1.1, the T -matrix is the interaction part of the S-matrix since S can be decomposed
in 1 +R and R depends on the T -matrix. If we do this substitution within (4.2.4) and drop out the free part,
we remains with

M = K +KG0M, (4.2.5)

whereM is the amplitude that describes the process and G0 is the two-body Green’s functions. In Fig 4.5,
G0 = (iS0)(iS0). From (4.2.5), the on-shell T -matrix elements can be then schematically defined as
[Cabr07]

T ≡ 〈out|M|in〉, (4.2.6)

where |in〉 and |out〉 are respectively the appropriate in-going and out-going states. In the example of
Fig. 4.5, they are Dirac spinors on free shell. A LS equation for the off-shell T -matrix elements as (4.1.31)
can be thus established from (4.2.6). The way to solve it will be the purpose of the next section.

4.3 Solving the Lippmann-Schwinger equation for the T -matrix
Up to now, we have exposed the main theoretical framework associated to scattering problems and the

useful equations that result from it. In this section, the discussion will turn into more technical aspects since
we will introduce the algorithms and the approximations on which we rely in order to practically solve the
hadron spectrum.

4.3.1 Blankenbecler-Sugar reduction scheme of the Bethe-Salpeter equation
Let us start by considering the amplitudeM describing the two-body interaction process given by (4.2.5)

and let us write it in the center-of-mass frame:

M(q, p;P ) = K(q, p;P ) +

∫
d4kK(q, k;P )G0(k;P )M(k, p;P ). (4.3.1)

The conventions are the following. p is the initial relative four-momentum between the two-entering particles
and P is the total four-momentum. Therefore, if the particle 1 is described by the four-momentum p1 =
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(ω1, ~p1) in some Lorentz frame and the particle 2 by p2 = (ω2, ~p2), we have the usual center-of-mass
relations

P = p1 + p2 =
(
ω1 + ω2,~0

)
= (
√
s,~0), (4.3.2)

p =
1

2
(p1 − p2) =

(
ω1 − ω2

2
, ~p

)
, (4.3.3)

p1 =
P

2
+ p, (4.3.4)

p2 =
P

2
− p, (4.3.5)

since ~p1 = −~p2 = ~p, ωi =
√
~p 2
i +mi with mi the mass of the particle i, and

√
s is the energy in the

center-of-mass frame. Of course, q is the relative four-momentum for the two-outgoing particles and similar
relations as those just aforementioned can be established.

Unfortunately, the four-dimensional equation (4.3.1) is difficult to solve and a three-dimensional re-
duction scheme is often used. Such schemes preserve the covariance of the BS equation and satisfy the
relativistic elastic unitarity. However, it is not an unique procedure. In our case, we will only focus on the
Blankenbecler-Sugar (Bbs) reduction scheme [Blan66], the most used in recent studies [Cabr07] 4.

Following these considerations, it can be shown that the BS equation (4.2.5) can be replaced by the two
coupled operator equations [Thom70],

M = W +WGRSM, (4.3.6)
W = K +K(G0 −GRS)W . (4.3.7)

The second relation is usually simplified by W = K, which will be also assumed within this thesis, and
GRS is in general an arbitrary function of P and k. However, in the center-of-mass frame, it is chosen to be
of the form

GRS(k;
√
s) = δ

(
k0 − ω1 − ω2

2

)
GBbS(~k ;

√
s). (4.3.8)

The role of the δ-function is especially to turn out the four-dimensional integral into a three-one. Only
the positive energy part is kept in the propagator. The remaining part to determine is thus the structure of
GBbS(~k ;

√
s).

It can be shown, after a tedious mathematical development [Mach89, Mine08], that
GBbS(~k ;

√
s) for spinless particles reads

GBbS(~k ;
√
s) = m1m2

ω1 + ω2

2ω1ω1

1

s

4
−
(
ω1 + ω2

2

)2

+ i
ε

4

, (4.3.9)

and (4.3.1) turns into the three-dimensional LS equation:

T (~q, ~p;
√
s) = K(~q, ~p;

√
s) +

∫
d3k

(2π)3
K(~q,~k;

√
s)GBbS(~k ;

√
s)T (~k, ~p;

√
s). (4.3.10)

4. Note that we have also investigated the glueball sector within the Thompson reduction scheme and the differences observed in
the glueball spectrum were really weak.
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Note that GBbS(~k ;
√
s) has been computed without the explicit inclusion of a particle spin since we will

use a potential that will not depend on it in our computations. So, (4.3.10) has the same general structure for
all types of two-body processes that we will consider. Moreover, note that in this reduction scheme, virtual
particle-antiparticle loops are neglected.

4.3.2 Interaction potential

Now that we have reduced the BS equation to (4.3.10), we must fix the kernel K(~q, ~p;
√
s). A common

approximation that can be used is to restrict it to the lowest order in perturbation theory. This prescription is
called the ladder (or the rainbow) approximation and it is schematically represented by

In this restriction, only the one-particle exchange is considered but it can happen an arbitrary number of
times. It ensures the infinite number of interactions between particles and so, the possible existence of
bound states and resonances.

In our case, we prefer to assume that K(~q, ~p;
√
s) is equal to an effective potential given by V (~q, ~p ) 5.

Therefore, a key ingredient of the present approach is the two-body potential V (~q, ~p ), encoding the interac-
tions between the two particles.

Having in mind the building of an effective framework describing the deconfined phase of a non-abelian
gauge theory, each particle composing the plasma should be in a given representation of the considered
gauge group. It is thus reasonable to assume that the potential V between the two particles, respectively
in the representations Ri and Rj of the gauge group, has the simplest possible colour-dependence. This
corresponds to

V{ij}(~q, ~p ) = M̃Ri · M̃RjαS v̄(~q, ~p ), (4.3.11)

where M̃R denotes the generator of the gauge algebra in the representation R, and where the real function
v̄ only depends on two momenta and possibly on the temperature (no dependence on the mass or other
attributes of the particle). In the above definition, it has to be remembered that αS = g2/4π and that
g2 = λ/Cadj2 , adj being the adjoint representation of the gauge group under study and CR2 being the value
of the quadratic Casimir in the representation R. Note that in the case of SU(Nc), λ is the ’t Hooft coupling
(fixed in the large-Nc limit) [Hoof74].

5. The variable
√
s is dropped off.
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Introducing quadratic Casimirs, one can rewrite (4.3.11) as

V{ij}(~q, ~p ) =
CC2 − C

Ri
2 − C

Rj
2

2
αS v̄(~q, ~p ) ≡ κC;ij v(~q, ~p ), (4.3.12)

with C the pair representation and

κC;ij =
CC2 − C

Ri
2 − C

Rj
2

2Cadj2

. (4.3.13)

Again, the real function v(~q, ~p ) is assumed to only depend on two momenta and possibly on the temperature.
An explicit form for v(~q, ~p ) at T = 0 and T > Tc will be given in Section 4.4.1 and Section 4.5.1. Let us
note that in these cases, complicated multi-gluon and quark loop exchanges can occur since these potentials
are directly extracted from lQCD.

Of course, the validity of the Casimir scaling is therefore questionable since our chosen interactions take
into account many QCD processes and some of that are not scaled with the simple form (4.3.13), exhibited
for instance by the one-gluon exchange processes. Already at the level of the lowest-order Feynman dia-
grams between two particles in QCD, it happens: The basic gluon-quark interaction is mediated by a quark
exchange, which does not respect (4.3.13).

Nevertheless, it is worth mentioning that the Casimir scaling seems very well respected in lQCD. Indeed,
the interaction potential between two static colour sources in the T = 0 sector follows this scaling [Bali00]
while computations in the T > Tc sector show only slight deviations: The Casimir scaling seems partly
violated (at most 20%) for short distances and temperatures near Tc [Gupt08]. In our work, we will thus
assume that the Casimir scaling is satisfied.

Therefore, all hyperfine interactions are neglected. We miss for instance the annihilation contributions
but we can expect that they are non-dominant. According to [Aitc82, Akhi65], the annihilations are expected
to depend on the inverse square of the effective masses, involved in the process at the first perturbative order.
So, it is a refinement in comparison to the associated scattering processes. Moreover, note that according to
our choice of reduction scheme, annihilation processes can not be studied. Such refinements will be thus left
for future works.

4.3.3 Masses and self-energies
To assess the presence of bound state, we need to study the T -matrix results below a threshold given

by the sum of the particle masses. Therefore, the mass of the resulting bound state is seen as the mass of
the threshold minus the binding energy. For heavy particles, this vision is not a problem but for light and
massless particles, we need to define properly a threshold in order to have positive bound-state masses.

The procedure of acquiring an effective mass is a well-known process in the quantum field theory since a
mass can be dynamically generated by self-energy effects. These effects will be taken into account in order
to define a threshold. The real part of the self-energy Σ is reabsorbed in an effective mass for the particle,
noted also here mi (it will be discussed later), while the imaginary part enters the two-particle propagator
by the following replacement [Cabr07][

s

4
−
(
ω1 + ω2

2

)2

+ i
ε

4

]−1

→

[
s

4
−
(
ω1 + ω2

2

)2

− i(ω1 + ω2) Im Σ

]−1

. (4.3.14)

For numerical purposes, Im Σ will be fixed to −0.01 GeV in all the computations, as in [Cabr07]. One can
check that (4.3.9) and (4.3.14) reduce to the expressions given in [Cabr07] when m1 = m2.
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4.3.4 Partial wave decomposition of the T -matrix
Before solving numerically (4.3.10), two tasks remain to do. Firstly, we have to Fourier-transform the

two-body potentials that we will use since their expressions are defined in the configuration space. For a
potential with spherical symmetry in the configuration space, the Fourier transform is given by

V (q, p, θq,p) = 4π

∫ ∞
0

dr rV (r)
sin(Qr)

Q
, where Q =

√
q2 + p2 − 2q p cos θq,p, (4.3.15)

and where θq,p is the angle between the momenta ~q and ~p. Note that from now, q and p will indicate the
norm of ~q and ~p and no more the 4-momenta.

Secondly, we have to decompose the two-body interactions in partial waves in order to get the correct
JP (C) number 6 associated to each hadron. The partial-wave decomposition of the potential is given by

V (q, p, θq,p) =
1

4π

∑
L

(2L+ 1)VL(q, p)PL(cos θq,p), (4.3.16)

where

VL(q, p) = 2π

∫ 1

−1

dxPL(x)V (q, p, x), (4.3.17)

with PL is the Legendre polynomial of order L and x = cos θq,p. Since the JP (C) states read (see Ap-
pendix B)

|JP (C)〉 =
∑
L,S

CL,S |2S+1LJ〉, (4.3.18)

it can be shown after a long and careful computation that

VJP (C)(q, p) =
∑
L,S

|CL,S |2VL(q, p). (4.3.19)

Different kinds of interactions will be considered within this work. They can be separated in two groups.
The first one is made of JP (C) channels that can be described with a single partial wave. In our approach,
this is for instance the case of the quark-antiquark interactions. The second group is made of a class of
two-body interactions in which at least one particle is transverse. In this situation, the basis states are the
helicity states given by Jacob and Wick’s helicity formalism and the potentials for a given JP (C) channel
are obtained by combination of different L-wave potential parts as expressed in (4.3.19). For further details
about the way to build such states, cfr. Appendix B.

Once the potential in a given JP (C) scattering channel, i.e. VJP (C)(q, p) is known, the off-shell T -matrix
can be computed from (4.3.10) thanks to [Cabr07]:

TJP (C)(E; q, p) = VJP (C)(q, p) +
1

8π3

∫ ∞
0

dk k2 VJP (C)(q, k)GBbs(E; k)TJP (C)(E; k, p), (4.3.20)

where E is the energy of the two particles in the center-of-mass frame. The two-body propagator reads

GBbS(E, k) = m1m2
ω1 + ω2

2ω1ω1

1

E2

4
−
(
ω1 + ω2

2

)2

− i(ω1 + ω2) Im Σ

, (4.3.21)

6. As usual, J = L+S is the total angular momentum where L is the orbital angular momentum and S is the spin. P is the parity
and C the charge conjugaison.
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where ωi =
√
k2 +m2

i and s→ E2.
Eventually, the on-shell T -matrix, TJP (C)(E; qE , qE), is readily obtained by imposing the on-shell con-

dition

qE =

√
1

4E2
(E2 − (m1 +m2)2)(E2 − (m1 −m2)2), (4.3.22)

which comes from the inversion of E = ω1(qE) + ω2(qE).

4.3.5 Haftel and Tabakin algorithm
Now that we have the equation to solve, i.e. (4.3.20), we need to compute it numerically in order to

obtain the bound and scattering states. To these purposes, the Haftel and Tabakin algorithm [Haft70] is used.
This latter consists of discretizing the momentum integration and converting (4.3.20) into a matrix equation,

N∑
k=1

F(E)ikT (E)kj = Vij . (4.3.23)

In this equation, F is schematically given by F = 1 − wV GBbS where w denotes the integration weight.
The solution for the T -matrix elements then follows from matrix inversion.

Note that it can be shown that the real part of the determinant of the transition function F (referred to as
the Fredholm determinant) vanishes at the bound state and resonance energies. This property is particularly
interesting since it provides us a simple and more manageable numerical criterion to solve the bound state
problem than finding the localisation of the Dirac-delta peak.

The major part of this algorithm was implemented by D. Cabrera for the purposes of its paper [Cabr07].
We have thus used his Fortran code and adapted it for our computations.

4.4 QCD spectrum at zero temperature

4.4.1 Cornell potential and quasiparticle mass
Since all the theoretical and technical aspects are now discussed, we can exploit them to compute the

T = 0 spectrum of QCD. This study essentially aims to fix the needful parameters for the finite-temperature
developments. Indeed, the QCD spectrum at T = 0 is well investigated both in experiments [PDG] and in
lQCD (e.g. [Fodo12]). Some comparisons can be thus established in order to guide us in the fitting of the
parameters.

From quenched SU(3) lQCD, it is known that the potential between a static quark-antiquark pair is
compatible with the funnel form [Bali01]

Vf (r) = σr − 4

3

α

r
, (4.4.1)

where standard values for α and σ are α = 0.4 and σ = 0.176 GeV2. The expression (4.4.1) is called the
Cornell potential and is used as starting point of our computations.

As mentioned in Section 4.3.4, a first step to accomplish is to Fourier-transform the potential (4.4.1).
Unfortunately, the Fourier’s transformation of Vf (r) is not defined. This flaw has to be cured. It is done by
making it saturate at some value V sbqq̄ . This latter is then interpreted as a string-breaking value, that is the
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energy above which a light quark-antiquark pair can be created from the vacuum and break the QCD string.
This scale is then subtracted and the potential effectively taken into account is

V 0
qq̄(r) = Vf (r)− V sbqq̄ for r ≤ rsb, (4.4.2)

= 0 for r > rsb, (4.4.3)

while V sbqq̄ /2 is interpreted as an effective quark mass provided by self-energy effects and rsb is defined
such as Vf (rsb) = V sbqq̄ . This effective mass is quadratically added to the bare quasiparticle mass m0. The
quasiquark mass is thus given by

mq =

√
m2
q,0 +

(
V sbqq̄
2

)2

. (4.4.4)

This standard procedure for a T -matrix approach is used in [Cabr07].
While the potential (4.4.2) can be directly used for a quark-antiquark pair, it has to be scaled in other

cases. According to the colour scaling (4.3.13), the potential describing the interactions between two parti-
cles (p1, p2) at zero temperature is

V 0
p1p2

(r) =
κ•;p1p2

κ•;qq̄
Vf (r)− V sbp1p2

. (4.4.5)

For instance, for 2 gluons lying in the SU(3) gauge group, we have

V 0
gg(r) =

9

4
Vf (r)− V sbgg . (4.4.6)

In this example, the string breaking scale should rather be interpreted as the energy scale necessary to
form two gluelumps, a gluelump being a gluon bound in the colour field of a static adjoint source. It is
known indeed that adjoint string breaking may be observed, and occurs at twice the lightest gluelump mass
(∼ 2 GeV) [Defo00]. The quasigluon mass naturally follows the same prescription as the quasiquark one.

4.4.2 Glueball spectrum
Using the general formula (4.4.5) for the effective interaction between the quasigluons, the glueball spec-

trum at zero temperature can be computed by looking at the pole of the T -matrix or, more precisely here, at
the zeros of detF as mentioned in Section 4.3.5. We only focus our study on the lightest glueballs [Morn99],
namely the scalar 0++, the pseudoscalar 0−+, and the tensor 2++ ones. According to the equations (B.2.1)
from Appendix B, giving the partial-wave decomposition of the two-gluon interactions for each channel, we
have (after a Fourier’s transformation)

V0++(q, q′) =
2

3
V0(q, q′) +

1

3
V2(q, q′), (4.4.7)

V0−+(q, q′) = V1(q, q′), (4.4.8)

V2++(q, q′) =
2

5
V0(q, q′) +

4

7
V2(q, q′) +

1

35
V4(q, q′), (4.4.9)

where V0 → V4 are the L = 0→ L = 4 partial-wave part of (4.4.6).
The only free parameters that remain now in the computations, are V sbgg and mg,0. A value of 2 GeV

for V sbgg is used within this work. It is in agreement with lattice data showing that the mass of the lightest
gluelump is given by 0.85(17) GeV [Bali04]. Concerningmg,0, it is fixed to 0.7 GeV, which is an acceptable
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value for the zero-momentum limit of the gluon propagator at zero temperature in view of previous studies
locating this mass typically between 500 and 700 MeV, see e.g. [Corn82, Oliv11, Szcz96].

Using these parameter values, we obtain the results displayed in Table 4.1. They are compared with the
zero temperature lQCD glueball spectrum [Morn99] and with the Coulomb gauge QCD (CGQCD) study
[Szcz96]. Let us first focus on the fourth column (corresponding to the initial set of parameters). At least,
in this case, the model is able to reproduce the mass hierarchy of the lightest glueballs observed in lQCD,
as well as the typical mass scale of 2 GeV for those states. The accuracy of the model can be compared to
CGQCD [Szcz96], sharing formally many similarities with our T -matrix approach.

State Lattice [Morn99] CGQCD [Szcz96] T -matrix T -matrix
α = 0.4 α = 0.141

0++ 1.73 (5)(8) 1.98 1.96 2.17
0−+ 2.59 (4)(13) 2.22 2.26 2.39
2++ 2.40 (2.5)(12) 2.42 2.21 2.34

Table 4.1: Masses (in GeV) of the lowest-lying glueball states at zero temperature with the gauge group
SU(3). Our results (fourth and fifth columns), are compared to the lattice data of [Morn99] (second column)
and to the Coulomb gauge QCD study [Szcz96] (third column). The fourth column is a T -matrix calculation
with the standard value α = 0.4, while the value α = 0.141 is taken in the last column. In both cases, σ =
0.176 GeV2.

In order to evaluate the effects of the temperature on the running coupling constant, we have also pro-
duced results with α = 0.141 since it is the value chosen in our finite-temperature computations (cfr. Sec-
tion 4.5.1). The existence of such a running coupling is well-known; see e.g. the pioneering work [Casw74],
where α(T ) comes from standard renormalization arguments, the temperature playing the role of the energy
scale. Although no definitive conclusion can be drawn yet to our knowledge, it is tempting to assume that
α(0) is finite and larger than α(T > Tc); fits on the lattice static potential in [Kacz02] actually favour such a
saturation at zero temperature. In this case, the scalar glueball has a high mass in comparison with [Morn99].
It could be understood by the fact that this channel is dominantly a S-wave state and it should be particularly
sensitive to the strength of the Coulomb term and to a possible running of α with the temperature. Note
that, in the rest of this thesis, we will focus on the temperature interval (1 − 3)Tc, in which the running of
α can be neglected as confirmed by the quality of the fit on the lattice data with the single value α = 0.141
(see Section 4.5.1). Let us note also that the discrepancies between our results and those from the lattice
for scalar and pseudoscalar states can also be partly due to the existence of a strong instanton interaction
[Math09a] not taken into account here.

Finally, the extension of the above calculations to any gauge group is straightforward in our approach
since κ•;gg = −1 for all gauge groups. The interested reader will find a discussion of such a generalization
in [Buis11a], where it is shown that the lowest-lying glueball masses is gauge-group independent within
a constituent framework. In particular, the lowest-lying glueball masses are found independent of Nc in
[Buis11a], in agreement with what is observed on the lattice [Luci10]. That is why the T -matrix masses
given in Table 4.1 are considered as valid for any gauge group too.

4.4.3 Meson spectrum
Adopting the same procedure as the one for gluons, the meson spectrum can also be computed. We only

focus on states with an orbital angular momentum L = 0 or L = 1 whose quantum numbers are given in
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Table 4.2. Several JPC are obviously associated to L = 0 or L = 1. Since the potential (4.4.2) does not
depend on other quantum numbers, all these states are degenerate within our approach.

J L S P C JPC

0 0 0 − + 0−+

1 1 + + 0++

1 1 0 + − 1+−

0 1 − − 1−−

1 1 + + 1++

2 1 1 + + 2++

Table 4.2: JPC states allowed for qq̄ with L = 0 or L = 1. The selection rule is |J − S| ≤ L ≤ J + S
where S is the spin of the two-particle states. Since the intrinsic spin of quarks is 1/2, a spin 0 or a spin 1 is
allowed. The parity P of the state is given by (−1)L+1, while the charge conjugaison C is (−1)L+S .

We summarize in Table 4.3 the parameters we have to fix. There are essentially two main points to
notice. Firstly, a shift of 0.3 GeV to the [PDG] quark “bare” mass is used. It is a common assumption within
quasiparticle approaches since this shift corresponds to one third of the nucleon mass. Secondly, the string
breaking depends on the quark flavour. This could be explained by the following argument: It is not the same
region of the potential that contributes for all quark flavour. Indeed, light quarks are more sensitive to the
linear part of the interaction, while the heavy-quark potential is dominated by the Coulomb part. According
to this interpretation, V sbqq̄ has to be higher for light quarks and has to decrease with heaviest quark flavour.
It is exactly what we observe with the parameters chosen to fit the meson spectrum in Table 4.3.

Quark composition V sbqq̄ m1
0 m2

0

Light (l-l) 2.6 0.3 0.3
Strange (s-s) 2 0.4 0.4
Charm (c-c) 1 1.6 1.6
Beauty (b-b) 0.7 4.95 4.95

Kaon (l-s) 2.4 0.3 0.4

Table 4.3: Masses and string breaking (in GeV) for the different flavours of quarks.

In Table 4.4, our results are compared to experimental data extracted from [PDG]. In each case, we have
associated the meson (with the same quark composition and quantum numbers) whose the mass is closest
to the one that we have found within our T -matrix computations. As it can be noticed, a good agreement
is reached provided that we do not consider the lightest pion and kaon i.e. π(140) and K(495). Indeed,
the fact that the mass of these lightest mesons are not achievable can be explained by the theoretical origin
of such states: The pion is the Goldstone boson resulting from the spontaneously breaking of the chiral
symmetry. A so peculiar phenomenon can not be described within such simple effective model. Moreover,
according to quasiparticle standard approaches, the spin effects are the weakest in a S = 1 channel. Since
our computations do not take into account such effects, it is reasonable that our results for the L = 0 light
meson are closed to the ρ instead of the π.
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L = 0 Exp.[PDG] T -matrix L = 1 Exp.[PDG] T -matrix
ρ(uū, dd̄) 0.77 0.72 a0(uū, dd̄) 1.45 1.45

Φ(ss̄) 1.02 1.08 f ′2(ss̄) 1.53 1.58
K∗(l-s) 0.89 0.89 K(l-s) 1.43 1.52
J/ψ(cc̄) 3.10 3.01 -
Υ(bb̄) 9.46 9.40 -

Table 4.4: Masses (in GeV) of the L = 0 and L = 1 meson states at zero temperature with the gauge group
SU(3). Our results (third and sixth columns), computed with α = 0.4 and σ = 0.176 GeV2, are compared
to the experimental data of [PDG] (second and fifth columns).

Finally, let us add that, unlike in the glueball case, the T = 0 meson mass depends on the gauge group
since κ•;qq̄ depends on it (see Appendix C). Within our approach, such study is not difficult to carry out.
However, it is not one of our priorities and we have preferred to not dedicate time to establish the meson
mass dependence in function of the gauge group. Indeed, as initially mentioned, the principal interest of
the T -matrix computations at T = 0 is to extract and to check the parameters we will use at T 6= 0 since,
according to our knowledge, there is no available data concerning the QCD spectrum at finite-temperature
regime.

4.5 QCD spectrum at finite temperature
Now that we have shown that the QCD spectrum at T = 0 is quite well reproduced with our set of

parameters, we can explore the finite-temperature regime in order to see whether or not such bound states
survive above the critical temperature of deconfinement, Tc. This study requires a correct inclusion of the
in-medium effects at the level of the potential, the masses and the propagator. This will be the point of the
following discussion. The outcomes will be presented just hereafter.

4.5.1 Two-body potential and quasiparticle thermal mass
To fix the two-body potential and the quasiparticle mass at finite temperature, we have adopted a pro-

cedure similar to the one proposed in [Cabr07] in the case of heavy quark-antiquark bound states. The first
step is to take some input from lQCD, from which accurate computations of the static free energy of a quark-
antiquark pair bound in a colour singlet F1(r, T ), are available. In particular, computations in quenched 7

SU(3) lQCD can be found in [Kacz02].
However, there is still debate on the proper potential term to use in phenomenological approaches,

namely F1 or the internal energy U1 = F1 − T∂TF1. Spectral function analysis of heavy quarkonia from
lQCD simulations of euclidean correlation functions typically suggest that the ηc and J/ψ states may survive
up to about 2Tc. Such values of the dissociation temperature can be accommodated if the singlet internal en-
ergy is used in potential model calculations [Albe05, Asak04, Riek10, Wong06]. That is the reason why we
prefer developing an approach in which the internal energy extracted from lQCD [Kacz02] is the potential
term, like in [Cabr07]. It is worth insisting on the fact that it is a choice to make in order to start the study.

7. In [Kacz05], results for unquenched SU(3) lQCD can also be found. The inclusion of quark loops is considered, which is an
important refinement if one deals with mesons. Nevertheless, the free energy obtained is really closed to the quenched one, that is the
reason why all our computations are done with the quenched form.
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Nevertheless, the debate remains open and the following approach can be quite easily redone in function of
its evolution.

For numerical convenience, it is preferable to deal with a fitted form of the potential, rather than with
interpolations of the available points. To fit the data of [Kacz02], the analytic form proposed by Satz
in [Satz06] is used:

F1(r, T ) =
σ

µ(T )

[
Γ(1/4)

23/2Γ(3/4)
−

√
µ(T )r

23/4Γ(3/4)
K1/4

(
µ(T )2r2

)]
− 4

3

α

r

[
e−µ(T )r + µ(T )r

]
. (4.5.1)
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Figure 4.6: Static free energy F1(r, T ) of a quark-antiquark pair bound in a colour singlet, computed in
SU(3) quenched lattice QCD and plotted for different temperatures (symbols). Data are taken from [Kacz02]
and expressed in units of

√
σ, with r the quark-antiquark separation. The fitted form (4.5.1) (solid lines) is

compared to the lattice data.

The way of obtaining this formula is driven by the following physical idea. First, it is known that the static
quark-antiquark energy at zero temperature is accurately fitted by a so-called funnel shape

F1(r, 0) = σ r − 4

3

α

r
= U1(r, 0), (4.5.2)

as seen in Section 4.4.1. When T > 0, one can imagine that this potential is progressively screened by
thermal fluctuations. An effective theory for studying the screening of a given potential is the Debye-Hückel
theory [Deby23], in which the thermal fluctuations are all contained in a screening function µ(T ), that
modifies the zero-temperature potential and eventually leads to the form (4.5.1).

The explicit form of µ(T ) is unknown a priori and has to be fitted on the lattice data. As it can be seen
in Fig. 4.6, the form

µ(T )√
σ

= 0.537
T

Tc
+ 0.644 + 0.112 ln

(
T

Tc
− 0.967

)
, (4.5.3)

with α = 0.141 and σ = 0.176 GeV2, provides an accurate fit of the lattice data. A more complete fit should
be such that µ(0) = 0, but our model is not intended to be able to “cross” the phase transition in Tc. The
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Figure 4.7: Internal energy U1(rT ) of a quark-antiquark pair bound in a colour singlet, computed from the
fitted form (4.5.1) and plotted for different temperatures (solid lines).

simple form (4.5.3) is already satisfactory. The corresponding internal energy U1 = F1 − T∂TF1 is plotted
in Fig. 4.7. Let us remark that F1(r, T ) and U1(r, T ) depend on T/Tc.

Now that a fitted form of potential is proposed in order to interpolate it between (1-3) Tc, we have to
scale it to any two-body colour representation. Indeed, since we are above Tc, there is no reason to only
consider colour-singlet representation. There is no more confinement. As at zero-temperature regime, we
assume the Casimir scaling (4.3.13). Given U1(r, T ) extracted from quenched SU(3) lattice data, the colour
factor of the singlet quark-antiquark pair reads

κ•;qq̄ = −4

9
. (4.5.4)

According to (4.3.12), the potential (in position space) between two quasiparticles in the colour channel C is
then given by

V (r, T ) =
κC;p1p2

κ•;qq̄
[U1(r, T )− U1(∞, T )] , (4.5.5)

where the long-distance limit of the potential has to be normalized to zero in order to ensure the convergence
of the scattering equation and to perform the Fourier’s transformation. This is actually a standard procedure
in finite-temperature calculations.

Moreover, considering the suggestion made in [Mocs05], the nonzero value of U1(∞, T ) should even-
tually be responsible of an effective in-medium contribution to the particle mass. The intuitive argument is
that, when both particles are infinitely separated, they no longer interact. Therefore, the remaining potential
energy should be seen as a manifestation of self-energy effects induced by the surrounding medium. These
effects are encoded in the model as a mass shift to the “bare” quasiparticle mass, whose value has been fixed
in Section 4.4.

Since U1(∞, T ) is then two times the in-medium SU(3) quark mass, the adaptation to any quasiparticle
and to any gauge group must be done by extracting the correct colour-dependence. From Hard-Thermal-
Loop (HTL) computations [Blai99], the quark self-energy colour dependence is given by Cq2/C

adj
2 at the
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first order when it is added in the propagator as a mass term (m2), that means here that

U1(∞, T )

2
= ∆(T )

√
Cq2

Cadj2

∣∣∣∣∣
SU(3)

. (4.5.6)

So,

∆(T ) =
3U1(∞, T )

4
, (4.5.7)

and ∆(T ) is considered as an universal quantity within our approach.
For the cases under study, we finally have that the gluon thermal mass reads

δg(T ) =

√
Cg2

Cadj2

∆(T ) = ∆(T ), (4.5.8)

since Cg2 = Cadj2 . So, δg(T ) is gauge-group independent. For quark, we have

δq(T ) =

√
Cq2

Cadj2

∆(T ). (4.5.9)

Instead of gluon, the in-medium effects are thus gauge-group dependent.
Finally, the effective in-medium gluon mass is given by

mg(T )2 = m2
g,0 + δg(T )2, (4.5.10)

while for quarks, it is
mq(T )2 = m2

q,0 + δq(T )2, (4.5.11)

in the same spirit as (4.4.4). δg and δq depend on T/Tc. The values mg,0 and mq,0 are taken from the
zero-temperature analysis. Let us note that the values of V sbgg and V sbqq̄ are not useful for the present study.

With lattice data taken from [Kacz02], the quasiparticle mass dependence on temperature is given in
Fig. 4.8. As in standard quasiparticle approaches, the particle mass is rising quite sharply when T → Tc
(with T > Tc) [Pesh96]. It is worth mentioning that in a recent work [Rugg12], it has been shown that
the inclusion of a Polyakov loop dynamics leads to a gluon mass with a very smooth dependence on T .
From HTL calculations, it is expected that at very high T , m(T ) ∼

√
αS(T )T [Blai99, Buis10b], with a

quasilinear behaviour for T & 2Tc. This is not the case in our model since our ansatz for the particle mass is
not inspired from HTL theory but is instead completely driven – with no freedom – by data from [Kacz02],
limited to 3Tc. It could be interesting that new data above this temperature be computed in order to confirm
or to infirm the decrease of m(T ).

It is obvious that the problem of the in-medium quasiparticle mass is far more complicated than the
simple prescriptions (4.5.10) and (4.5.11), that have to be seen as valid in a first approximation only. A more
refined mass should probably be momentum-dependent. There is indeed an increasing amount of evidences
favouring the existence of a dynamically generated particle mass due to non-perturbative effects, at least
at zero temperature. For the gluon, such a dynamically generated mass m(p), with m(∞) = 0 and m(0)
finite, is favoured by some lattice results in Landau gauge, see e.g. [Cucc10, Oliv11]. Also non-perturbative
field-theoretical calculations, using for example the pinch technique, find a non-zero dynamically generated
gluon and quark mass [Agui09, Bino09, Corn82]. It is also worth quoting the recent Coulomb gauge study
[Rein11], which is a first step in view of understanding the behaviour ofmg(p, T ) at a non-perturbative level.
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Figure 4.8: Thermal quasiparticle mass (GeV), given by (4.5.10) or (4.5.11) for a gauge group SU(3), as a
function of the ratio T/Tc. Note that the gluon mass is independent of the gauge group.

From a different perspective, non-perturbative contributions to the gluon potential and mass are analysed at
finite temperature in connection with the gluon condensates in [Megi07]. Such improvements of the particle
masses can be in principle addressed within our approach by evaluating the self-energies from the T -matrix,
see e.g. [Mann05]. This study is left for future works.

4.5.2 In-medium effects
As in [Cabr07], we have also added in-medium effects in our T -matrix computations: The Bose-

enhancement and the Pauli blocking. According to [Prat94], these in-medium effects change the cross-
section as follows,

σmed = σvac(1± fp1
)(1± fp2

), (4.5.12)

where σvac and σmed are respectively the cross-section in the vacuum and in the medium, and where fp is
the distribution function of the p-species. If the species is a boson,

fp(ε) =
1

eβ(ε−µ) − 1
, (4.5.13)

while if the species is a fermion,

fp(ε) =
1

eβ(ε−µ) + 1
, (4.5.14)

where µ is a possible chemical potential. The sign choice in (4.5.12) also depends on the nature of the
particles: + for bosons and − for fermions. At the level of the T -matrix LS equation, the in-medium effects
are then included as follows [Cabr07]

TJP (C)(E; q, p) = VJP (C (q, p) +
1

8π3

∫ ∞
0

dk k2 VJP (C)(q, k)GBbS(E; k)

× TJP (C)(E; k, p) [(1± fp1
)(1± fp2

)] . (4.5.15)
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4.5.3 Glueball spectrum

Since all the modifications generated by the medium are now introduced, we can compute the lightest
glueball spectrum at finite temperature by using the formula (4.5.15) with the potential (4.5.5) 8 and the
threshold mass 2mg(T ), given by (4.5.10). Tc is fixed to 0.3 GeV in our computations, in agreement with
the lQCD value [Yagi05]. The results are shown in Table 4.5 for the different allowed colour channels.
Indeed, since there is no confinement any more, there is no more reason to only consider the colour-singlet
representation. The results displayed in Table 4.5 were published in [Lacr13] without the inclusion of the
Bose-enhancement. Nevertheless, it was checked that these results were slightly modified by the inclusion
of the in-medium effects. So, this finding leads to the conclusion that the Bose-enhancement is negligible
for these systems (see Section 4.5.4).

Channel Singlet Adjoint (2,0)
Group All SU(Nc ≥ 3) G2

T/Tc 2mg 0++ 0−+ 2++ 0++ 0−+ 2++ 0++ 0−+ 2++

1.05 2.73 1.88 2.27 2.27 2.50 2.70 2.64 2.58 - 2.68
2.72

1.10 2.20 1.90 2.18 2.09 2.15 - - 2.19 -
1.15 1.98 1.84 - 1.96 - -
1.20 1.86 1.80 -
1.25 1.79 1.76
1.30 1.74 1.73
1.35 1.70 -

Table 4.5: Masses (GeV) of lowest-lying glueballs above Tc (Tc = 0.3 GeV). A line mark the temperature
at which a bound state is not detected any more.

We only consider in Table 4.5, the lightest glueball spectrum with SU(Nc) and G2 gauge groups in
order to not complicate the discussion. Indeed, some predictions for other gauge groups can be easily done
by analysing the factor κC;gg . Since the lightest glueballs are JPC symmetric, only the symmetric colour
representations have to be taken into account here. Naturally, the singlet is one of them with κ•;gg = −1 for
all the gauge groups. Moreover, the gluon mass is independent of Nc. This implies that the masses of the
colour-singlet bound states are the same for all the considered gauge groups.

The evolution of the imaginary part of the on-shell T -matrix in the singlet scalar channel versus the
temperature is displayed in Fig. 4.9: This gives an overall picture of the glueball progressive dissolution in
the medium. The peak in the imaginary part, depicting a bound state, becomes smaller and smaller before
melting into the continuum (and thus detF does not vanish any more below threshold) as the temperature
is increased. Still, for T > Tdis, Tdis being the dissociation temperature of the considered bound state, and
above the threshold energy, one finds sizable strength from the bound state relic, the T -matrix exhibiting a
resonant behaviour well beyond the Born approximation.

Concerning the pseudoscalar and the tensor channel, singlet bound states are found up to 1.10-1.15 Tc.
Note that states in the pseudoscalar channels, which in our approach correspond to pure P -wave state, are
just mildly bound due to the centrifugal barrier. The tensor states, having a S-wave component, lie between
the scalar and pseudoscalar channels, regarding binding and dissociation temperatures.

8. Remember that a given JPC glueball potential is a peculiar combination of partial-wave potentials, see Section 4.4.2.
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Figure 4.9: ImT for gg-scattering in the 0++ singlet channel for various T with Tc = 0.3 GeV.
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Figure 4.10: T -matrix for gg-scattering in the scalar singlet and scalar symmetric adjoint channels for
SU(Nc ≥ 3). From left to right the temperatures are (1.05;1.10;1.15) Tc, with Tc = 0.3 GeV.

Bound states in the symmetric adjoint channel of SU(Nc ≥ 3) and (2,0)S of G2
9 are also studied (see

Table 4.5), although they are less bound since κC;gg is respectively −1/2 and −5/12. The scalar channel

9. The representations of SU(Nc) and G2 are given in Appendix C.
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disappears above 1.10 Tc, whereas in the pseudoscalar and tensor channels, bound states are lying right
below the threshold energy at the lowest considered temperature (i.e. 1.05 Tc). The differences between
the singlet and these two channels have to be attributed to the strength of the potential, which is two times
smaller than in the colour singlet. The evolution of the T -matrix in the singlet and adjoint scalar channel
versus the temperature is displayed in Fig. 4.10. One clearly sees the disappearance of this bound state at
1.15 Tc while the singlet state is still well bound at this temperature.

There are in general other coloured channels than the singlet and adjoint one. For SU(Nc) gauge groups
in particular, the only one that could a priori lead to bound states (since the (2, 0, . . . , 0, 2)S is repulsive) is
the (0, 1, 0, . . . , 0, 1, 0)S channel (see Appendix C), which is weakly attractive and exists only for Nc > 3.
It has been checked that even the scalar state (the most attractive channel) is unbound at Nc = 4. Hence this
colour channel does not admit bound states within our model.

Only a few papers are devoted to the existence of glueballs at finite temperature on the lattice [Ishi02,
Meng09], and the interpretation of their results depends mostly on the way the glueball correlators are fitted:
Either a single narrow pole, or a Breit-Wigner shape. Let us focus on the narrow pole fit, which identifies
bound states in a way similar to ours. The main observation to be made from [Ishi02, Meng09] is that
the glueball masses decrease above Tc with increasing temperature, with a mass near Tc that is similar to
the zero temperature one. This non-trivial behaviour is well-checked within our approach. Two competing
effects are responsible for the temperature evolution of the spectrum: reduction of the binding energy and
downward shift of the threshold energy due to the decrease of the gluon mass. Overall, the singlet scalar
bound state experiences a mild shift to lower energies and dissociates at Tdis ≈ 1.3Tc. This is the value
from which detF does not vanish any more. Nevertheless, considerable strength remains at threshold up to
about 1.5Tc. This is in qualitative agreement with the spectral function analysis of Euclidean correlators by
the CLQCD Collaboration [Meng09].

4.5.4 General QCD spectrum

In order to complete the two-body QCD spectrum at finite temperature, we have to consider much more
states than the mesons, as done at T = 0. Indeed, since we are in the deconfinement range, the formation of
bound states as qq, q̄q̄, qg and q̄g is also allowed. However, due to the assumed universality of our interaction,
the procedure is almost the same as the one developed to analyse the glueball spectrum. Therefore, studying
such states is just a matter of computational time.

In this section, we only show the outcomes with a gauge group SU(3). Even if within our approach, the
generalization to any gauge group is straightforward (it just requires a careful enumeration of all the colour
channels and the computation of all the associated mass and T -matrix files), this study is left for further
developments. Indeed, the discussion is already quite dense due to the large number of two-body channels
to consider.

In order to stay coherent with the lQCD data [Aoki06] concerning Tc, this value is moved to 0.15 GeV
within our calculations while in the glueball sector, a value of 0.3 GeV was used. Since in-medium effects
are included in the T -matrix (4.5.15), a change of Tc has to affect the glueball spectrum. Fortunately, if we
draw a comparison between Table 4.5 and Table 4.6, we can notice that the effect of the Bose-enhancement
is quite negligible as already mentioned. So, the all qualitative features discussed in Section 4.5.3 remain
unchanged and the quantitative values are just slightly shifted.

The qq̄, qq and q̄q̄ channels are also analysed for L = 0 or L = 1 as at T = 0; this generates all the
states presented in Table 4.7. The meson sector has not to respect any Pauli’s symmetry principle unlike the
qq and q̄q̄ sectors with two same flavours of (anti)quarks, for which the selection rule is summarized in the
following tables.
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Channel Singlet Adjoint
T/Tc 2mg 0++ 0−+ 2++ 0++ 0−+ 2++

1.05 2.73 1.90 2.29 2.29 2.52 2.71 2.65
1.10 2.20 1.92 2.19 2.10 2.16 - -
1.15 1.98 1.87 - 1.97 -
1.20 1.86 1.82 -
1.25 1.79 1.78
1.30 1.74 -

Table 4.6: Masses (GeV) of lowest-lying SU(3) glueball spectrum above Tc (Tc = 0.15 GeV). A line mark
the temperature at which a bound state is not detected any more.

u and d quarks

Colour L, S, I

A (−1)L+S+I = 1

S (−1)L+S+I = −1

s quarks

Colour L, S

A (−1)L+S+1 = 1

S (−1)L+S+1 = −1

A new quantum number is added for the u and d quarks : I stands for the isospin.

qq̄ sector

J L S P C JPC

0 0 0 − + 0−+

1 1 + + 0++

1 1 0 + − 1+−

0 1 − − 1−−

1 1 + + 1++

2 1 1 + + 2++

qq and q̄q̄ sector

J L S P JP

0 0 0 + 0+

1 1 − 0−

1 1 0 − 1−

0 1 + 1+

1 1 − 1−

2 1 1 − 2−

Table 4.7: Allowed JP states for qq̄, qq and q̄q̄

The Tables 4.8 and 4.9 summarize all our data for the lightest quarks. Several comments can be done.
Unlike to the glueball sector, the two-body finite-temperature spectrum made of (anti)quarks is poor. Only
states with L = 0 survive in all the attractive channels. This is coherent with what we have observed for
glueballs. Indeed, only states with a large S-wave proportion survive quite well above Tc. Nevertheless,
they melt here quickly inside the medium even if considerable strength remains at threshold up to about 1.3
Tc. Only the strange meson is still present at 1.10 Tc, the last temperature before the melting of all the bound
states. This observation could be understood by the comparison of the κC magnitude. Indeed, κ•;gg = −1,
which is more than two times the magnitude of a κC involved in the interactions between (anti)quarks.

Another interesting remark to do at this stage is the sameness of the bound-state masses for all the type
of interactions: light-light, strange-strange or light-strange. This can be understood by remembering that
the mass of the quasiparticle is given by (4.5.11). Indeed, within this formula, the bare light (0.3 GeV) and
strange (0.4 GeV) quark masses are really close to each other and so, significant differences as observed
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in the T = 0 spectrum can not be reached here. Moreover, unlike the glueball sector, no meson masses
around Tc are close to the T = 0 ones. Since it does not exist any results about the meson spectrum at finite
temperature, we have no check of this feature.

Concerning the qg and q̄g, the building of the JP states requires the helicity formalism since the gluon is
transverse. The states on which we focus are given in Appendix B. Due to their partial-wave decomposition,
the potential reads

(J1) V 1
2

+(q, q′) = V1(q, q′), (4.5.16)

(J2) V 3
2
−(q, q′) =

1

6
V0(q, q′) +

5

6
V2(q, q′), (4.5.17)

(J3) V 3
2
−(q, q′) =

1

2
V0(q, q′) +

1

2
V2(q, q′), (4.5.18)

(J4) V 1
2
−(q, q′) =

2

3
V0(q, q′) +

1

3
V2(q, q′), (4.5.19)

(J5) V 3
2

+(q, q′) =
7

10
V1(q, q′) +

3

10
V3(q, q′), (4.5.20)

(J6) V 3
2

+(q, q′) =
9

10
V1(q, q′) +

1

10
V3(q, q′). (4.5.21)

Note that the parity is given for qg and has to be reversed for q̄g. The nomenclature J1 → J6 is used for
simplicity.

From Table 4.9, similar comments can be done and can explain the quick melting of these bound states
inside the plasma. Therefore, the main conclusion of this study is that only glueballs seem to significantly
survive above Tc.

Nevertheless, it is worth quoting the works of [Hees09, Mann05] in which a Brueckner many-body T -
matrix approach similar to ours is used to evaluate elastic heavy-quark-light-quark scattering amplitudes and
to study the properties of light (anti-) quarks in a QGP at moderate temperatures, T ∼ 1-2 Tc. Heavy-quark-
light-quark meson and diquark channel resonance states seem to be formed for temperatures up to ∼ 1.5 Tc.
Moreover, it is also important to remember that heavy quarkonia, as ηc and J/ψ, may survive up to about
2Tc [Albe05, Asak04, Cabr07, Riek10, Wong06]. This studies are left for further developments within our
approach.
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Light quark sector
Channel qq̄ (L = 0) qq̄ (L = 1) qq/q̄q̄ (L = 0) qq/q̄q̄ (L = 1)
κC -4/9 1/18 -4/9 1/18 1/9 -2/9 1/9 -2/9

T/Tc 2ml

1.05 1.67 1.51 - - - - 1.67 - -
1.10 1.28 - -

Strange quark sector
Channel qq̄ (L = 0) qq̄ (L = 1) qq/q̄q̄ (L = 0) qq/q̄q̄ (L = 1)
κC -4/9 1/18 -4/9 1/18 1/9 -2/9 1/9 -2/9

T/Tc 2ms

1.05 1.76 1.57 - - - - 1.74 - -
1.10 1.38 1.38 -
1.15 1.23 -

Light-strange quark sector
Channel qq̄ (L = 0) qq̄ (L = 1) qq/q̄q̄ (L = 0) qq/q̄q̄ (L = 1)
κC -4/9 1/18 -4/9 1/18 1/9 -2/9 1/9 -2/9

T/Tc ml +ms

1.05 1.71 1.54 - - - - 1.71 - -
1.10 1.33 - -

Table 4.8: Masses (GeV) of lowest-lying SU(3) QCD spectrum above Tc (Tc = 0.15 GeV). A line mark the
temperature at which a bound state is not detected anymore.



4.5. QCD SPECTRUM AT FINITE TEMPERATURE 91

Light (anti)quark - gluon sector
Channel J1 J2 J3
κC -1/2 1/6 -1/6 -1/2 1/6 -1/6 -1/2 1/6 -1/6

T/Tc ml +mg

1.05 2.20 - - - - - - 2.13 - -
1.10 1.74 -

Channel J4 J5 J6
κC -1/2 1/6 -1/6 -1/2 1/6 -1/6 -1/2 1/6 -1/6

T/Tc ml +mg

1.05 2.20 2.06 - - - - - - - -
1.10 1.74 -

Strange (anti)quark - gluon sector
Channel J1 J2 J3
κC -1/2 1/6 -1/6 -1/2 1/6 -1/6 -1/2 1/6 -1/6

T/Tc ms +mg

1.05 2.24 2.31 - - - - - 2.17 - -
1.10 1.79 - -

Channel J4 J5 J6
κC -1/2 1/6 -1/6 -1/2 1/6 -1/6 -1/2 1/6 -1/6

T/Tc ms +mg

1.05 2.24 2.10 - - - - - - - -
1.10 1.79 -

Table 4.9: Masses (GeV) of lowest-lying SU(3) QCD spectrum above Tc (Tc = 0.15 GeV). A line mark the
temperature at which a bound state is not detected anymore.
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Chapter 5

Thermodynamics of the QCD
Deconfined Phase

Within this chapter, we will study the thermodynamics of the QCD deconfined phase by resorting to the
Dashen, Ma and Berstein’s (DMB) formalism [Dash69]. Such a formalism is particularly well suited for
systems whose microscopic constituents behave according to relativistic quantum mechanics. The QGP is
indeed identified here to a quantum gas of gluons and quarks, which are seen as the effective degrees of
freedom propagating in the plasma 1. This assumption is actually common to all the so-called quasiparticle
approaches, see e.g. [Buis10a, Gore95]. The particularity of our work is that it is a priori possible to
investigate the behaviour of the QGP just above the critical temperature of deconfinement Tc, in the strongly-
interacting regime. In this temperature range, the interactions between the particles remain still important
and so, are possibly sufficient to bound quasiparticles; Remember the T -matrix computations 2 driven in
Chapter 4.

However, the concept of quasiparticle itself could become questionable in such a strongly-interacting
regime. Indeed, such interactions could cause large width. A consensus seems to exist about the relevance
of this notion for plasma above 3Tc, but the situation is less clear below [Blai05]. A first encouraging
remark is that the notion of quasiparticles has been successful in condensed matter physics where strongly-
correlated systems are well described by effective field theories. This does not prove that the situation
is similar in hot QCD, but this kind of approach has already produced very good results [Blum11]. It
has also been suggested that the assumed smooth crossover between confinement and deconfinement may
make it possible to approximate the QCD thermodynamics near crossover in terms of the quasiquarks and
quasigluons [Fuku13]. In order to perform a coherent description of the QGP, it is possible to compute
the width of the quasiparticles by a self-consistent procedure [Mann05, Tolo08]. This more sophisticated
task can be by-passed by the use of a constant width to estimate the effect of a quasiparticle self-energy
[Vanh08, Hugg12], as done in Section 4.3.3.

In the first section of this chapter, we will expose the main principles of the DMB formalism, and we will
directly apply it to QCD. A restriction to the two-body interactions will be used and some considerations
about the Born approximation will be also presented.

1. Remember that the hadronic degrees of freedom can not describe any more thermodynamics above a certain temperature, called
the Hagedorn temperature, Th (see Chapter 3).

2. Such a metastable phase in which hadron, quark and gluon degrees of freedom coexist, is allowed between Tc and Th (see
Chapter 3).
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Then, we will study different thermodynamic situations. The first case will be the gluon plasma. This
latter is interesting for several reasons. Firstly, from technical point of view, we have only to take care of one
particle species. It simplifies drastically the problem while the main feature of the description, i.e. the explicit
inclusion of interactions in a quasiparticle approach, is kept. Secondly, the pure-gauge thermodynamic
features (in particular, the EoS) are well-known in lQCD; This will allow an accurate comparison between
our phenomenological approach and the lQCD calculations. Finally, with this simple case, we will be also
able to study the generalization of the formalism to any gauge group. A particular attention will be dedicated
to SU(Nc) and the large-Nc limit, and to G2. All these results are developed in our paper [Lacr13].

Another thermodynamic situation of interest will be naturally the study of the full QGP. A plasma with
two light species will be firstly studied in order to identify the main features of the quark inclusion. Then,
we will discuss the 2 + 1 QGP 3. Of course, our data will be compared to lQCD ones. These latter are mainly
available at zero or weak baryonic potential µ. These two areas will be thus investigated. This last work is
planned to be presented in a future paper.

5.1 Dashen, Ma and Bernstein’s formalism applied in QCD

5.1.1 Generalities
The DMB formalism [Dash69] is a formulation of statistical mechanics in terms of S-matrix (or equiva-

lently, T -matrix) elements which is built to study gaseous systems of
(non-)relativistic particles. The main outcome is a prescription to compute the grand canonical potential Ω
defined in (2.1.4), for such systems. This latter, expressed as an energy density, is given by

Ω = Ω0 +
∑
ν

[
Ων −

eβ~µ·
~N

2π2β2

∫ ∞
Mν

dε

4πi
ε2K2(βε) Trν

(
SS−1←→∂ε S

)∣∣∣
c

]
. (5.1.1)

This prescription simply reduces to the calculation of virial coefficients in the non-relativistic case.
In the above equation, the first term Ω0, is the grand canonical potential of the free relativistic particles,

i.e. the remaining part of the grand canonical potential if the interactions are turned off. The second term
accounts for interactions in the plasma and is a sum running on all the species, the number of particles
included, and the quantum numbers necessary to fix a channel. The characteristics of all these channels is
generically denoted ν. The vectors ~µ = (µ1, µ2, . . . ) and ~N = (N1, N2, . . . ) contain the chemical potentials
and the particle number of each species taking part in a given scattering channel.

Despite the fact that the T -matrix allows an unified treatment of bound and scattering states, we will
follow precisely the procedure of [Dash69] and consider separately the contributions below and above the
threshold 4 Mν . Below the threshold, one has Ων , the grand canonical potential coming from bound states in
the channel ν, seen as free additional species in the plasma, and appearing as poles of the T -matrix. Above
the threshold, one has the scattering contribution, where the trace is taken in the center-of-mass frame of the
channel ν and where S is the S-matrix, depending in particular on the total energy ε. The symmetrizer S
enforces the Pauli’s principle when a channel involving identical particles is considered, and the subscript c
means that only the connected scattering diagrams are taken into account. Notice that K2(x) is the modified
Bessel function of the second kind, and that the notation A

←→
∂xB = A(∂xB)− (∂xA)B is used.

By definition, S = 1 − 2πi δ(ε − H0)T , where T is the off-shell T -matrix and where H0 is the free
Hamiltonian of the system. A convenient way to compute the T -matrix is to solve the LS equation for the

3. 2+1 means two light quark flavours (u and d) and one strange quark (s).
4. Within this approach, the threshold is the summation on the masses of all the particles included in a given channel ν.
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off-shell T -matrix as seen and carried out in Chapter 4. Once the T -matrix is known, the plasma EoS is
obtained from (5.1.1) and the pressure is simply given by (recall Section 2.1.1)

p = −Ω. (5.1.2)

The other thermodynamic observables can derived from p, like the entropy density or the trace anomaly
(∆ = e− 3 p, where e is the energy density).

For later convenience, the thermodynamic quantities will be normalized to the SB pressure, which is
defined as

pSB = − lim
mi→0

Ω0, (5.1.3)

mi being the masses of the particles propagating in the medium. This is a standard way to present results,
especially in lQCD. Moreover, the normalized trace anomaly can be computed by the following formula

∆

pSB
= −β

(
∂β

p

pSB

)
βµ

. (5.1.4)

5.1.2 Application in QCD

Let us now particularize the general formalism presented in the previous section to QCD. The bosonic
degrees of freedom propagating in the plasma are then the quasigluons while the fermionic ones are the
quasiquarks. According to standard formulas in statistical mechanics, one has that the grand canonical
potential for free relativistic particles is

ΩQCD
0 = 2 dim adj ωB0 (mg, µg)︸ ︷︷ ︸

gluons

(5.1.5)

+ 2

Nf∑
n=1

dim qn ω
F
0 (mqn , µqn)︸ ︷︷ ︸

quarks

+ 2

Nf∑
n=1

dim qn ω
F
0 (mqn ,−µqn)︸ ︷︷ ︸

antiquarks

,

where the quasigluons 5 g are a priori supposed to have a mass mg and the quasiquarks qn, a mass mqn . µg
and µqn are respectively the chemical potential of the gluon and the considered quark flavour. The particle
degrees of freedom are the following. The gluon is a transverse spin-1 (so, two spin projections) boson lying
in the adjoint representation of the gauge group, while the quark (resp. antiquark), existing in Nf different
flavours, is a spin-1/2 fermion belonging in the fundamental (resp. conjugate) gauge-group representation.
The grand canonical potential per degree of freedom associated to a bosonic species ωB0 (m,µ), and to a
fermionic species ωF0 (m,µ), with mass m are given by

ωB0 (m,µ) =
1

2π2β

∫ ∞
0

dk k2 ln
(

1− e−β(
√
k2+m2−µ)

)
, (5.1.6)

ωF0 (m,µ) = − 1

2π2β

∫ ∞
0

dk k2 ln
(

1 + e−β(
√
k2+m2−µ)

)
. (5.1.7)

5. The term “quasiparticle” enforces the fact that the particle acquires effective properties. However, the prefix “quasi” will be
given up in the following, in order to not overload the notation.
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Equation (5.1.3) leads to

pSB =
π2

45β4

dim adj +
7

4

Nf∑
n=1

dim qn

 . (5.1.8)

Concerning the second and third terms in (5.1.1), the sum
∑
ν now explicitly reads

∑
(ng,nq,nq̄)

∑
C
∑
JP ,

where ng , nq , nq̄ are respectively the number of gluons, quarks and antiquarks involved in the interaction
process. As soon as ng > 2 (and in minor measure, nq ,nq̄ > 2), the determination of the allowed colour
channels and of the correct symmetrized gluon states generally becomes a painful task, to which the problem
of finding the T -matrix in many-body scattering must be added. Intuitively, one can nevertheless expect the
dominant scattering processes to be two-body ones. These processes are the only ones considered here.

After simplification, the grand canonical potential (5.1.1) eventually reads

ΩQCD
(2) = ΩQCD

0 (5.1.9)

+
∑

ng+nq+nq̄=2

eβ(µ1+µ2)
∑
C

∑
JP

dim C (2J + 1)

{
ω
B/F
0 (MBS

C,JP )

+
1

2π2β2

∫ ∞
m1+m2

dε ε2K2(βε) TrC,JP
[
(δReT )′

− 2π
(
(δReT )(δImT )′ − (δImT )(δReT )′

)]}
,

where the summation is restricted to two-body channels i.e. gg, qq, q̄q̄, qq̄, gq and gq̄. m1 and m2 are the
masses of the two considered particles while µ1 and µ2 are the associated chemical potential The subscript
“prime” is the derivative respective to the energy and MBS

C,JP are the masses of the two-body bound states
(if they exist) with colour C and quantum numbers JP . In the remaining trace, it is understood that the
T -matrix is computed in a given two-body channel with colour C and quantum numbers JP , and that the
Dirac δ reads δ(ε − ε1(q) − ε2(q)), with the dispersion relation εi(q) =

√
q2 +m2

i . These T -matrices are
computed thanks to the method detailed in the previous chapter.

It is more convenient to express (5.1.9) as

ΩQCD
(2) = ΩQCD

0 + ΩQCD
bs + ΩQCD

s , (5.1.10)

with
ΩQCD
bs =

∑
ng+nq+nq̄=2

eβ(µ1+µ2)
∑
JP

(2J + 1)
∑
C

dim C ωB/F0 (MBS
C,JP ), (5.1.11)

is the contribution of bound states inside the plasma while ΩQCD
s is the scattering part given by

ΩQCD
s =

∑
ng+nq+nq̄=2

eβ(µ1+µ2)
∑
C

∑
JP

dim C
2π2β2

(2J + 1)

∫ ∞
MC,JP

dε ε2K2(βε)

× TrC,JP

[
(δReT )

′ − 2π
(

(δReT )(δImT )′ − (δImT )(δReT )′
)]
. (5.1.12)

To produce numerical data, it is thus necessary to express ΩQCD
s in momentum space. Using the following

definitions concerning the trace of an operator A in momentum space

TrA =
1

(2π)3

∫ ∞
−∞

d~q 〈~q |A|~q 〉, (5.1.13)
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the partial-wave expansion

〈~q |A|~q ′〉 = A(q, q′, q̂.q̂′) =
1

4π

∑
l

(2l + 1)Al(q, q
′)Pl(q̂.q̂

′), (5.1.14)

where Pl(x) is the Legendre polynomial of order l, and the fact that a general JP state is a combination of
|2S+1LJ〉 states, (5.1.12) reads after a tedious calculation

ΩQCD
s =

1

64π5β2

∑
ng+nq+nq̄=2

eβ(µ1+µ2)
∑
JP

(2J + 1)
∑
C

dimC (5.1.15)

(
β

∫ ∞
m1+m2

dε ε2 ω(ε) Λ(ε)K1(βε) ReTC,JP (ε;ω(ε), ω(ε))

− 1

16π2

∫ ∞
m1+m2

dε ε2 ω(ε)2 Λ(ε)2K2(βε)

×
[
ReTC,JP (ε;ω(ε), ω(ε))

(
ImTC,JP (ε;ω(ε), ω(ε))

)′]
+

1

16π2

∫ ∞
m1+m2

dε ε2 ω(ε)2Λ(ε)2K2(βε)

×
[(

ReTC,JP (ε;ω(ε), ω(ε))
)′

ImTC,JP (ε;ω(ε), ω(ε))
])

,

where ω(ε) and Λ(ε) are given by

ω(ε) =

√
(ε2 − (m1 +m2)2)(ε2 − (m1 −m2)2)

2ε
, (5.1.16)

Λ(ε) =
ε4 − (m2

1 −m2
2)

ε3
, (5.1.17)

and where TC,JP (ε;ω(ε), ω(ε)) is the on-shell TC,JP -matrix.
Finally, it is worth noticing that, in connection with nuclear many-body approaches, (5.1.9) can be rewrit-

ten in terms of a weighted thermal average of scattering phase shifts by means of unitarity of the S-matrix
[Beth35]. It is also important to add that annihilation processes are not explicitly taken into account within
our approach (remember Section 4.3.2).

5.1.3 Born approximation

The equation (5.1.10) can be considerably simplified by using the Born approximation, i.e. by noticing
that if the interactions are weak enough, T = V + O(V 2). Such conditions are generally expected to be
valid at high enough temperatures, where the typical interaction energy is small with respect to the typical
thermal energy of the particles. In this temperature range, ΩQCD

bs is simply zero since no bound state longer
exists and ΩQCD

s is drastically reduced (see (5.1.18)). Note also that, according to the chosen scaling of
the interactions in function of the gauge-group representation of the particle (remember Section 4.3.2), this
approximation can be relevant when the factor κC;p1p2

is negligible, irrespective of the temperature. Such
cases will be encountered when the gauge group is SU(Nc) (cfr. Appendix C).
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To the first order in V , (5.1.12) becomes

ΩQCD
s =

1

64π5β

∑
ng+nq+nq̄=2

eβ(µ1+µ2)
∑
JP

(2J + 1)
∑
C

dimC

×
∫ ∞
m1+m2

dε ε2 ω(ε) Λ(ε)K1(βε)VC,JP (ε;ω(ε), ω(ε)). (5.1.18)

A useful remark to be done at this stage is that the pairwise structure of V given by (4.3.11), causes V |c in
(5.1.1) to be always vanishing excepted in two-body channels. Here, at the Born approximation, we have
formally to only consider two-body interactions.

After having extracted the colour dependence of the potential as seen in (4.3.12), we have

ΩQCD
s =

1

64π5β

∑
ng+nq+nq̄=2

eβ(µ1+µ2)
∑
JP

(2J + 1)
∑
C

dimC κC;p1p2

×
∫ ∞
m1+m2

dε ε2 ω(ε) Λ(ε)K1(βε) vJP (ε;ω(ε), ω(ε)), (5.1.19)

where vJP is the potential with the quantum numbers of the considered channel. Among the various sum-
mations to be performed, two are of particular interest: The one over the different interacting species, that
can be denoted

∑
(p2,p2), and the one over the colour representations appearing in Rp1

⊗ Rp2
, that is

∑
C .

Expression (5.1.19) is thus proportional to a factor
∑
C dim C κC,p1p2 for a given pair (p1, p2) in a given JP

channel. When the combination of species does not have to respect a symmetry principle, this last sum runs
on all the representations appearing in Rp1

⊗Rp2
. One can then show that∑

C
dim C κC,p1p2

= 0. (5.1.20)

In other words, the average scattering contribution provided by two different species is zero at the Born
approximation, within the prescription of the Casimir scaling.

Indeed, it is known in group theory that the second order Dynkin indices IR in a tensor product obey
a sum rule that can be rewritten using our notations as IRp1 dimRp2

+ IRp2 dimRp1
=
∑
C I
C [Fuch97].

Using CR2 = (dim adj/dimR)IR [Fuch97], one straightforwardly shows that (5.1.20) holds. Note that
(5.1.19) and (5.1.20) are thus a priori non-zero when a symmetry principle has to be respected: The sum-
mation is not performed on all possible colour representations.

5.2 Thermodynamics of the Yang-Mills plasma

5.2.1 Model description

The first case we investigate with the model described in the above section, is the Yang-Mills plasma for
arbitrary gauge groups. It is a plasma only made of gluons, viewed here as particles belonging in the adjoint
gauge-group representation. The two-body contributions to consider in (5.1.9) are thus drastically reduced:
Only the gg-interactions in different JPC and colour channels have to be included. It is worth noticing that
since the JPC summation is infinite, a cut-off is needed. In this section, we follow the channel selection
adopted in [Lacr13] and we only take into account the lightest glueball channels i.e. 0++, 0−+ and 2++,
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also present in the confined phase. Nevertheless, a criterion based on the cross-section will be developed in
Section 5.3.2 and the YM plasma EoS will be recomputed with it.

The basic ingredient underlying the present study is the static quark-antiquark potential computed in
finite-temperature quenched lQCD (see Section 4.5.1). The assumed one-gluon-exchange-like nature of the
two-particle interactions leads to the universality of the momentum-dependent part of the potential, and to
a well-defined prescription for its gauge-group dependence. Similarly, the gluon thermal mass given by
(4.5.10), has a peculiar colour scaling originating in its interpretation as a self-energy term.

More freedom is left for the other numerical parameters at our disposal. First, by dimensional analysis,
it can be checked that our results can all be expressed in terms of the ratios T/Tc, Tc/

√
σ and mg,0/

√
σ

provided that the Bose-enhancement and the Pauli-blocking are not taken into account at the level of the
T -matrix. However and as already mentioned, these effects can be neglected since they only generate slight
changes on the T -matrix computations.

About the ratio mg,0/
√
σ, it is worth mentioning the work [Maas11], in which it is shown that the non-

perturbative gluon propagator at zero temperature (thus mg,0 in particular) shows no significant quantitative
differences when expressed in units of the string tension for the groups SU(Nc) and G2. It is thus tempting
to say that the ratio mg,0/

√
σ may be gauge-group independent also: This was assumed in the previous

bound state analysis. The value mg,0/
√
σ = 1.67 obtained from the zero-temperature glueball spectrum

was retained.
Concerning Tc/

√
σ, the glueball gas models with a Hagedorn spectrum describing the high-lying glue-

ball states (remember (3.3.5) and the discussion in Section 3.4.2) give

Th√
σ

=

√
3

2π
= 0.69. (5.2.1)

This temperature is here interpreted as the deconfinement one. It is worth saying, as discussed in Section 3.3,
that it leads to an EoS in very good agreement with lattice results [Case11, Hage65, Meye09] below Tc. In
this picture, the ratio Tc/

√
σ is gauge-group independent: This is only valid in a first approximation since, for

example, there are lattice evidences showing that Tc/
√
σ is only constant up to 1/N2

c corrections [Luci04].
Nevertheless, such deviation are beyond the scope of this exploratory work. Note that according to [Brau10],
the critical temperature is found to be pretty close to 0.3 GeV up to fluctuation of about 10% for the gauge
groups SU(Nc), Sp(2), and E7. So, that is the reason why we fixed Tc = 0.3 GeV in our calculations for
all the gauge group. This value is in good agreement with (5.2.1) for the value σ = 0.176 GeV2 chosen for
T = 0 calculations (see Section 4.4.1).

5.2.2 Considerations about thermodynamic observables with SU(Nc) and G2

5.2.2.1 SU(Nc) Case

To evaluate the colour dependence of ΩQCD
(2) (given by (5.1.9)) for the YM plasma, we have to analyse

the colour dependence of the different terms. In the free part Ω0, the colour dependence is only included in
the degrees of freedom to take into account and possibly in the thermal mass mg(T ). Nevertheless, this last
one is assumed to be O(1) with respect to the number of colours (see (4.5.10)).

Concerning, the two-body interacting part expressed in terms of the T -matrix elements, the all colour
dependence actually comes from the two-gluon interaction potential only. More precisely, it is included in
the factor (4.3.13), reading in the present case

κC;gg =
CC2 − 2Nc

2Nc
, (5.2.2)
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since Cg2 = Cadj2 = Nc in the SU(Nc) case.
As it can be found and explained in Appendix C, a gauge-group representation of SU(Nc) is denoted by

(a1, . . . , ak, . . . , aNc−1) and corresponds to a Young diagram with ak columns of length k. In the present
case, the adjoint representation of SU(Nc), to which the gluons belong, can be written as the (Nc − 1)-
component vector (1, 0, . . . , 0, 1) in a highest weight representation corresponding to a Young diagram with
1 column of length Nc − 1 and 1 column of length 1. The tensor product of the adjoint representation by
itself gives the allowed two-gluon colour channels:

•S ⊕ (1, 0, . . . , 0, 1)A ⊕ (2, 0, . . . , 0, 2)S

⊕ (1, 0, . . . , 0, 1)S ⊕ (0, 1, 0, . . . , 0, 2)A ⊕ (2, 0, . . . , 1, 0)A

⊕ (0, 1, 0, . . . , 0, 1, 0)S . (5.2.3)

The superscript S/A denotes a symmetric/antisymmetric channel. The first/second/third line exists as soon
as Nc ≥ 2/3/4. Note that in the special case Nc = 2, the above tensor product reduces to (2) ⊗ (2) =
(0)S ⊕ (2)A ⊕ (4)S , and one recovers the usual spin-coupling rules. The dimensions and colour factors of
the representations appearing in (5.2.3) can be found in Appendix C.

In the singlet channel, one has κ•;gg = −1 for any Nc. It is such that T = O(1) since V = O(1). Con-
sequently, the properties of glueballs in singlet above the deconfinement temperature are not dependent of
Nc, in agreement with [Buis11b], where it is suggested that this argument is even gauge-group independent.
The singlet finally brings a contribution O(1) to ΩQCD

(2) since its dimension is 1.
Using the same arguments as for the singlet, one finds that the adjoint channels also lead to a T -matrix

that isNc-independent. Bound states can be formed since the potential is attractive, though less strongly than
for the singlet (see Section 4.5.3). Note that the symmetric adjoint channel is actually absent for Nc = 2.
In this channel, T = O(1) since V = O(1) but, unlike the singlet, its contribution to ΩQCD

(2) is O(N2
c ) since

dim(1, 0, . . . , 0, 1) = N2
c − 1.

The two remaining channels with non-zero κC;gg , namely the (2, 0, . . . , 0, 2) (the 27S for SU(3)) and the
(0, 1, 0, . . . , 0, 1, 0) (only when Nc > 3), have in common that they are symmetric and that their colour
factor scales in 1/Nc, thus vanishes in the large-Nc limit. The fact that V = O(1/Nc) in both cases leads to
the exact large-Nc result

T = V + V G0 V + O(N−3
c ), (5.2.4)

or
T = ± 1

Nc
v +

1

N2
c

v G0 v + O(N−3
c ), (5.2.5)

the ± coming from one channel or another. Because of the weakness of V at large-Nc, one can reasonably
suppose that even the attractive channel (0, 1, 0, . . . , 0, 1, 0) does not lead to the formation of bound states
(as seen in Section 4.5.3). For the two channels under consideration,(

SS−1←→∂ε S
)∣∣∣
c
∝ ∂εRe

(
± v

Nc
+
vG0v

N2
c

)
+ O(N−3

c ). (5.2.6)

One sees in (5.1.9) that the contributions of both channels have to be summed and, since they are symmetric,
the sums on the allowed JPC is identical in both cases. This causes the term in 1/Nc to vanish in the trace
at large-Nc limit, the first non-trivial one being in 1/N2

c , leading to an overall contribution to ΩQCD
(2) scaling

as N2
c because the dimension of both channels scale as N4

c .
Although the colour singlet is relevant in view of studying glueballs, it does not bring any contribution

to the EoS at large-Nc. So, the large-Nc EoS is dominated by free gluons and scattering processes above
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threshold in coloured channels. The more Nc is large, the more important is the gap between the confined
phase and the deconfined one, whose EoS scales respectively as 1 and N2

c . It is indeed known that the large
Nc-case corresponds to a strongly first-order phase transition (Nc = 3 is already weakly first order) [Luci05].

5.2.2.2 G2 Case

Another interesting group under consideration is G2 which is also the best studied gauge group in lQCD
so far beyond SU(Nc). The main features of this group are summarized in Appendix C and are discussed in
what follows.

The adjoint representation of G2 has dimension 14, and reads (0, 1) in a highest weight representation.
The two-gluon channels are then given by

(0, 1)⊗ (0, 1) = •S + (0, 1)A + (0, 2)S + (2, 0)S + (3, 0)A (5.2.7)

or, in terms of the dimensions, 14⊗ 14 = 1 + 14 + 77′+ 27 + 77. Using the same normalization than in the
SU(Nc) case, the colour factors respectively read κC;gg = −1, −1/2, 1/4, −5/12, and 0 [Buis11a, Lipt08].
The colour factors in the singlet and adjoint channels are equal to those of SU(Nc), so the glueball properties
are unchanged in the singlet and antisymmetric adjoint channels. The symmetric (2, 0)S channel is almost
as attractive as the adjoint one: It lead to bound states [Lacr13].

5.2.2.3 Scaling relations for SU(Nc) and G2

Some interesting relations about the scaling of the EoS can be deduced thanks to the T -matrix. Let us
write the on-shell T -matrix as T =

∑
k ak κ

k
C;gg where all ak do not depend on the colour but rather on the

other quantum numbers involved. The colour dependence of the thermodynamic observables is then given
by the quantities

∑
C;A/S dim C κkC;gg . Using the results of Appendix C and of Section 5.2.2.2, one can check

that, for SU(Nc) and G2, ∑
C;S

dim CggκC;gg =
1

2
dim adj, (5.2.8)

∑
C;S

dim Cggκ2
C;gg =

3

4
dim adj, (5.2.9)

∑
C;S

dim Cggκ3
C;gg = −1

8
dim adj, (5.2.10)

∑
C;A

dim CggκkC;gg =

(
−1

2

)k
dim adj. (5.2.11)

For SU(Nc) at large-Nc, the previous relations can be written

∑
C;S

dim CggκkC;gg = N2
c

[(
−1

2

)k
+ δk,1 +

1

2
δk,2

]
+ O(1), (5.2.12)

∑
C;A

dim CggκkC;gg = N2
c

(
−1

2

)k
+ O(1). (5.2.13)
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Again that means that the expected scaling like N2
c (actually like dim adj) 6 of the EoS is found using

the present approach. This can be viewed as a confirmation of the relevance of the chosen colour scaling
(4.3.11).

5.2.3 Equations of state

5.2.3.1 Pressure

Now that we have theoretically studied what happens with the thermodynamic observables for a SU(Nc)
or G2 gauge group, let us compute the EoS. In Fig. 5.1, the normalized pressure p/pSB obtained by our
approach in the SU(3) case is displayed. Its different contributions are also analysed: That is to say the
normalized pressure provided by the free gluon gas with the thermal mass (4.5.10), as well as the ones from
bound-state and from scattering parts using the potential (4.5.5). The situation is similar for the other gauge
groups.

At low temperature (T ≤ 1.3Tc), the bound-state and the scattering parts both give thermodynamic
contributions that modify the free gas pressure, but the effect of the bound-state part is very small. For
T > 1.3Tc, only the scattering part keeps to contribute. As it can be observed in Fig. 5.1, the main global
effect of the interactions, resulting from the combination of various positive and negative contributions, is to
decrease the pressure.

If each contribution is analysed, we can notice that the bound-state formation increases the pressure.
This is due to the fact that the bound states are simply added as new species and do not interact with the
other particles inside the plasma. Indeed, when a glueball melts into the plasma for a given temperature Tdis,
its contribution to the pressure disappears abruptly for T = Tdis. As the global effect of bound states is very
small, this situation is not really disturbing. It is more problematic for the computation of other observables,
as we will see in the next section.

Concerning the two-gluon scattering part, the sign of the pressure contribution can not be analytically
predicted at each temperature. Only at the Born approximation, one can observe that attractive (repulsive)
channels increase (decrease) the pressure. Indeed, for two identical particles, ΩYM

s is given at the Born
approximation by

ΩYM
s =

1

64π5β

∑
JP

(2J + 1)
∑
C,g

dim C κC,gg
∫ ∞

2mg

dε ε3
√
ε2

4
−m2

gK1(βε) vJP . (5.2.14)

In an attractive (repulsive) channel, the sign of the potential is negative (positive). Since ΩYM
s is the scattering

contribution to the grand canonical potential, it can be deduced that attractive (repulsive) channels increase
(decrease) the pressure at the Born approximation, that is to say here, at large temperature. In the present
SU(3) case, the only repulsive channel is the (2, 2)S . That means that the decreasing of the pressure in our
approach compared with the free gas pressure is only driven by the (2, 2)S channel.

It is also worth wondering whether some other considerations arise or not from the high-temperature
limit of our framework concerning the behaviour of the two-body interactions. Using (5.2.8) and (5.2.14)
since the Born approximation is relevant, one can write

ΩYM
s,0++ ∼ 1

64π5β

dim adj

2

∫ ∞
2mg

dε ε3
√
ε2

4
−m2

gK1(βε) v0++ . (5.2.15)

6. This scaling is the one of the SB thermodynamics, which is the behaviour expected for the YM plasma at large temperature.
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Figure 5.1: Normalized pressure p/pSB versus temperature in units of Tc (with Tc = 0.3 GeV), computed
for the gauge group SU(3) in the free gluon gas case and in the full approach. The bound state and scattering
contributions are also indicated. The black curve is the sum of all the gray curves.

Only the scalar channel has been taken into account for the sake of clarity, but the following argument can
be extended to any spin. According to HTL results, it is relevant to assume a simple Yukawa form for the
potential v0 at high temperature [Blai99]. Then,

ΩYM
s,0++ ∼ α

64π5β4

dim adj

2

∫ ∞
2βmg

dxx3K1(x)

√
x2

4 − β2m2
g

x2

4 − β2m2
g + β2M2

, (5.2.16)

whereM is the screening mass of the theory andα is the running coupling constant, a priori both temperature-
dependent. Still in HTL theory, it is found that, because of the running of the strong coupling constant,

lim
β→0

βmg = lim
β→0

βM = 0. (5.2.17)

More precisely, the quark and gluon thermal masses are found to behave as
√
αs(T )T . Consequently, at

high enough temperatures, it is found that

ΩYM
s,0++ ∼ α

dim adj

32π5β4
, (5.2.18)

i.e. a scattering contribution that has the same behaviour with respect to the temperature as the free part,
ensuring a well-defined large-temperature limit. Notice that our fit of the screening mass does not follow the
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constraints (5.2.17), but it is designed to fit the static potential below 3Tc. A more involved form would be
needed to reach the HTL predictions at high temperatures, but it is not the scope of the present work.

In Fig. 5.2, the normalized pressure p/pSB is presented for different gauge groups: SU(2), SU(3), SU(∞)
and G2. Several remarks can be done. First, the free gluon thermodynamic contribution is gauge-group
invariant once normalized to pSB . The gauge-group dependence is only present in the bound-state and
scattering sectors. The number of allowed colour channels (i.e. the symmetric ones since we only consider
the 0++, 0−+ and 2++ JPC states) depends on the gauge group (see Appendix C) and determines the
allowed maximum number of bound states and the number of scattering channels. For clearness, these
channels are listed in Table 5.1 and their numbers are given just below.

Channels to consider

SU(2) SU(3) SU(Nc > 3) G2

0++ in •S

0−+ in •S

2++ in •S

0++ in (2, 0, . . . , 0, 2)S (2, 0)S

0−+ in (2, 0, . . . , 0, 2)S (2, 0)S

2++ in (2, 0, . . . , 0, 2)S (2, 0)S

- 0++ in (1, 0, . . . , 0, 1)S (0, 2)S

- 0−+ in (1, 0, . . . , 0, 1)S (0, 2)S

- 2++ in (1, 0, . . . , 0, 1)S (0, 2)S

- - 0++ in (0, 1, . . . , 0, 1, 0)S -

- - 0−+ in (0, 1, . . . , 0, 1, 0)S -

- - 2++ in (0, 1, . . . , 0, 1, 0)S -

Table 5.1: Channels taken into account in the EoS of the YM plasma for different gauge groups.

Total number of channels

SU(2) SU(3) SU(Nc > 3) G2

6 9 12 9

Note that the small bound-state thermodynamic contribution comes from two effects: The number and
the mass of the existing glueballs. Because of the glueball dissociation, this contribution is only taken
into account up to the temperature of dissociation (see Table 4.5). One can observe in Fig. 5.2 that the
produced EoS are not very sensitive to the gauge group. The most important difference occurs between 1.05
and 1.35Tc (see Fig. 5.3): In this range, the gluon-gluon interactions have a maximal strength. When the
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temperature increases, the Born approximation becomes more and more valid and the pressure then scales
as dim adj as just previously seen. Thus the normalized pressure tends to be universal.

In Fig. 5.2, it is also worth noticing that the EoS computed in our approach favourably compares with
lQCD data for gauge groups SU(3-8) [Pane09] where such universal curves seem to appear (note that lattice
data exist also for very high values of T/Tc but only for SU(3) [Bors12a]). Concerning G2, no lattice data
about EoS are currently available but a new effective matrix model describing pure YM thermodynamics has
been proposed in [Dumi12]. These last results are also compared to ours in Fig. 5.2.
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Figure 5.2: Normalized pressure p/pSB versus temperature in units of Tc (with Tc = 0.3 GeV), com-
puted for the gauge groups SU(2,3,∞) and G2 (solid lines). Note that all the curves are nearly indistin-
guishable. Our results are compared to the lattice data of [Enge89] for SU(2) (dots), and of [Pane09] for
SU(3,4,6,8) (dots). Concerning G2, no lQCD is nowadays available and a comparison with the minimal
model of [Dumi12] is therefore presented (dashed line). Note that all lattice data have been normalized to
the lattice SB pressure [Enge89, Pane09].

5.2.3.2 Trace anomaly

A relevant observable which measures the non-ideal character of the deconfined medium is the trace
anomaly ∆ = e − 3 p, where e is the energy density. We have computed this quantity in the framework
of our model, but the results obtained can only be considered as preliminary for the two reasons explained
below.

Firstly, the normalized trace anomaly can be computed from the pressure thanks to the thermodynamic
relations (remember (5.1.4)):

∆

pSB
= −β

(
∂β

p

pSB

)
βµ

. (5.2.19)
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Figure 5.3: Normalized pressure p/pSB versus temperature in units of Tc (with Tc = 0.3 GeV), computed
for the gauge groups SU(2), SU(3), G2, and SU(∞). The temperature range is the one where the differences
between the curves are the most important.

As the Hamiltonian considered explicitly depends on the temperature, these relations must be used with
some cautions. For instance, in the case of free particles with a temperature-dependent dispersion relation,
several procedures exist to compute the observables keeping the usual thermodynamic relations [Brau09,
Gore95]. With temperature-dependent masses and interactions as in our model, all observables obtained by
derivation of the grand canonical potential must be examined with caution. Here, we will simply use the
relation (5.1.4) but a self-consistent procedure is needed and will be investigated in the future.
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Figure 5.4: Normalized trace anomaly ∆/pSB versus temperature in units of Tc (with Tc = 0.3 GeV)
computed for the gauge groups SU(3) (left) and G2 (right). The models (black solid line) are compared with
the free gas (dashed grey line) and the lattice data from [Pane09] in the SU(3) case (dark grey dots).
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Secondly, as mentioned in the previous section, the glueball contributions to the pressure disappear
abruptly at the melting temperature. The derivative of the pressure for this temperature is then not defined.
At first sight, one could argue that the contribution of the glueballs to the pressure is so weak that it can be
safely neglected. But, this does not mean a small contribution to the derivative of the pressure. Moreover,
the glueballs exist in a domain of temperature where the deviation from the non-ideal character of the gluon
plasma is expected to be large. Thus, a smooth transition between a bound state with a finite width and a
scattering state of two gluons is worthwhile. It could be obtained by an unified treatment of the T -matrix
results in the computation of the grand canonical potential. This would imply a strong modification of the
formalism developed in [Dash69]. Here, we will simply not take into account the glueball contributions
in (5.1.4), leaving a detailed study for another work.

The normalized trace anomaly computed with (5.1.4) for SU(3) and G2, without the bound state con-
tributions, are compared in Fig. 5.4 with the (gauge-independent) normalized trace anomaly computed for
the free gluon gas with the thermal mass (4.5.10) and with the lattice data from [Pane09] in the SU(3) case.
The G2 trace anomaly is not significantly different from its SU(3) counterpart, just as the pressure is. The
situation is similar for the other gauge groups. The peak near Tc results from the combination of various
negative and positive channel contributions. This explains its non-standard structure. One can see that this
peak is not in good agreement with the lattice data. This discrepancy could be cured by a correct treatment of
the bound state contributions and melting. However, the peak cannot be obtained with the free part only and
the behaviour above 2Tc is in agreement with lQCD data: These are probably the most important features
of our model concerning the trace anomaly. Improved calculations are necessary to clarify the situation.

5.3 Thermodynamics of the QGP

5.3.1 Model description

Now that the pure-gauge sector has been studied, we will naturally add quarks and try to extract EoS
with baryonic potential. This implies the change of the critical temperature since lQCD calculations seem
to find it around 150 MeV [Aoki06]. Thus, Tc is now fixed to 150 MeV while the other parameters remain
unchanged.

In what follows, we will firstly investigate the QGP with 2 light flavours of quarks. In this case, the
quark thermal mass is given by (4.5.11) where mq,0 = 0.3 GeV (fixed to the T = 0 spectrum). Then, one
strange quark flavour will be added in order to study the 2 + 1 QGP. Its thermal mass naturally respects the
same prescription as for the light quarks but mq,0 = 0.4 GeV.

For these two thermodynamic situations, the number of channels to consider is huge since we have no
limitation due to confinement. Therefore, gg, qq, q̄q̄ , qq̄, qg and q̄g two-body interactions are included and
also extracted from the potential (4.5.5). The colour channels for each two body interactions are given in
Appendix C. Furthermore, a isospin number is added because of the two light quarks. Obviously, the Pauli’s
symmetry principle has to be respected when it is needed.

Concerning the JP channels to take into account, the question is much more delicate as already men-
tioned. Indeed, we need a correct cut-off since this summation is formally infinite. This will be the point of
the following discussion.
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5.3.2 Criterion for selecting JP channels
Using the formalism of [Tayl83], but adapted for a relativistic kinematics, it can be shown that the

differential elastic cross-section for a two-body interaction is given by

dσ

dΩ
(~p← ~p0) = (2π)4µ(E)2 |〈~p |TC(E + i0)|~p0〉|2 , (5.3.1)

where |~p0| = |~p |, µ(E) = Λ(E)/4 (cfr. (5.1.17)) and E is the center-of-mass frame energy. The notation i0
means that we have formally to take the limit where the imaginary part tends to zero. The matrix element is
evaluated for each colour channel.

As expected, in the non-relativistic limit, µ(E) tends to the reduced mass. By integration on the angles,
one obtains

σ = (2π)5µ(E)2

∫ +1

−1

d(p̂ · p̂0) |〈~p |TC(E + i0)|~p0〉|2 . (5.3.2)

The ket |~p 〉 is a plane wave state containing all possible partial components. By decomposing this state into
helicity states, we obtain the cross-section σC,JP for a given colour-isospin-JP channel

σC,JP = 4π3µ(E)2
∣∣TC,JP (E)

∣∣2 . (5.3.3)

Our purpose is to compare the contributions from various channels to the grand potential at a given
temperature for all possible values of the center-of-mass energy. So, we define a kind of mean cross-section
σ̄C,JP by integrating (5.3.3) on the energy,

σ̄C,JP = 4π3

∫ ∞
m1+m2

dE µ(E)2
∣∣TC,JP (E)

∣∣2 [1± f1(ε1(E))
] [

1± f2(ε2(E))
]
. (5.3.4)

The in-medium effects are taken into account, depending on the bosonic or fermionic nature of the two
interacting particles. According to the Born approximation, when E →∞, we have

TC,JP (E; q, q′ )→ VC,JP (q, q′ ). (5.3.5)

In our model, VC,JP (q, q′) is essentially the Fourier’s transform of a Yukawa interaction which behaves like
q−2. So, the mean cross-section, which depends only on the temperatures, is finite since

∣∣TC,JP (E)
∣∣2 ∼ E−4

when E � m1 + m2. We have decided to estimate the relative contributions of two channels JP and J ′P
′

by computing the ratios σ̄JP /σ̄J′P ′ , the reference being the channel with the largest cross-section.
Each two-body channel is analysed separately and the following considerations are used to determine the

selection criterion on which we rely on. When the total spin J increases, the average value
〈
~L2
〉

increases
also. This is obvious for ordinary spin states, and this is shown in Appendix B for helicity states. For a
bound state, this means the increase of the mass, and then a reduced contribution to the grand potential.
Moreover, in a naive non-relativistic picture, the strength of the orbital barrier increases with

〈
~L2
〉

in a
scattering process, which reduces the value of the corresponding T -matrix. So, we have decided to restrict
the summation over JP channels to the lowest values of

〈
~L2
〉

. More precisely, the selection rule is the
following: The σ̄JP /σ̄J′P ′ has to be higher than 25% for at least one T ≥ 1.2Tc. We have checked that the
imposition of such criterion is reasonable.

Indeed, in the gg case, the JPC channels that we have to take into account are displayed in Table 5.2.
The J ′P

′C′ reference is the most attractive channel, i.e. 0++. An analysis of this table shows that only the
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T/Tc gg: σJPC/σ0++

0++ 0−+ 2++ 1++ 1−+ 2++

1.2 1.00 0.25 0.41 0.32 0.19 0.19
1.5 1.00 0.31 0.47 0.38 0.24 0.24
2 1.00 0.30 0.47 0.39 0.23 0.23
5 1.00 0.20 0.43 0.34 0.14 0.14

Table 5.2: Ratio of the cross-sections for different gg channels. Selection criterion: Ratio > 25 % for at least
one T ≥ 1.2Tc. The gg channels are compared with the octet-colour representation of the SU(3) gauge
group since it is the only representation common to symmetric and antisymmetric channels. Other colour
channels have been tested.

0++, 0−+, 2++ and 1++ states must be included in our thermodynamic computations. We have thus tested
that including much more channels in the YM plasma does not change significantly the EoS. For instance,
the inclusion of all gg states up to

〈
~L2
〉

= 8 brings very weak modifications to the normalized pressure (see
Fig. 5.5). The value of 25% is thus a good compromise between accuracy and computational effort.
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Figure 5.5: Normalized pressure p/pSB versus temperature in units of Tc (with Tc = 0.3 GeV) computed
for the gauge groups SU(3). The dots correspond to the normalized pressure obtained thanks to the inclusion
of gg states according to our JPC selection criterion, while the squares correspond to the inclusion of gg
channels up to

〈
~L2
〉

= 8.

Concerning the quark sector, we can study the qq and q̄q̄ on the same footing since we start by computing
the T -matrices without baryonic potential 7. These results as well as the meson ones are given in Table 5.3.

7. As we will see in Section 5.3.4, the influence of the baryonic potential on the T -matrix computations is negligible
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The conclusion is that only the L = 0 and L = 1 channels must be retained.

T/Tc qq (or q̄q̄) : σL/σL=0 qq̄: σL/σL=0

L = 0 L = 1 L = 2 L = 3 L = 0 L = 1 L = 2 L = 3
1.2 1.00 0.26 0.13 0.07 1.00 0.22 0.10 0.06
1.5 1.00 0.27 0.13 0.07 1.00 0.26 0.12 0.06
2 1.00 0.27 0.12 0.06 1.00 0.27 0.12 0.06
5 1.00 0.21 0.07 0.02 1.00 0.21 0.07 0.02

Table 5.3: Ratio of the cross-sections for different qq (or q̄q̄) and qq̄ channels. Selection criterion: Ratio > 25
% for at least one T ≥ 1.2Tc. The qq (or q̄q̄) channels are compared with the sextet-colour representation
of the SU(3) gauge group while the qq̄ are compared with the singlet one, just to give an example.

Finally, the qg (or q̄g) cross-sections are shown in Table 5.4. The reference is named J4 within our
nomenclature (see Appendix B). In this sector, we conclude that all the states given in Table 5.4 have to be
included in the QGP. In summary, for the QGP with two light quarks, the total number of channels, and so
T -matrix computations, is 82 while 190 T -matrix files are required for the 2 + 1 QGP.

T/Tc gg̃: σJ/σJ4

J4 J1 J2 J3 J5 J6
1.2 1.00 0.34 0.24 0.64 0.24 0.31
1.5 1.00 0.42 0.29 0.69 0.29 0.37
2 1.00 0.42 0.29 0.70 0.29 0.38
5 1.00 0.33 0.22 0.67 0.21 0.29

Table 5.4: Ratio of the cross-sections for different qg (or q̄g) channels. Selection criterion: Ratio > 25 % for
at least one T ≥ 1.2Tc. The qg (or q̄g) channels are compared with the singlet-colour representation of the
SU(3) gauge group, just to give an example. The nomenclature used is given in Appendix B.

5.3.3 Equations of state

5.3.3.1 QGP with two light quark flavours

Now that we have established which JP channels for each two-body interactions we have to take into
account, we can compute the EoS of the QGP with two light quarks. In Fig. 5.6, the normalized pressure
is shown. As it can be noticed in the left panel, the interactions do not contribute: The major part is
given by the free gas. Therefore, in order to realise why the scattering part is so small (for the bound-
state contribution, a nearly-zero value is not surprising as in the YM case), we have separated the different
scattering contributions in the right panel.

Without surprise, the qq̄, qg and q̄g channels asymptotically tend to zero as expected at the Born ap-
proximation since the relation (5.1.20) holds. The qq and q̄q̄ channels generate a global increase of the
normalized pressure while it is the contrary for the gg sector. Thus, it seems that not only these two ef-
fects are weak but in addition, they contribute in opposite directions, leading to a global suppression of the
two-body interactions in average.
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Figure 5.6: QGP with two light quark flavours. (Left) Normalized pressure p/pSB versus temperature in
units of Tc (with Tc = 0.15 GeV), compared to the free part, bound state and scattering contribution. (Right)
Different scattering contributions to the normalized pressure p/pSB versus temperature in units of Tc (with
Tc = 0.15 GeV).
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Figure 5.7: QGP with two light quark flavours. Normalized trace anomaly ∆/pSB (without bound states)
versus temperature in units of Tc (with Tc = 0.15 GeV), compared to the free part contribution.

In Fig. 5.7, we display the normalized trace anomaly (without bound states) compared to the free gas
part. A peak structure is here exhibited even in the free gas contribution. Therefore, it seems that not only the
interactions create the peak, unlike in the YM sector. The nature of this latter is really difficult to establish
since few variations of the pressure can drastically change the shape of the trace anomaly.

The main conclusion that seems to emerge from our approach (looking at the normalized trace anomaly
as well as at the normalized pressure) is that the leading behaviour of the QGP is driven by gluon and
(anti)quark degrees of freedom that interact weakly. Nevertheless, it does not mean that the interactions
have no impact on the EoS. Indeed, the particle thermal mass is extracted from it, leading to a self-energy
contribution for the particle.
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5.3.3.2 2 + 1 QGP

A similar analysis as the one proposed in the previous subsection can be applied in the 2 + 1 QGP case.
Since similar results and features can be deduced from it, we will not repeat it again and focus more on
the comparisons between our model and lQCD extracted from [Bors14]. Indeed, lQCD collaborations have
recently reached the physical quark masses in their computations of the EoS, making their results more and
more reliable for comparisons.

Full model

lQCD data
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Figure 5.8: 2 + 1 QGP. (Left) Normalized pressure p/pSB versus temperature in units of Tc (with
Tc = 0.15 GeV), compared to lQCD data from [Bors14]. (Right) Normalized trace anomaly ∆/pSB (with-
out bound states) versus temperature in units of Tc (with Tc = 0.15 GeV), compared to lQCD data from
[Bors14].

As we can observe in Fig. 5.8, our data are qualitatively in agreement with lQCD ones. The lQCD
normalized pressure is slightly overestimated as well as the asymptotic behaviour of the normalized trace
anomaly. On the other hand, its peak structure is very different of ours quantitatively. As already mentioned
and debated, this latter is really difficult to obtain due to several reasons in our approach: problems in the
treatment of the bound states and restriction to two-body interactions. Even in lQCD, different collaborations
find different quantitative behaviours for the trace anomaly peak up to now. The possible discrepancies can
arise from the choice of the fermionic lattice action, the lattice spacing, the considered quark masses, the
extrapolation to the continuum limit,... Only, a good agreement in the behaviour of the decreasing tail is
reached by the different lQCD groups according to [Bors14]. Nevertheless, it is worth mentioning that the
disagreements observed in the quantitative value of the peak structure in various lQCD results (mainly due
to a computation with no physical quark masses) seem to reduce, and the shape of the lQCD trace anomaly
tends to the one depicted in Fig. 5.8, and firstly given by the BMW collaboration [Ratt14].

Therefore, except for the normalized trace anomaly peak structure, our data are in correct agreement with
lQCD ones. As discussed in the previous subsection, this agreement seems to be reached by only including
a quasiparticle thermal mass: The contributions of the two-interacting channels are minor. Nevertheless, it
is worth insisting on the fact that the thermal mass effects are extracted from the two-body lQCD interaction
potential (4.5.5) within our model. So, the two-body interactions are not useless to understand the behaviour
of the QGP around Tc. Moreover, a more appropriate treatment for the bound-state inclusion is needed and
could change significantly the structure of the trace anomaly.

Finally, let us compare in Fig 5.9 the normalized pressure and trace anomaly for a QGP with Nf = 2
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Figure 5.9: (Left) Normalized pressure p/pSB versus temperature in units of Tc (with Tc = 0.15 GeV for
QGP and Tc = 0.3 GeV for YM). (Right) Normalized trace anomaly ∆/pSB (without bound states) versus
temperature in units of Tc (with Tc = 0.15 GeV for QGP and Tc = 0.3 GeV for YM).

and Nf = 2 + 1 (Tc = 0.15 GeV) to the ones of the YM plasma (Tc = 0.3 GeV). We can notice that the
normalized pressure curves are almost superimposed and that the decreasing trend of the trace anomaly is
nearly the same in all the considered theories. The maximum of the deviation between these curves is around
1.2Tc, at the localisation of the trace anomaly peak. It is nevertheless important to remember that the critical
temperature and the normalization are not the same in all the EoS, see (5.1.8). However within these units,
a universality at large temperature (≥ 3Tc) seems to emerge.

5.3.4 Adding baryonic potential
Now that the EoS for the QGP are computed and favourably compared with lQCD, we can investigate the

non-zero baryonic regime. As already mentioned, this latter deserves a lot of interests, especially in the area
of the neutron star physics. Indeed, since pioneering works [Coll75] about the existence of a deconfined
phase in QCD, it was assumed that the core of the heaviest neutron star should be probably filled by a
medium with a high nuclear density and in which the significant degrees of freedom should be the quarks.
Therefore, getting the QCD EoS at finite µ could shed some light in this field.

Up to now, this task still remain difficult from first QCD principles. Remember that even in lQCD
[Yagi05], some conceptual troubles appear (cfr. sign problem) and only perturbations around µ = 0 are
meaningful. Therefore, it seems appealing to check whether or not quasiparticle approaches could help.
Unfortunately at the present stage, some problems also appear in our formalism. The main reasons are the
following.

First, the DMB formalism that we have used to compute EoS is based on a virial expansion in terms
of eβµN . We are thus limited by construction to small baryonic potentials. Indeed, increasing the baryonic
potential is the same as increasing the screening between particles: The many-body interactions are more
and more likely to contribute. So, the reduction to two-body interactions make no more sense a priori and
some problems, other than a careful computation of all the channels, arise. Let us mention for instance, the
absence of a helicity formalism for many-body systems and the necessity to resort to Faddeev and higher
equations for more than two-body interactions [Joac75].

Another peculiar problem is the building of a coherent interaction in presence of baryonic potential.
Already at N = 2, no lQCD data are available to our knowledge. It is not only important to define the
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potential between particles but also the quasiparticle mass, which seems to read out the main behaviour of
the EoS at µ = 0. A way to circumvent this problem could be to use the HTL expressions for the particle
thermal mass but it was not the bias adopted within this study. Indeed, the actual shape of our thermal masses
are not the ones extracted from HTL.
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Figure 5.10: Real part of the T -matrix (qq̄ in L = 0, here given as an example) in function of the energy for
T = 0.105 GeV (left), T = 0.150 GeV (middle) and T = 0.300 GeV (right) at different µ (MeV) with Tc =
0.15 GeV.

For all these reasons, the study that follows will be only limited to small baryonic potentials. We will
thus keep the restriction to two-body interactions which can make sense in such a µ-range. Moreover, the
interaction potential and the quasiparticle thermal masses are the same as the ones used up to now, without
the inclusion of the baryonic potential. Of course, the obtained results must be considered as preliminary
and are just intended to draw a general tendency. The baryonic potential enters thus at two levels in our
computations: in the T -matrices because of the in-medium effects and as multiplicative factors to all the EoS
contributions. Fortunately as for the Tc-impact, it seems that the µ-dependence on the T -matrix calculations
is negligible (see Fig. 5.10). Therefore, these latter do not have to be recomputed at each µ, which drastically
reduces the computational time.

In Fig. 5.11, we have plotted the normalized pressure and trace anomaly at different µ for a QGP with
two light quarks. Naturally, the gluon chemical potential is zero and the quark one is such that µu = µd = µ.
The normalization is given by (5.1.8), that is to say at µ = 0. We realize in Fig. 5.11 that increasing µ is the
same as increasing the normalized pressure. This latter is especially driven by the increase of the ideal quark
gas contribution given in Fig. 5.12. Indeed, as in the µ = 0 case, the leading contributions to the normalized
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Figure 5.11: QGP with two light quarks. (Left) Normalized pressure p/pSB versus temperature in units of
Tc (with Tc = 0.15 GeV) at different µ (MeV). (Right) Normalized trace anomaly ∆/pSB (without bound
states) versus temperature in units of Tc (with Tc = 0.15 GeV) at different µ (MeV).
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Figure 5.12: QGP with two light quarks. (Left) Ideal quark gaz contribution to the total normalized pres-
sure p/pSB versus temperature in units of Tc (with Tc = 0.15 GeV) at different µ (MeV). (Right) Ideal
antiquark gaz contribution to the total normalized pressure p/pSB versus temperature in units of Tc (with
Tc = 0.15 GeV) at different µ (MeV).

pressure are the free part ones since the impact of the interactions is small as observed in Fig. 5.13. Moreover,
the decrease of the ideal antiquark gas contribution is slower than the increase of the ideal quark gas one,
explaining the total increasing behaviour of the normalized pressure.

Concerning the normalized trace anomaly, it is much more difficult to understand the µ-dependence. The
only ascertainments that we can do is that the trace anomaly peak structure becomes higher and higher with
the increase of µ and seems to disappear at large µ as observed for µ = 300 MeV. Moreover, we can notice
that the convergence to zero is faster with large µ.

As already mentioned, the scattering contributions are small. Nevertheless in Fig. 5.13, we can observe
a significant dependence in terms of µ. The qq and qg scattering contributions obviously increase with µ,
respectively as e2βµ and eβµ, while the q̄q̄ and q̄g ones go in opposite way. However, as in the ideal gas case,
the increase is higher than the decrease, leading in fine to a more important contribution of the scattering



116 CHAPTER 5. THERMODYNAMICS OF THE QCD DECONFINED PHASE

ææææææ
ææææææææææ æ æ æ æ æ æ æ æ æ æ æ

àà
ààà

ààààààààààà
à à à à à à à à à à à

ì
ì
ì
ìì
ììììì

ìììììì ì ì ì ì ì ì ì ì ì ì ì

ò

ò

ò
ò
òò
òòò

òòòòòòò
ò ò ò ò ò ò ò ò ò ò ò

ô

ô

ô

ô
ô
ôô
ôô
ôôôô

ôôô ô ô ô ô ô ô
ô ô ô ô ô

ç

ç

ç

ç

ç
ç
çç
ççç

ççççç ç
ç

ç
ç

ç
ç

ç
ç

ç
ç

ç

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-0.04

-0.02

0.00

0.02

0.04

T � Tc

p
�
p

SB
ç Μ = 300

ô Μ = 250

ò Μ = 200

ì Μ = 150

à Μ = 75

æ Μ = 0

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ
æ
ææ

ææ
æ

æ

æ
æ

æ
æ

æ
æ

æ æ æ æ

à
à

à
à
à
àà

àà
àà

ààà
àà

à
à

à
à

à
à

à
à

à à à

ìì
ìì
ìììì

ìììììì
ìì ì ì ì ì ì ì

ì ì ì ì ì

òò
òòòò

òòòòòòòò
òò ò ò ò ò ò ò ò ò ò ò ò

ôôôôô
ôôôôôôôôôôô

ô ô ô ô ô ô ô ô ô ô ô

ççççççççççççççç
ç ç ç ç ç ç ç ç ç ç ç ç

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

T � Tc

p
�
p

SB

ç Μ = 300

ô Μ = 250

ò Μ = 200

ì Μ = 150

à Μ = 75

æ Μ = 0

æææææ
æ
æ
æ
ææ

ææææ
ææ æ æ æ æ æ æ æ æ æ æ æ

à
à
àà

à
à

à
à
à
àà

ààà
àà à à à à à à à à à à à

ì
ì
ìì
ì

ì

ì

ì
ì
ìì
ììì

ìì ì ì ì ì ì ì ì ì ì ì ì

ò
ò

òò
ò

ò

ò

ò

ò
ò
òò
òòò

ò ò ò ò ò ò ò
ò

ò
ò

ò ò

ô

ô

ôô

ô

ô

ô

ô

ô
ô
ô
ôô
ôôô

ô ô ô ô ô ô
ô

ô
ô

ô
ô

ç

ç

ç
ç

ç

ç

ç

ç

ç

ç
ç
çç
ççç ç

ç
ç

ç
ç

ç

ç
ç

ç
ç

ç

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-0.001

0.000

0.001

0.002

0.003

T � Tc

p
�
p

SB

ç Μ = 300

ô Μ = 250

ò Μ = 200

ì Μ = 150

à Μ = 75

æ Μ = 0

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ
æ
æ
æ
æ

æ
æ æ æ æ æ æ

æ
æ

æ
æ

à

à

àà
à

à

à

à

à

à
à
à
à
àà

à

à
à

à à à à à à à à
à

ì
ì
ìì
ì

ì

ì

ì
ì
ì
ìì
ìì
ìì

ì
ì ì ì ì ì ì ì ì ì ì

ò
ò
òò
ò
ò
ò
ò
ò
òò
òò
òòò

ò
ò ò ò ò ò ò ò ò ò ò

ôô
ôôô

ô
ô
ô
ôô
ôôô

ôôô
ô ô ô ô ô ô ô ô ô ô ô

ççççç
ç
ç
çç
ççç

çççç
ç ç ç ç ç ç ç ç ç ç ç

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

T � Tc

p
�
p

SB

ç Μ = 300

ô Μ = 250

ò Μ = 200

ì Μ = 150

à Μ = 75

æ Μ = 0

æ

æ

æ

æ

æ

æ

æ

æ
æ
ææææ æ

æ
æ

æ
æ

æ
æ

æ
æ æ æ

à

à

à

à

à

à

à

à
àà

ààà
à

à
à

à
à

à
à

à
à à à

ì

ì

ì

ì

ì

ì

ì

ì

ì
ììì

ìì
ì

ì
ì

ì
ì ì

ì
ì ì ì ì

ò

ò

ò

ò

ò

ò

ò

ò
òò
òòò ò

ò
ò

ò
ò ò

ò
ò

ò ò ò

ô

ô

ô

ô

ô

ô

ô

ô
ôô
ôôô ô

ô
ô

ô
ô ô

ô
ô

ô ô ô

ç

ç

ç

ç

ç

ç

ç

ç
çç
çççç

ç
ç

ç
ç

ç
ç

ç
ç

ç ç ç

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
-0.0015

-0.0010

-0.0005

0.0000

0.0005

0.0010

0.0015

T � Tc

p
�
p

SB

ç Μ = 300

ô Μ = 250

ò Μ = 200

ì Μ = 150

à Μ = 75

æ Μ = 0

Figure 5.13: QGP with two light quarks. (Left, top) qq-scattering contribution to the total normalized pres-
sure p/pSB . (Right, top) q̄q̄-scattering contribution to the total normalized pressure p/pSB . (Left, middle)
qg-scattering contribution to the total normalized pressure p/pSB . (Right, middle) q̄g-scattering contribution
to the total normalized pressure p/pSB . (Bottom) qq̄-scattering contribution to the total normalized pressure
p/pSB . All the scattering contributions are presented versus temperature in units of Tc (with Tc = 0.15 GeV)
at different µ (MeV).

parts to the total normalized pressure. To be complete, the qq̄ scattering contribution is stable since there is
no µ-dependence at the level of the EoS: Indeed, we have eβ(µ−µ) = 1. Moreover, since the gg sector is
also stable regarding µ, increasing µ means increasing the impact of the quark sector within the QGP.

Finally, we close this study by comparing, in Fig. 5.14, our preliminary results to the lQCD ones given
by [Bors12b]. Within this paper, they deal with a QGP with Nf = 2 + 1 and with a small baryonic potential
µB . Each flavour of quarks is considered to carry one third of µB . Therefore, we analyse the 2 + 1 QGP
with µu = µd = µs = µB/3. As for the µ = 0 case, we sightly overestimate the normalized pressure and
we miss the peak of the normalized trace anomaly. Therefore, it seems that these differences have mainly
the same origin as at µ = 0, and our extrapolations at small µ is compatible with lQCD.
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Figure 5.14: QGP with Nf = 2 + 1. (Left) Normalized pressure p/pSB compared to lattice QCD [Bors12b]
versus temperature in units of Tc (with Tc = 0.15 GeV) at different µB (MeV). (Right) Normalized trace
anomaly ∆/pSB compared to lattice QCD [Bors12b] versus temperature in units of Tc (with Tc = 0.15 GeV)
at different µB (MeV).
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Chapter 6

The N = 1 SUSY Yang-Mills Plasma

Up to now, we have investigated the phenomenology related to the QCD confinement/deconfinement
phase transition. However, several extensions can be considered. Among these latter, a particularly chal-
lenging case is the Yang-Mills plasma with one flavour of massless Majorana fermions in the adjoint rep-
resentation of the gauge group. Such a theory is actually supersymmetric and is the N = 1 1 SUSY YM
theory [Sala74], the adjoint quarks being called the gluinos.

In the present chapter, we aim at studying the bound-state spectrum and the EoS of the N = 1 su-
persymmetric (SUSY) YM theory by resorting to the T -matrix approach developed in Chapter 4 and the
thermodynamic formalism presented in Chapter 5. To our knowdlege, this subject has been poorly studied
up to now. Only some lQCD calculations at finite temperature [Berg14] have been carried out concerning
the Polyakov loop (indicator of the deconfinement) and the chiral condensate susceptibility (indicator of the
chiral symmetry restoration).

The chapter will be organized as follows. The first section will recall the general concepts on which
SUSY YM theories relied on. Then, the bound-state spectrum at T = 0 as well as at finite temperature will
be presented and the SUSY EoS will be computed. Finally, the orientifold equivalence will be introduced
and computationally checked. Note that these results are available on ArXiv [Lacr14a, Lacr14b].

6.1 General background

The central idea of SUSY theories is to postulate the existence of a supersymmetry that relates bosons
and fermions. Each particle is then associated with another one whose spin differs by a half-integer. Such
couples form superpartner pairs.

In a theory with a perfectly unbroken supersymmetry, each pair of superpartners shares the same mass
and internal quantum numbers except for the spin. For instance, a “squark” (spin 0) is a boson similar to the
quark and the gluino (spin 1/2) is the fermionic counterpart of the gluon. However, since no superpartners
have been observed yet, supersymmetry must be spontaneously broken if it exists, and the superpartner mass
of each particles has to be higher than the particle mass to which it is associated.

As already mentioned, the behaviour of each quantum field theory is predicted by its β-function. For our
case of interest, that is to say the N = 1 SUSY YM theory, the β-function has been exactly computed from

1. N indicates the number of supersymmetric generators.
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instanton calculus [Novi83]. As an illustration, it is worth giving its form for an SU(Nc) theory,

β(g) = − g3

16π2

3Nc

1− g2Nc
8π2

. (6.1.1)

This form is compatible with asymptotic freedom as in QCD. Moreover, the N = 1 SUSY YM theory
exhibits a confined phase as well as a spontaneously broken chiral symmetry driven by a non-vanishing
expectation value of the gluino condensate at T = 0 [Armo03]. Several studies have been devoted to
compute its spectrum with the gauge groups SU(Nc) (see for instance [Berg13, Camp99, Demm10, Farc04,
Farr98, Feo04]).

Because of the asymptotic freedom, a deconfined medium is expected at high temperature. Recent lattice
results indicate that it is indeed the case, at least for SU(2) [Berg14]. Moreover, this might be the case for an
arbitrary gauge group too [Anbe14]. At very high temperatures finally, the deconfined phase should behave
as a free gas of gluons and gluinos [Amat88].

Finally, a peculiarity of SU(Nc) N = 1 SUSY YM is that it is equivalent to one-flavour QCD at large
Nc provided that quarks are in the two-indice antisymmetric representation of the gauge group, which is
isomorphic to the fundamental one at Nc = 3. This duality is called “orientifold equivalence” and has
attracted a lot of attention since the pioneering work [Armo03].

6.1.1 N = 1 SUSY Yang-Mills spectrum at T = 0

Let us first discuss the N = 1 SUSY YM spectrum at T = 0. Since it is the minimal SUSY extension
of the YM theory, it only contains gluons g, and gluinos g̃. Within our approach, we assume that the gluons
and the gluinos have the same mass and quantum numbers except for the spin. Therefore, if we consider
the formation of two-body bound states, the SUSY theory allows the production of gg, g̃g̃ and gg̃ at T = 0.
Indeed, the singlet representation, that is to say the only one allowed in the confinement regime, appears
in the tensor product of the adjoint representation by itself (see Appendix C); the gluino lying also in the
adjoint representation of the gauge group.

For the gg channels, the study developed in Section 4.4.2 remains naturally valid. In this discussion,
we thus only focus on the g̃g̃ and gg̃ channels. Concerning the g̃g̃-bound states, the allowed JPC states
are the same as the meson ones (cfr. Table 4.2) with a restriction driven by the Pauli’s symmetry principle.
Therefore, for g̃g̃ systems, the parity is given by P = (−)L+1 and the charge conjugation by C = (−)L+S ,
as in qq̄ pairs and the Pauli principle implies that (anti)symmetric colour g̃g̃ states are characterized by
L + S even (odd) and C = + (−) [Zuk83]. As we analyse the confined regime and because the colour-
singlet representation is symmetric (see Appendix C), only symmetric JPC channels can exist at T = 0.
These channels are displayed in Table 6.1.

J L S P C JPC

0 0 0 - + 0−+

1 1 + + 0++

1 1 + + 1++

2 1 1 + + 2++

T -matrix
L = 0 1.58
L = 1 2.26

Table 6.1: (Left) JPC states allowed for g̃g̃ with L = 0 or L = 1 at T = 0. (Right) Masses (in GeV) of the
L = 0 and L = 1 g̃g̃-states at T = 0 with the gauge group SU(Nc).
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The g̃g̃-potential is given by (4.4.6) and the gluino mass as well as the string breaking are the same as
the gluon ones. The results are presented in Table 6.1. Naturally, similarly to the meson spectrum, the model
is not able to distinguish bound states with different spin numbers. These states are degenerate. The L = 0
g̃g̃-state is lighter than the lightest glueball since it is a pure S-wave while the L = 1 g̃g̃-state has exactly
the same mass as the 0+− glueball because they share the same partial-wave decomposition.

Concerning the gg̃ channels, the building of the J states requires the helicity formalism since the gluon is
transverse. The states on which we focus are given in Appendix B. Due to their partial-wave decomposition,
the potential reads

(J1) V 1
2
(q, q′) = V1(q, q′), (6.1.2)

(J2) V 3
2
(q, q′) =

1

6
V0(q, q′) +

5

6
V2(q, q′), (6.1.3)

(J3) V 3
2
(q, q′) =

1

2
V0(q, q′) +

1

2
V2(q, q′), (6.1.4)

(J4) V 1
2
(q, q′) =

2

3
V0(q, q′) +

1

3
V2(q, q′), (6.1.5)

(J5) V 3
2
(q, q′) =

7

10
V1(q, q′) +

3

10
V3(q, q′), (6.1.6)

(J6) V 3
2
(q, q′) =

9

10
V1(q, q′) +

1

10
V3(q, q′). (6.1.7)

Note that the parity is not defined for such states [Zuk83]. Therefore, in order to have a clear nomenclature,
we prefer using the notation J1 → J6. Because a gg̃ channel has no symmetry principle to respect, all the
above states can exist in the colour-singlet representation. The T = 0 spectrum is given in Table 6.2.

T -matrix T -matrix
J1 2.26 J4 1.96
J2 2.40 J5 2.40
J3 2.13 J6 2.31

Table 6.2: Masses (in GeV) of the gg̃-states at T = 0 with the gauge group SU(Nc).

Of course, the J1 and J4 states have respectively the same mass as the 0−+ and 0++ glueballs (see the
partial-wave decomposition). Moreover, the mass hierachy naturally follows the proportion of low L-wave
in the potential: The S-wave being the most attractive channel. To be complete, as in the gg case, all the
results given in Table 6.1 and in Table 6.2 are valid for any gauge group since κ•;gg = −1.

Let us now compare this spectrum to current known results in the field. It is known from effective
Lagrangians that supersymmetry is not expected to be broken at the level of the bound-state spectrum.
Hence the lightest states should form two supermultiplets [Farr98]. Since hyperfine corrections (spin-spin,
spin-orbit, etc.) are neglected in the present work, we expect these supermultiplets to be observable but only
approximately degenerated.

The first supermultiplet can be seen in the first three lines of Table 6.3. As expected from [Farr98],
it contains the pseudoscalar g̃g̃ state, also known as the a − η′ (the adjoint η′), a spin 1/2 state and the
scalar glueball. The last two states are degenerate, but not the a − η′ which is lighter. This is mainly a
consequence of the approach used here: The a − η′ being a pure S-wave, it is maximally sensitive to the
attractive Coulomb interaction and its mass is logically smaller than the other state ones. The degeneracy
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could be recovered by including for example spin-orbit terms that would decrease the mass of the J4 and
0++ states only, but this is out of the scope of the present calculations.

Content State Mass
g̃g̃ 0−+ 1.58
gg̃ J4 1.96
gg 0++ 1.96
g̃g̃ 0++ 2.26
gg̃ J1 2.26
gg 0−+ 2.26
gg̃ J3 2.13
gg 2++ 2.21
g̃g̃ {1, 2}++ 2.26
gg̃ J6 2.31

Table 6.3: Masses (in GeV) of the lowest-lying bound states at T = 0 with the gauge group SU(Nc) in
N = 1 SUSY YM. JPC is indicated for gg and g̃g̃ states. The notation defined in Appendix B is used to
characterize the gg̃ states.

The second supermultiplet is shown in the lines four to six of Table 6.3: The masses are equal as expected
from supersymmetry. We have also listed other states with higher spins: They are absent of low-energy
effective actions but straightforwardly computed within our formalism.

Our spectrum is actually very similar to what is observed in lattice studies, see for example [Farc04,
Demm10, Berg13]. In these studies also, the three lightest states are not exactly degenerate although very
close up to the error bars, and the a − η′ is the lightest state. It is an indication that exact supersymmetry
is still not reached on the lattice, as in our model. Smaller lattice sizes would be needed in order to draw
definitive conclusions on the structure of the spectrum [Berg13], so the agreement between our model and
the lattice data should be, in our opinion, restricted to qualitative considerations.

We finally mention the work [Feo04], in which information on the N = 1 SUSY YM spectrum is
obtained by resorting to the orientifold duality between the theory under study and QCD with one quark
flavour. In such an approach, the a − η′ could be the lightest state of the theory without being degenerated
with the other states of the aforementioned supermultiplet. So the zero-temperature mass spectrum is still
an open problem in our opinion.

6.1.2 N = 1 SUSY YM at finite temperature

Let us now have a look to the N = 1 SUSY YM spectrum at finite temperature by using the same
parameters as the ones given in Section 4.5.3: The gluino thermal mass thus follows the formula (4.5.10)
and the finite-temperature potential between quasiparticles is given by (4.5.5). Concerning Tc, we prefer to
fix it to 245 MeV (see Section 6.2.1 for further explanations and motivations). This change is not significant
here since the Tc-dependence of the results is marginal 2. The gg-spectrum is therefore recomputed in
Table 6.4 for the sake of accuracy. Nevertheless, its main features remain unchanged.

2. Indeed, Tc enters only in the Bose-enhancement or in the Pauli-blocking and we have seen that these effects are negligible in the
T -matrix computations.
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Channel Singlet Adjoint (2,0)
Group All SU(Nc ≥ 3) G2

T/Tc 2mg 0++ 0−+ 2++ 0++ 0−+ 2++ 0++ 0−+ 2++

1.05 2.73 1.90 2.29 2.29 2.50 2.71 2.65 2.59 - 2.68
2.72

1.10 2.20 1.91 2.19 2.09 2.16 - - 2.18 -
1.15 1.98 1.86 - 1.96 - -
1.20 1.86 1.80 -
1.25 1.79 1.77
1.30 1.74 -

Table 6.4: Masses (GeV) of lowest-lying glueballs above Tc (Tc = 0.245 GeV). A line mark the temperature
at which a bound state is not detected any more.

Concerning the g̃g̃-bound states, the same selection rule that the one used in the T = 0 case can be
applied for the JPC numbers. However, much more states are allowed since there is no more confinement.
All these channels are thus displayed in Table 6.5 with L up to one.

The results of the T -matrix computations for g̃g̃ states are given in Table 6.6 . It is important to men-
tion that because of the gluino fermionic nature, the in-medium effect takes into account here is the Pauli-
blocking. Moreover, the study is carried out for a SU(Nc) and G2 gauge group. The channels that produce
bound states are only the singlet, the adjoint representation and the (2, 0)S of G2. As in the glueball case,
the g̃g̃-masses are close to their zero value in 1.05 Tc and the L = 0 g̃g̃ states in singlet are the lightest ones.
It is obvious since these latter are pure S-waves in the most attractive colour channel. Furthermore, they
naturally survive longer, up to 1.4 Tc.

J L S P C JPC SC
0 0 0 - + 0−+ S

1 1 + + 0++ S
1 1 0 + - 1+− A

0 1 - - 1−− A
1 1 + + 1++ S

2 1 1 + + 2++ S

Table 6.5: JPC states allowed for g̃g̃ with L = 0 or L = 1 at finite temperature. SC represents the required
symmetry of the colour representation.

Finally, the results for gg̃ are displayed in Table 6.7. Since there is no symmetry principle to respect, all
the gauge group representations are allowed. Without surprise, states with a strong S-wave in singlet survive
longer, up to 1.3 Tc and the mass at 1.05 Tc is nearly equal to that at T = 0.

In summary, our computations show that two-body bound states can exist in the gluino-gluon plasma for
any species in the range (1-1.30) Tc, contrary to the pure QCD case with 2 (+ 1) quark flavours in which
only glueballs significantly survive above Tc. The picture developed in the pioneering work [Shur04], where
the importance of binary bound states on some features of the quark-gluon plasma was stressed, seems thus
to be valid in a supersymmetric extension of YM theory too. A more detailed look at the dissociation tables
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Channel Singlet Adjoint (2, 0)
Group All All G2

T/Tc 2mg L = 0 L = 1 L = 0 L = 1 L = 0 L = 1
1.05 2.73 1.30 2.29 2.33 2.71 2.44 -

2.65
1.10 2.20 1.66 - 2.08 - 2.13
1.15 1.98 1.72 1.96 -
1.20 1.86 1.73 -
1.25 1.79 1.72
1.30 1.74 1.71
1.35 1.70 1.70
1.40 1.67 -

Table 6.6: Masses (GeV) of lowest-lying g̃g̃ states above Tc (Tc = 0.245 GeV). A line mark the temperature
at which a bound state is not detected anymore.

Channel Singlet
Group All

T/Tc 2mg J1 J2 J3 J4 J5 J6
1.05 2.73 2.29 2.57 2.15 1.90 2.52 2.37

2.72
1.10 2.20 2.19 - 2.04 1.92 - -
1.15 1.98 - 1.94 1.87
1.20 1.86 - 1.82
1.25 1.79 1.78
1.30 1.74 -

Channel Adjoint
Group All

T/Tc 2mg J1 J2 J3 J4 J5 J6
1.05 2.73 2.71 - 2.60 2.52 - 2.72
1.10 2.20 - - 2.16 -
1.15 1.98 -

Channel (2, 0)
Group G2

T/Tc 2mg J1 J2 J3 J4 J5 J6
1.05 2.73 - - 2.65 2.59 - -
1.10 2.20 - 2.19
1.15 1.98 -

Table 6.7: Masses (GeV) of lowest-lying gg̃ states above Tc (Tc = 0.245 GeV). A line mark the temperature
at which a bound state is not detected anymore.
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shows that the behaviour of a given bound-state mass with the temperature is not systematic: It can either
increase or decrease before the dissociation. We have pointed out in [Lacr13] that the observed behaviour
in the glueball sector is in qualitative agreement with the lattice study [Meng09]. As soon as gluinos are
involved, there are, to our knowledge, no study to which our results can be compared.

6.2 Thermodynamics of the N = 1 SUSY Yang-Mills

6.2.1 Model description
Let us now particularize the general formalism presented in Section 5.1.1 to theN = 1 SUSY extension

of the gluon plasma i.e. a plasma made of two species of quasiparticles: the gluons and its supersymmetric
partners, the gluinos. As already discussed in Section 6.1.2, we treat here a case in which the gluon and
the gluino share the same properties, except for the spin naturally. The finite-temperature potential between
quasiparticles is given by (4.5.5) and the thermal mass formula is (4.5.10).

Concerning Tc, we have already mentioned that this value is moved to 245 MeV. The reasons are the
following. As seen in Section 5.2 for the non-SUSY YM case, identifying the critical temperature to the
Hagedorn temperature of a bosonic closed string theory in (3 + 1)-dimensions agrees well with currently
known lattice data. Correspondingly, in theN = 1 SUSY YM, we conjecture that the Hagedorn temperature
should be that of a non-critical (i.e. well-defined in a 4-dimensional spacetime) closed superstring theory.
Such a theory has been studied in particular in [Cham91], where the usual Hagedorn temperature is recovered
for the bosonic case and where the ratio

Tc(SUSY)

Tc(non-SUSY)
=

√
2

3
≈ 0.8 (6.2.1)

is found for the superstring. Interestingly, the same value has been recently observed in a SU(2) lattice
simulation of N = 1 SUSY YM thermodynamics [Berg14]. Equation (6.2.1) thus provides an explanation
to this value, finally leading us to set

Tc(SUSY)√
σ

=
1√
π
≈ 0.6, (6.2.2)

and so, Tc = 245 MeV since σ = 0.176 GeV2.
For the J (PC) channels considered inside the plasma, the selection rules proposed in Section 5.3.2 to

retain a channel in the computations, are used and the results are summarized in Table 6.8. Moreover, since
we are in the deconfinement range, all the colour representations provided by the tensor product of two
adjoint representations (given in Appendix C) are allowed modulo the respect of the Pauli’s principle if it
is needed. These considerations characterize the summation appearing in (5.1.9). For memory, the SU(2)
thermodynamics requires the computation of 35 different T -matrix files, for SU(3) and G2, 48 files are
needed, while 61 are necessary for the SU(Nc) case.

Regarding the free part of (5.1.9), we have here

ΩSUSY
0 = 2 dim adj

(
ωB0 (mg, 0) + ωF0 (mg̃, 0)

)
(6.2.3)

where ωB0 and ωF0 are respectively defined in (5.1.6) and (5.1.7). In our work, mg = mg̃ . Moreover, the
normalization of the thermodynamic quantities is given by

pSB =
π2

45β4

(
1 +

7

8

)
dim adj =

π2

24β4
dim adj. (6.2.4)
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gg g̃g̃ gg̃
0++ 0−+ J1
0−+ 1−− J2
2++ 0++ J3
1++ 1++ J4

- 2++ J5
- 1+− J6

Table 6.8: J (PC) channels considered inside theN = 1 SUSY plasma and provided by the selection results
summarized in Table 6.9

T/Tc gg: σJPC/σ0++ g̃g̃: σL/σL=0

0++ 0−+ 2++ 1++ 1−+ 2++ L = 0 L = 1 L = 2 L = 3
1.2 1.00 0.25 0.41 0.33 0.19 0.19 1.00 0.42 0.19 0.11
1.5 1.00 0.30 0.46 0.37 0.23 0.23 1.00 0.17 0.07 0.04
2 1.00 0.29 0.47 0.38 0.23 0.23 1.00 0.21 0.09 0.05
5 1.00 0.19 0.43 0.33 0.14 0.14 1.00 0.20 0.07 0.02

T/Tc gg̃: σJ/σJ4

J4 J1 J2 J3 J5 J6
1.2 1.00 0.46 0.33 1.03 0.32 0.41
1.5 1.00 0.30 0.21 0.62 0.20 0.27
2 1.00 0.34 0.24 0.66 0.23 0.30
5 1.00 0.29 0.19 0.65 0.18 0.25

Table 6.9: Ratio of the cross-sections for the SUSY channels. Selection criterion: Ratio > 25 % for at least
one T ≥ 1.2Tc. The gg channels are compared in the octet-colour representation of the SU(3) gauge group
while the g̃g̃ L-channels as well as the gg̃ J-channels are analysed with the singlet-colour representation.
Similar results are obtained from other colour channels.

The inclusion of the bound-state and scattering contributions are computed in the same way as ΩQCD
bs and

ΩQCD
s but of course, adapted to the SUSY bound states and degrees of freedom. So,

ΩSUSY
(2) = ΩSUSY

0 + ΩSUSY
bs + ΩSUSY

s . (6.2.5)

As in the QCD case, annihilation contributions will be neglected.

6.2.2 Equations of state
6.2.2.1 Pressure

With the above description, we are now in position to compute the normalized pressure of the N = 1
SUSY YM plasma. The three different parts of ΩSUSY

(2) , namely the free, the bound-state and the scattering
terms, are displayed in Fig. 6.1. The global structure is the same as the one presented in the pure YM case.
The bound-state contribution is weak at every computed temperature but it is logically maximal around 1.2
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Tc, where the trace anomaly appears to be maximal (see Fig. 6.3). The scattering part is also maximal
around 1.2 Tc and the repulsive channels are dominant at higher temperatures, leading to decrease the free
gas pressure. Nevertheless, as in the pure YM case, the effect of two-body interactions on the pressure is a
minor contribution to the total pressure. The slight differences are the following. The bound-state sector is
richer since g̃g̃ and gg̃ bound states also exist up to 1.4 Tc in their most attractive channel (see Section 6.1.2).

Concerning the high temperature limit, our model should be accurately described within the Born
approximation, T = V + O(V 2). It has been shown in Section 5.1.3 that the interactions between
two different species vanish within this approximation because of an identity relating the colour factors:∑
C dim C κC,ij = 0 (see (5.1.20)). In conclusion, gluons and gluinos does not interact with each other

at high temperature in average. However, the interactions between gluons only and gluinos only are still
present.

Full SU H 3 L model

Free gas

Bound state part

Scattering part

1 2 3 4 5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

T � Tc

p
�p

SB

Figure 6.1: N = 1 SUSY plasma. Normalized pressure p/pSB versus temperature in units of Tc (with
Tc = 0.245 GeV), computed for the gauge group SU(3). The free, the bound-state and the scattering
contributions are also indicated.

In Fig. 6.2, the SU(Nc) gauge structure of the normalized total pressure is shown. Again in this case,
an asymptotically SU(Nc) gauge-group independent pressure seems to emerge: The maximum deviation
of the gauge universality is just above Tc. This is in agreement with the scaling relations presented in
Section 5.2.2.3. Indeed, if we expand the T -matrix in terms of V , the colour dependence of the total pressure
(without considering bound states) is in dim adj up to O(V 3). This factor is thus cancelled by the same one
in the normalization pressure and so, the gauge-group independence is obtained at high temperature since
such expansion of the T -matrix becomes more and more valid with an increase of T . Moreover, it is worth
adding that this peculiarity of our model is due to the Casimir scaling and to the prescription that we have
used for the gluon and gluino thermal masses. Indeed, these latter are gauge-group independent in our
framework.
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Figure 6.2: N = 1 SUSY plasma. (Left) Normalized pressure p/pSB versus temperature in units of Tc
(with Tc = 0.245 GeV), computed for SU(Nc) and G2 gauge groups. (Right) Zoom near Tc.

6.2.2.2 Trace anomaly

The behaviour of the total normalized trace anomaly is displayed in Fig. 6.3. Again, we find appropriate
to compute it without bound state (since the treatment of bound states requires a more refined study as
already mentioned), and to compare it to the normalized free gas part of ΩSUSY

(2) . We also observe in this case
that the interactions provide the peak structure and that the trace anomaly tends to zero at high temperature.
This last observation is in agreement with [Amat88] in which aN = 1 SUSY theory is expected to behave at
high temperature as a gas of free gluinos and gluons. Concerning the peak structure, a quantitative measure
is naturally lost since all the two-body bound states that should appear around Tc are not taken into account.
This study is left for further developments.

Finally, the last thermodynamic quantities that we want to discuss in this section is the normalized trace
anomaly for SU(Nc) and G2 groups, presented in Fig. 6.4. The asymptotic gauge-group universality is,
without surprise, observed and follows the same justification as the normalized pressure. The behaviour
around Tc exhibits some slight differences according to the gauge group. This can be understood by the fact
that the number of channels to include in the computation depends on the gauge group (see Appendix C).

6.2.3 Comparison to pure Yang-Mills theory

At this stage, it is natural to wonder whether the inclusion of gluinos has a strong impact or not on
the EoS compared to pure YM theory. In other words: How far the EoS of the supersymmetric and non-
supersymmetric cases are ? Since our framework has already proven to describe satisfactorily the lattice EoS
of pure YM theory with gauge groups SU(Nc), we are in position to compare these previous results with the
new ones. This is done in Fig. 6.5. It is readily seen that the SU(3) pressure computed in the non-SUSY
case on the lattice is surprisingly close to the SUSY EoS. As in the QCD case, an universality between the
different pressures seem to emerge once they are normalized to their own SB pressure and presented in units
of T/Tc with the appropriate Tc for each theory.
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Figure 6.3: N = 1 SUSY plasma. (Left) Normalized trace anomaly ∆/pSB versus temperature in units of
Tc (with Tc = 0.245 GeV), compared to the normalized free gas part of Ω(2).
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Figure 6.4: N = 1 SUSY plasma. (Left) Normalized trace anomaly ∆/pSB versus temperature in units of
Tc (with Tc = 0.245 GeV) for different SU(Nc) gauge groups.

6.2.4 Orientifold planar equivalence

Let us now denote by QCDAS a SU(Nc) YM theory with Nf Dirac fermions in the two-index anti-
symmetric representation, and QCDadj a SU(Nc) YM theory with Nf Majorana flavours in the adjoint
representation. The so-called orientifold equivalence states that QCDAS and QCDadj are equivalent at large
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Figure 6.5: Normalized pressure p/pSB versus temperature in units of Tc for the gauge group SU(3) in the
N = 1 SUSY YM case (Tc = 0.245 GeV, dashed line) and pure YM case (Tc = 0.3 GeV, solid line).
Lattice data of [Pane09] corresponding to the pure SU(3) YM case are also indicated for comparison (dots).

Nc in the bosonic sector [Armo03]. This equivalence is particularly appealing when Nf = 1 since in this
case QCDadj is actually the N = 1 SUSY YM. Moreover, QCDAS reduces to standard one-flavour QCD
(vanishing isospin) for Nc = 3.

Within our framework, it is possible to show that the orientifold equivalence holds, and to compute how
far one-flavour QCD deviates for the large-Nc limit. This is the purpose of the present section where we
notice that the meaning of the symbol ∼= will be “equal at the limit Nc → ∞”. Moreover, qA (q̄A) will
denote a(n) (anti)quark in the two-index antisymmetric representation (0, 1, . . . , 0, 0) (resp. (0, 0, . . . , 1, 0)).

First, we have to check that the masses of the particles coincide since the free-gas contribution is im-
portant. The gluon thermal mass is common to QCDAS and QCDadj since the gluonic sector is identical in
both theories. An assumption of our model is that the function ∆(T ) is gauge-group independent. Hence,
δg̃(T ) = δg(T ) = ∆(T ). Using the colour factors listed in Appendix C, one gets following (4.5.6),

δqA(T ) = δq̄A(T ) =

√
N2
c −Nc − 2

N2
c

∆(T ), (6.2.6)

which is not equal to ∆(T ) in general. Nevertheless, δqA(T ) = δq̄A(T ) ∼= δg̃(T ) as expected. Coherently
assuming that m0,qA = m0,q̄A = m0,g̃ , we obtain that the thermal masses mg̃(T ), mqA(T ) and mq̄A(T ) are
equal at large Nc. The free gluinos thus bring a contribution

Ω0(g̃) = 2(N2
c − 1)ωF0 (mg̃, 0) (6.2.7)

to the grand potential, while the free quarks and antiquarks bring a corresponding contribution

Ω0(qA, q̄A) = 2
Nc(Nc − 1)

2
ωF0 (mqA , 0) + 2

Nc(Nc − 1)

2
ωF0 (mq̄A , 0). (6.2.8)
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It is then straightforwardly checked that

Ω0(g̃) ∼= Ω0(qA, q̄A). (6.2.9)

After the equivalence of the free part, we have to show the equivalence of the two-body contributions.
The gg channels are trivially equal in QCDAS and QCDadj , so only the g̃g̃ and gg̃ channels have to be
investigated.

The g̃g̃ channels are bosonic. Their contribution should thus be equivalent to that of the qAqA, q̄AqA
and q̄Aq̄A ones. The colour singlet appears in g̃g̃ and qAq̄A; the corresponding contributions to the pressure
are different because the Pauli’s principle has to be applied in the first one, not in the second one. This
discrepancy is irrelevant at large Nc because the singlet contribution is of order 1, not N2

c . The symmet-
ric and antisymmetric adjoint channels in g̃g̃ bring a pressure contribution which is equal to the adjoint
channel appearing in qAq̄A: All the possible helicity states are allowed in both cases. The (2, 0, . . . , 1, 0)
and (0, 1, . . . , 0, 2) channels in g̃g̃ have no equivalent in the quark case, but they bring no contribution
to the EoS since κC = 0. The remaining colour channels in g̃g̃ are the symmetric (2, 0, . . . , 0, 2) and
(0, 1, . . . , 1, 0) ones, that should match with the symmetric (0, 0, 0, 1, 0 . . . , 0) and (0, . . . , 0, 1, 0, 0, 0) ones
in qAqA and q̄Aq̄A. This is actually the case. Indeed, Pauli’s principle asks the g̃g̃ states to have L + S
even, just as for the qAqA and q̄Aq̄A states. Moreover, the Born approximation is valid at large Nc for
all those channels since κC = O(1/Nc). The contributions of the g̃g̃ channels to the grand potential
is thus proportional to

∑
C dim C κC = (N2

c − 1)/2, as well as the qAqA, q̄Aq̄A, qAq̄A ones for which∑
C dim C κC +

∑
C̄ dim C̄ κC̄ = (N2

c − 1)(Nc − 2)/(2Nc). Both factors are equal at large Nc, leading to
equivalent contributions to the EoS.

Finally, the gg̃ contribution should be equivalent to the qAg and q̄Ag ones. The same kind of arguments
apply, so we will not perform the full analysis. Let us just mention that the two adjoint channels in gg̃ bring
equivalent contributions to the grand potential than the (2, 0, . . . , 0) and (0, 1, 0, . . . , 0) channels in qAg an
q̄Ag. Similarly, the (2, 0, . . . , 0, 2) and (0, 1, . . . , 1, 0) channels in gg̃ match with the (1, 1, 0, . . . , 0, 1) and
(0, 0, 1, 0, . . . , 0, 1) one in qAg an q̄Ag.

The above discussion shows that QCDAS ∼= QCDadj . The orientifold equivalence is checked within our
framework. This can be seen as a strong validation of the various assumptions made in the building of the
model.

Now, we can compare the accuracy of the orientifold equivalence at finite Nc, namely Nc = 3. The
pressure and trace anomaly of SU(3) N = 1 SUSY YM is compared to the EoS of SU(3) one-flavour QCD
in Fig. 6.6 and Fig. 6.7. Note that the free part of this latter is given by,

Ω0 = 2(N2
c − 1)ωB(mg, 0) + 2Nc(Nc − 1)ωF (mqA , 0), (6.2.10)

for SU(Nc) gauge groups, and that 70 T -matrix files are necessary to compute the bound-states and scattering
contributions. These plots show how far one-flavour QCD is from the N = 1 SUSY YM theory at the level
of the EoS. As far as the pressure is concerned, both theories are very similar. The trace anomaly however
reveals some differences around 1.2 Tc. Note that each case is normalized to its own SB pressure, that of
QCDAS reading

pSB =
π2T 4

45
(Nc − 1)

(
15

8
Nc + 1

)
(6.2.11)

for SU(Nc) gauge groups.
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Figure 6.6: (Left) Normalized pressure p/pSB versus temperature in units of Tc (Tc = 0.245 GeV), com-
puted for SU(3) QCD with Nf = 1 and N = 1 SU(3) SUSY YM.
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Figure 6.7: Normalized trace anomaly ∆/pSB versus temperature in units of Tc (Tc = 0.245 GeV), com-
puted for SU(3) QCD with Nf = 1 and N = 1 SU(3) SUSY YM.



Chapter 7

Large-Nc PNJL Model with Explicit
ZNc Symmetry

As already mentioned, the structure of the QCD phase diagram is intimately related to our understanding
of QCD fundamental features, like for example confinement dynamics and chiral symmetry breaking, and
to their interplay with in-medium effects like a non-zero temperature or quark density. Among the various
effective frameworks used to study the QCD phase diagram (see e.g. the reviews [Fuku11, Step06]), we will
mostly focus on two of them: The Polyakov-loop effective models for the pure-gauge part of QCD, and the
Nambu-Jona-Lasinio (NJL) model for the quark part. The main idea of our work is to build a Polyakov-
Nambu-Jona-Lasinio (PNJL) model in which the Polyakov-loop potential is explicitly ZNc symmetric in
order to mimic a Yang-Mills theory with a gauge group SU(Nc). Then, thanks to this approach, we will be
able to discuss the structure of the QCD phase diagram at large Nc.

This chapter is based on [Buis12] and will be organized as follows. In the first section, we will explain
how we build the ZNc -symmetric potential. Then, we will develop the PNJL model related to it. Finally,
the issues of deconfinement and chiral symmetry restoration in the ’t Hooft’s large-Nc limit when varying T
and µ are addressed in the third section as well as the obtained phase diagram.

7.1 Polyakov-loop effective models for the pure-gauge sector

7.1.1 Explicit ZNc-symmetry

As already seen in Section 2.3.2, the Polyakov loop is a precious tool to study the phase structure of a
given YM theory. Indeed, 〈L(T, ~x)〉 = 0 (6= 0) when the theory is in a (de)confined phase [Suss79, Svet82].
In the particular case of SU(Nc), deconfinement might thus be driven by the breaking of a global ZNc -
symmetry. The order parameter of the deconfinement phase transition should then be the traced Polyakov
loop

φ =
1

Nc
TrcL, (7.1.1)

where the trace Trc is taken over the colour indices.
The thermodynamic properties of pure-gauge SU(3) QCD can be successfully studied by resorting to an

133
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effective scalar field theory where the potential energy density is Z3-symmetric, with e.g. the form [Pisa00]

U = T 4 λ

[
−b2(T )

2
|φ|2 +

b4
4
|φ|4 +

b3
6

(φ3 + φ∗3)

]
. (7.1.2)

The coefficients bi can be fitted on lQCD data. Various applications of this formalism can be found for
example in [Dumi01]. Note that, in the following, φ and L will be indifferently called Polyakov loop.

The simplest effective potential energy density depending on φ, defined in (7.1.1), and being explicitly
ZNc -invariant has been proposed in [Sann05] and reads

Vg(T,Nc, φ, φ
∗) = A(T,Nc) |φ|2 +B(T,Nc) |φ|4 + C(T,Nc) (φNc + φ∗Nc). (7.1.3)

It is formally valid for any value of φ, but one may restrict oneself to |φ| ∈ [0, 1] in a mean-field approxima-
tion 1. The above expression contains the basic blocks that could be expected to build a non-trivial theory:
A mass term (|φ|2), an interaction term (|φ|4), and the term in φNc + φ∗Nc accounting for the explicit ZNc -
symmetry 2. Terms scaling like |φ|6, |φ|8, . . . , |φ|Nc−2, etc. could be added, but then the number of arbitrary
functions would become too large to be efficiently constrained. Moreover, such higher-order terms would
mostly be interaction terms that are already present in their simplest form in the |φ|4 term. The expression
(7.1.3) is thus particularly convenient since it contains the minimal number of terms needed to perform the
present study. The real coefficients A, B, and C appearing in (7.1.3) are functions of T and Nc, and their
explicit form will be specified just hereafter. Note that φ, which depends on T , Nc, and ~x a priori, is here
assumed to be independent of ~x.

Beyond the polynomial form (7.1.3), logarithmic shapes can actually be shown to emerge from a Haar
integration on the gauge group in a strong coupling expansion. One can find such a form in [Fuku04], or for
example in [Roes07], where a potential schematically given by

U
T 4

= A(T )|φ|2 +B(T ) ln
[
1− 6|φ|2 + 4(φ3 + φ∗3)− 3|φ|4

]
(7.1.4)

is used forNc = 3 computations. Instead of computing a similar potential at arbitraryNc, we keep the ansatz
(7.1.3) in the following; It is indeed particularly convenient for the calculations that are to be performed and
still contains the ZNc -symmetry that we want to take into account.

Various parametrizations of Z3-symmetric potentials, fitted on pure-gauge lattice data, have been pro-
posed so far [Fuku04, Polo82, Ratt06]. Here, we are rather interested in obtaining an effective potential valid
at large Nc. Therefore, the following expected qualitative constraints have to be imposed in order to obtain
the shape of the functions A, B, and C:

• The pressure pg = −minφ(Vg) is proportional to N2
c T

4 at large Nc and high T in order to recover
asymptotically the SB limit of a free gluon gas.

• The norm |φ0|, of the optimal value of the Polyakov loop, φ0 = |φ0| eiδ0 , must be Nc-independent at
the dominant order. This condition results from the implementation of the previous one concerning
the pressure. This Nc-independence at the dominant order is in agreement with large-Nc scaling rules

1. In the mean-field approximation, the fields are replaced by their expectation values. Nevertheless, we keep the notation φ and
φ∗ for simplicity.

2. Z(Nc) is the group of unity roots: z = e2πi n/Nc1 with n = 0, 1, . . . , Nc − 1. As pointed out in [Sann05], the term
φNc − φ∗Nc possesses the same symmetry but violates charge conjugation, which is also a symmetry of the effective theory under
consideration.
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for φ0. The first corrections, scaling as 1/N2
c , are neglected in the present approach. More results on

large-Nc features of Wilson and Polyakov loops can be found for example in [Make02]. |φ0| = 0 in
the confined phase, and > 0 in the deconfined phase. Also, |φ0| tends toward unity at very large T .

• There exists a critical temperature Tc signalling a first-order phase transition, i.e. the potential must
have two different minima whose depth changes with the temperature in order to modify discontinu-
ously the localisation of the absolute minimum. At the critical temperature, |φ0| = 0 and 1/2 are two
degenerate minima of Vg . This last value is chosen so that it will ensure a good compatibility between
our model and existing lattice data but it has only to be non-zero in order to lead to a deconfined phase.
Tc has to be seen as a typical value for the deconfinement temperature in SU(Nc) YM theory since the
deconfinement temperature appears to beNc-independent up to corrections in 1/N2

c [Brau10, Luci05].

Obviously, the above constraint does not apply to Nc = 2, where the transition is of second-order
[Yagi05]. This is not problematic since we eventually look for a model valid at large-Nc. Moreover, the
value |φ0| = 1/2 may not be the exact value of the Polyakov loop in Tc: Recent lattice results find it to
be around 0.4 [Gupt08], while a more recent renormalization-group-based approach leads to values closer
to 0.6 for the Polyakov loop at the deconfinement temperature [Brau10]. The value 1/2 then appears to be
relevant because it falls in the typical range of the existing results and because it simplifies the calculations
performed in the following.

The above constraints are actually satisfied by the Lagrangian

Vg = N2
c T

4 a(T )

[
|φ|2 − 4|φ|4 +

l(T )2−Nc

Nc
[8l(T )2 − 1](φNc + φ∗Nc)

]
, (7.1.5)

where
a(T ) > 0, l(T ) >

1√
8
, l(Tc) =

1

2
, ∂T l(T ) > 0, l(∞) = 1. (7.1.6)

Explicit forms of a(T ) and l(T ) will be given in the next subsection. All these conditions are required in
order to have the existence of two degenerate minima and the correct behaviour of the Polyakov loop in the
mean-field approximation. It can be shown that the potential (7.1.5) has the following absolute minimum:
φ0(T < Tc) = 0 and φ0(T ≥ Tc) = |φ0(T )| e2iπk/Nc , where k = 0, . . . , Nc − 1 and where |φ0(T )| is a
solution of

1− 8|φ0(T )|2 + l(T )2−Nc
[
8l(T )2 − 1

]
|φ0(T )|Nc−2 = 0. (7.1.7)

It is straightforwardly checked that
|φ0(T )| = l(T ) (7.1.8)

actually solves (7.1.7).
A more compact expression for the optimal value of the Polyakov loop is thus

φ0 = l(T ) e2iπk/Nc Θ(T − Tc), (7.1.9)

where Θ is the Heaviside function. As seen from (7.1.7), |φ0| only depends on T as required.
Restricting ourselves to the values φ = |φ| e2iπk/Nc , we get at the limit Nc → ∞ a quite simple shape

for the effective potential (7.1.5), namely

Vg
N2
c T

4
≡ ωg
T 4

= a(T ) |φ|2(1− 4|φ|2) |φ| ≤ l(T ),

→ +∞ |φ| > l(T ). (7.1.10)
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Figure 7.1: Schematic evolution of the effective potential (7.1.10) versus the temperature (solid lines). Td =
Tc on the graph. The parametrization (7.1.12) is used to compute (7.1.10).

Hence, a U(1) invariance is recovered at infinite Nc as a limiting case of the ZNc -symmetry. The schematic
evolution of the large-Nc limit of Vg with the temperature is plotted in Fig. 7.1; The behaviour (7.1.10) is
readily observed, as well as the change of global minimum in T = Tc. Finally, the large-Nc limit of the
pressure reads

pg(T,Nc) = N2
c T

4 a(T ) l(T )2
[
4l(T )2 − 1

]
. (7.1.11)

Provided that l(∞) = 1 according to the large-T behaviour of the Polyakov loop, pg would tend toward the
SB limit for a free gluon gas if a(∞) = π2/135

7.1.2 Numerical data
The function l(T ) is constrained by the relations (7.1.6) in order to have the required behaviour for the

structure of the potential and its evolution with the temperature. Moreover, l(T ) is equal to the norm of the
Polyakov loop as soon as T > Tc. Those physical constraints are not sufficient to write down an explicit
expression for l(T ). A possible way of proceeding, that we choose here, is to fit l(T ) on available lattice
computations of the Polyakov loop in pure YM theory. To our knowledge, large-Nc values have not been
obtained so far, but accurate SU(3) ones have been computed in [Gupt08]. Since the Polyakov loop should
not depend on Nc at the dominant order, it is relevant to fit l(T ) on SU(3) data; The ad hoc form

l(T ) = 0.74− 0.26 tanh

[
2.10

(
Tc
T

)3

− 0.60
T

Tc

]
(7.1.12)

leads to a satisfactory parametrization of the results of [Gupt08] as it can be seen in Fig. 7.2. It is also worth
noting that Fig. 7.1 has been obtained using the form (7.1.12) for l(T ).

It is important to remark at this stage that the calculations that we perform are done in the mean-field
approximation. In this scheme, the Polyakov loop is always lower than 1: Values larger than 1 are due to
quantum fluctuations and are de facto beyond the mean-field treatment. That is why we have restricted our
fit to lattice data lower than unity (T < 2.4 Tc). We miss the overshoot due to quantum fluctuations, but
we stay coherent with the mean-field approximation, and reach moreover l(∞) = 1. As a consequence, our
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Figure 7.2: Norm of the Polyakov loop minimizing the potential (7.1.5) versus the temperature in units of Td
(solid line). The function l(T ) (dashed line) given by (7.1.12) and the norm of the Polyakov loop computed
in pure-gauge SU(3) lQCD (points) have been added for comparison. Lattice data are given for temperatures
lower than 2.4 Td; Data are taken from [Gupt08]. Td = Tc in the graph.

results should be mostly trusted below T < 2.4 Tc but this is not a flaw since, in the following, we will be
concerned with the phase structure of the theory and no phase transition will appear at energy scales above
this upper limit.

The positive-definite function a(T ) is only present as an overall factor in Vg , so it does not come into
play in the qualitative features of the effective potential. However, it is relevant in view of reproducing the
absolute value of the pressure in pure-gauge QCD, for which lattice data are known at Nc = 3, 4, 5, 6, 8 and
∞, through an extrapolation of these data [Pane09]. The empirical choice

a(T ) =
1

l(T )4

(
π2

135
− 0.029

ln(T/Tc + 1.5)

)
(7.1.13)

leads to a good agreement between the lattice data of [Pane09] and formula (7.1.11), as shown in Fig. 7.3.
Notice that the value a(∞) is such that the SB limit is reached at large temperatures.

It is worth summarizing what has been done at this stage. Starting from Lagrangian (7.1.3), we have
shown that the three arbitrary functions of T and Nc that it contains can be strongly constrained by demand-
ing that the averaged Polyakov loop and the pure-gauge pressure have a relevant behaviour in Tc, at large
T , and in the large-Nc limit. Explicit forms for the two remaining unconstrained functions of T can then be
found by asking the present model to be in agreement with current pure-gauge lattice data. One is finally
left with a fully determined Lagrangian with explicit ZNc -symmetry at finite Nc and U(1) symmetry in the
large-Nc limit. This Lagrangian, just as the previous ones like (7.1.2), is obviously not predictive concerning
the thermodynamics of the pure-gauge sector since it is built using its properties. However, its knowledge is
a necessary step in view of making predictions concerning the quark sector, whose inclusion is discussed in
the next section.
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Figure 7.3: Large-Nc pure gauge pressure computed from (7.1.11) thanks to (7.1.12) and (7.1.13) and nor-
malized to N2

c T
4 (solid line). The corresponding lattice data, taken from [Pane09], are plotted for compari-

son in the case Nc = 3 (gray points) and Nc →∞ (black points). Td = Tc in the graph.

7.2 PNJL model
In order to include quarks, we consider the NJL model which is based on the Lagrangian [Namb61]

LNJL = q̄(iγµ∂µ −mq)q +
G

2

[
(q̄q)2 + (q̄iγ5~τq)

2
]
, (7.2.1)

where q is the quark field,mq the mass matrix,G a coupling constant, and ~τ the Pauli matrices when a SU(2)
flavour symmetry is considered. The interaction terms are such that the Lagrangian is chirally symmetric.
The NJL model is designed to model chiral symmetry breaking and study many related phenomenological
problems; The interested reader may consult the review [Klev92] for more information.

In the original NJL model, fermions are not coupled to the gauge field: As shown in [Fuku04], the
coupling of this model to the Polyakov loop can be achieved by minimally coupling the quark field to a
gauge field of the form Aµ = A0 δµ0, that formally appears as an imaginary quark chemical potential.
The so-called PNJL model resulting in this coupling has motivated a lot of studies devoted to the QCD
phase diagram (e.g. [Ratt06]), including cases with a non-zero magnetic field (e.g. [Fuku10]) or non-local
extensions (e.g. [Cont08]).

Here, we follow [Fuku04] and make appear the Polyakov loop in the quark grand canonical potential. In
the mean-field approximation, one is led indeed to the quark potential

Vq(µ, T, σ, L, L
†)

NcNf
=
σ2

2g
− 2

∫
d3p

(2π)3
× (7.2.2){

Ep +
T

Nc
Trcln

[
1 + L e−(Ep−µ)/T

]
+

T

Nc
Trcln

[
1 + L† e−(Ep+µ)/T

]}
.

In the above equality,

Ep =
√
~p 2 + (mq − σ)2 (7.2.3)
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is the quark dispersion relation, where mq is the quark bare mass and σ is related to the chiral condensate as
follows

σ = G 〈q̄ q〉 . (7.2.4)

The coupling G has to scale as (NcNf )−1 in order for the potential (7.2.2) to scale as NcNf , so it is
convenient to define the coupling g as

g = GNcNf . (7.2.5)

Although Nf is a priori arbitrary, our results are mostly valid at Nf = 2. For higher values of Nf , the axial
anomaly (not present in this formalism) should be taken into account in order to get a reliable model. In
what follows, Nf = 2 will be implicitly understood, although we keep the notation Nf so that the quark
contributions appear more clearly.

Since the pure-gauge part of the potential only involves the traced Polyakov loop φ, it is interesting to
express Vq in terms of φ rather than L. Terms of the form Trcln [1 + z L] can be expressed as functions
of TrcL ∝ φ, TrcL

2, TrcL
3, . . . through a Taylor expansion. A possible way of proceeding is to expand

the quark potential at the first order in L. This eventually leads to formulas in which only φ appears in
Vq [McLe09]. This scheme has the advantage of being independent of the parametrization of L. Here we
adopt an inequivalent procedure. As a first step, we notice that there exists in general a gauge in which the
Polyakov loop L is a diagonal element of SU(Nc):

L = diag(eiθ1 , eiθ2 , . . . , eiθNc−1 , e−i
∑Nc−1
j=1 θj ). (7.2.6)

The Nc − 1 parameters θj are real so that L†L = 1 and detL = 1 as demanded for a SU(Nc) element.
In the special case of Nc = 3, there is a one-to-one correspondence between the parameters θ1, θ2 and the
Polyakov loop degrees of freedom φ, φ∗ (see [Fuku04]). This is not the case at large Nc however, where
the number of independent parameters in the Polyakov loop goes to infinity. As a consequence, an exact
computation of the colour traces appearing in (7.2.2) is not possible unless simplifying assumptions are
made. As a second step to reach this goal, we propose the following ansatz:

L = diag(eiθ, . . . , eiθ︸ ︷︷ ︸
(Nc−1)/2

, 1, e−iθ, . . . , e−iθ︸ ︷︷ ︸
(Nc−1)/2

) odd−Nc, (7.2.7)

= diag(eiθ, . . . , eiθ︸ ︷︷ ︸
Nc/2

, e−iθ, . . . , e−iθ︸ ︷︷ ︸
Nc/2

) even−Nc.

It reduces to the mean-field parametrization of [Fuku04] at Nc = 3, but the price to pay is that the number
of degrees of freedom in L is drastically reduced to a single real parameter θ. It is then readily computed
that

φ =
1

Nc
[1 + (Nc − 1) cos θ] odd−Nc, (7.2.8)

= cos θ even−Nc,

by using of the ansatz (7.2.7) in (7.1.1). We thus have an ansatz that “looks like” the SU(3) case and that
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reduces to φ = cos θ at large-Nc. Moreover, one can compute that

Trcln
[
1 + L e−(Ep−µ)/T

]
= ln detc

[
1 + L e−(Ep−µ)/T

]
=

Nc − 1

2
ln

[
1 + 2

Ncφ− 1

Nc − 1
e−(Ep−µ)/T + e−2(Ep−µ)/T

]
+ln

[
1 + e−(Ep−µ)/T

]
odd−Nc,

=
Nc
2

ln
[
1 + 2φe−(Ep−µ)/T + e−2(Ep−µ)/T

]
even−Nc, (7.2.9)

and, taking into account a cutoff for the momentum integration of the vacuum term, one finally arrives at the
quark potential, whose large-Nc limit is given by

ωq(µ, T, σ, φ) ≡ Vq(µ, T, σ, φ)

NcNf

=
σ2

2g
− 1

π2

∫ Λ

0

dp p2Ep

− T

2π2

∫ ∞
0

dp p2
{

ln
[
1 + 2φe−(Ep−µ)/T + e−2(Ep−µ)/T

]
+ (µ→ −µ)} . (7.2.10)

This last potential formally reduces to the genuine NJL potential once φ = 1, as observed in previous
studies [Fuku04, McLe09]. The total potential of the large-Nc PNJL model under study is finally given by

V(µ, T, σ, φ) = N2
c ωg(T, φ) +NcNf ωq(µ, T, σ, φ). (7.2.11)

In the confined phase, where φ = 0, one observes a term in ln
[
1 + e−2(Ep−µ)/T

]
in the potential

(7.2.10), so it could be tempting to associate such a term with diquark degrees of freedom in the confined
phase. However, in the limit T → 0, one exactly recovers the zero temperature NJL potential, expressed in
terms of the quark degrees of freedom. So the confined degrees of freedom are still quarks in the present
approach.

7.3 Phase diagram at large Nc

To study the phase diagram at large Nc, we adopt the ’t Hooft limit. In this latter, the number of quark
flavours Nf stays finite and V is dominated by the gluonic contribution. Consequently, when Nc becomes
infinite, the optimal value φ0 can be found by minimizing ωg only. According to (7.1.9), the large-Nc
solution reads

φ0(T ) = l(T ) Θ(T − Tc). (7.3.1)

The physical value of σ, denoted σ0 and depending on T and µ, is then such that it minimizes the quantity
ωq(T, µ, σ, φ0(T )). ωg does not depend on σ. Since σ ∝ 〈q̄q〉, chiral symmetry is present when σ0 = 0
and broken when σ0 6= 0. As a consequence of (7.3.1), the deconfined phase appears as soon as T > Tc,
independently of the value of µ: As pointed out in [McLe07], quarks have no influence on the deconfinement
phase transition at large-Nc because of the suppression of internal quark loops in this limit.
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As a consequence of the large-Nc limit, the confined/deconfined phases are straightforwardly identified
in our model. The situation is less simple as far as chiral symmetry is concerned; Numerical computations
are needed. As a first step, the parameters of the model have to be fixed. The values

mq = 5.5 MeV, g = 60.48 GeV−2, Λ = 651 MeV, Tc = 270 MeV, (7.3.2)

used in the PNJL study [Ratt06], will be taken in the following also. The first three parameters have been
fitted so that the zero-temperature pion mass and decay constant are reproduced within the standard NJL
model with Nc = 3 and Nf = 2 [Hats94, Klev92]. Tc is a typical value for the deconfinement temperature
in SU(Nc) YM theory.
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Figure 7.4: Chiral condensate at large-Nc (Nc →∞), normalized to its zero temperature value, versus T in
units of Td, and plotted for µ/Td = 0, 1, and 1.11 (solid lines). The optimal value of the Polyakov loop is
also plotted (dotted line). Td = Tc in this graph.

Using the parameters (7.3.2), the optimal value σ0 can now be computed for any couple (µ, T ), and can
be linked to the quark condensate thanks to (7.2.4)

〈q̄q〉 (µ, T ) =
NcNf
g

σ0(µ, T ). (7.3.3)

In the limit where T and µ both tend toward zero, we get

lim
µ,T→0

〈q̄q〉 (µ, T ) = −NcNf 5.29 106 MeV3, (7.3.4)

corresponding to a quite common value of −(317 MeV)3 for Nc = 3 and Nf = 2.
The large-Nc chiral condensate versus the temperature is plotted in Fig. 7.4 for some values of the quark

chemical potential. The most salient feature of this plot is the simultaneity of the first-order deconfinement
phase transition and of the restoration of chiral symmetry through a first-order phase transition occurring
at Tχ = Tc. However, when µ/Tc & 0.8 (µ & 200 MeV), the quick decrease of the chiral condensate
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suggests a progressive restoration of chiral symmetry through a crossover at temperatures smaller than Tc
(see also in advance Fig. 7.5). As shown in [Fuku04], the crossover temperature can be computed thanks to
the determination of the peak position in the dimensionless quark susceptibility reading, at large-Nc,

χqq(T, µ) =
ΛT

∂2
σωq|σ=σ0

. (7.3.5)

We have chosen to follow the definition of [Fuku04] for the quark susceptibility, although a more standard
way of defining the susceptibility is rather ∂2

mqωq(T, µ), see e.g. [Cont10]. In both cases, a peak in the quark
susceptibility signals a phase transition.
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Figure 7.5: Dimensionless quark susceptibility (7.3.5) versus the temperature in units of Td (solid lines)
with, from left to right, µ/Td =1.24, 1.15, 1.04, 0.93, 0.79. χqq(T, 0) is also plotted for completeness
(dashed line). Computations were done for Nc →∞. Td = Tc in the graph.

A plot of χqq(T, µ) for some values of µ/Tc is given in Fig. 7.5. Several observations can be made by
looking at this figure together with Fig. 7.4. First, the peak of the quark susceptibility is located in Tc when
µ/Tc ≤ 0.79. This corresponds to a first-order-type chiral symmetry restoration in the deconfined phase.
The point (0.79, 1)× Tc actually corresponds to a triple point in the (µ, T )-plane. At large µ, the peak of χqq
is located below Tc. A larger µ corresponds to a lower peak position, leading to the existence of a confined
phase in which chiral symmetry is progressively restored through a crossover. A careful look at σ0 actually
shows that the chiral phase transition below Tc becomes of first order when µ/Tc ≥ 1.24: There exists thus
a critical-end-point that we find to be (1.23, 0.26) × Tc in the (µ, T )-plane. Apart from the susceptibility,
the position of the chiral phase transition could have been alternatively determined by computing the zero
of ∂2

Tσ0(T, µ). We have checked that the chiral temperatures computed using that method agree with those
computed from the peak in the susceptibility up to 5%. For an exploratory study such as the present one,
this agreement is satisfactory.

Gathering all these observations, the phase diagram of our model in the (µ, T )-plane can be established.
It is shown in Fig. 7.6. The three phases we find correspond to those found in [McLe09], see Fig. 7.7,
but the structure of the chiral phase transition is a bit more involved under Tc: The chemical potential at
which chiral symmetry is restored now depends on T , and there exists a critical-end-point at large enough µ.
Although the deconfining phase transition corresponds to what is expected in the large-Nc limit of QCD from
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generic arguments [McLe07], the critical line Tχ(µ) that we find under Tc quite resembles to what can be
observed within previously known Nc = 3 PNJL studies [Fuku04, Ratt06]. The similarity between our way
of including the Polyakov loop in the NJL model and the way of [Fuku04] – our ansatz is a straightforward
generalization of the one used in this last work – might actually be at the origin of the similarities between
the phase diagrams that we find. The same reason, combined to the fact that we chose for our parameters
values fitted on the SU(3) case, might explain why the values we find for e.g. the chiral condensate are
similar to those of [Fuku04].
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Figure 7.6: Phase diagram of the large-Nc PNJL model (7.2.11) with explicit ZNc symmetry, obtained for
Nc →∞. The solid lines denote first-order phase transitions while the dashed line denotes a crossover. The
triple point (0.212, 0.270) GeV and the critical end-point (0.335, 0.063) GeV have been also plotted. The
end of the lower curve is reached at (0.343, 0) GeV.

We notice that, at large but finite values of Nc, the full potential (7.2.11) has to be minimized and quark
contributions (presumably in 1/Nc) will cause the Polyakov loop to be different from l(T ). Hence, the chiral
condensate will also be modified, and the whole phase diagram will be affected. We nevertheless choose
here to focus on the large-Nc limit of the model, since it has been designed to be relevant in this limit mostly.
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Figure 7.7: Phase diagram obtained by taking the large-Nc limit (Nc → ∞) of the PNJL model used in
[McLe09]. The solid lines signal first-order phase transitions



Conclusions and Perspectives

Within this thesis, we mainly focus on the study of the QCD spectrum at finite temperature and on the
establishment of the EoS for different types of QCD matter. Four articles discussing this topic and related
areas were published [Buis10a, Buis11b, Buis12, Lacr13]. Other papers are being submitted [Lacr14a,
Lacr14b] and a last one, based on Section 4.4.3, Section 4.5.4 and Section 5.3, is in preparation. Moreover,
two articles about the LMM in momentum space were published [Lacr11, Lacr12]. In these few last pages,
we will thus draw some conclusions about the contributions brought by these several works and we will
sketch some perspectives that could be considered.

Let us start by our conclusions. Firstly, in the confined phase, we have highlighted that the EoS for
hadronic matter, provided by lQCD, can be correctly reproduced within a HRG model. In the particular case
of the Yang-Mills medium, it has been shown that the abundance of the high-lying glueball states can be
approximated by a Hagedorn spectrum; This latter leading to the existence of a limiting temperature for the
hadronic matter. Our original work was to extend this picture to any gauge group. The main observation that
we can extract from this work is that the EoS for the different considered gauge groups are gathered in a same
window delimited by A1 and E6, surrounding the SU(3) lQCD data. Moreover, the orbifold equivalence,
i.e. the large-Nc equivalence between SU(Nc) and SO(2Nc) is checked within our model.

Secondly, the study of the Yang-Mills matter above Tc has been addressed. Its main ascertainments are
the following. Glueballs survive inside the medium above Tc according to our T -matrix approach. Their
melting is around 1.3-1.5 Tc for the colour-singlet channels while the coloured ones dissolve just around Tc.
This observation is the same for all the gauge groups that we have studied. From a thermodynamic point
of view, we have used the DMB formulation of statistical mechanics to compute the EoS. Our approach has
thus the peculiarity to include explicitly the interactions between particles inside the plasma. Our study is
restricted to the inclusion of the two-body interactions; These latter being computed thanks to a T -matrix
formalism. Correct agreements between our EoS and the ones given in lQCD are reached. Nevertheless, the
computation of the trace anomaly requires some refinements, mainly because of the way whose the bound
states are included within the DMB formalism. An universality between the normalized EoS, performed
with SU(Nc) and G2 gauge groups, seems to emerge. This feature also appears in lQCD for SU(Nc) gauge
groups. It is worth noticing that this universality can be analytically proven at the Born approximation in our
approach.

Two extensions to this Yang-Mills plasma have been then analysed. The first one is naturally the full
QGP with 2 (+1) flavours of quarks. In these cases, much more interaction channels were taken into account
and so, much more bound states survive above Tc. However, unlike the glueballs, other two-body states
melt quickly around Tc. The EoS were then computed and compared to lQCD ones. The main qualitative
features are reproduced even if the pressure is slightly overestimated and the same issues concerning the
trace anomaly peak appear. These EoS for the pressure were also compared to the Yang-Mills plasma one.
A striking conclusion is that, once these pressures are normalized and expressed in terms of T/Tc, with
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their own Tc, a kind of universality between the curves seem to emerge, leading to think that the same main
mechanisms are at work to characterize the thermodynamic of the deconfined medium. Again, for the trace
anomaly, the observation is less clear because of the peak structure.

An exploratory work at finite baryonic potential were eventually carried out since it is a challenging
predictive area. Indeed, as already discussed, lQCD results in this phase diagram region are limited because
of several deep problems in the baryonic-potential implementation on lattice. Unfortunately, our approach is
also limited since the DMB formalism is based on a virial expansion. Therefore, our restriction to two-body
interactions becomes more questionable. Moreover, we have no consistent two-body interactions including
the effects of baryonic potential. For all these reasons, only expansions at small baryonic potentials were
considered. Nevertheless, it is worth noticing that the obtained EoS agree well with the ones computed in
lQCD, up to the remarks already done at zero baryonic potential.

The second extension addressed in this thesis were the study of the SUSY matter at finite temperature.
Predictive results about the SUSY spectrum at finite temperature were presented. In this case, all the two-
body states significantly survive above Tc; The most attractive channel for each kind of interactions not
melting before about 1.3-1.5 Tc. The EoS for different gauge groups were also produced. Again, once
normalized, an universality in function of the gauge groups seems to emerge. Let us also add that the
orientifold planar equivalence, i.e. an equivalence between QCDAS and QCDadj at large-Nc, has been
analytically checked within our model provided that the quark and the gluino bare masses are assumed to
be the same. Moreover, an extrapolation to Nc = 3 of this equivalence gives good results. Therefore, since
QCDAS is isomorphic to QCD at Nc = 3, we have that QCD with one quark flavour and SUSY with one
generator thermodynamics share the same features. This particular relation can thus be a crucial tool to
obtain information about one theory from the other and vice versa.

Finally, this thesis work ends with the building of a PNJL model in which the Polyakov-loop potential
is explicitly ZNc -symmetric in order to mimic a Yang-Mills theory with a gauge group SU(Nc). Different
phases of this resulting PNJL model were discussed in the ’t Hooft’s large-Nc limit. Three phases are found,
in agreement with previous studies resorting to effective approaches of QCD. When the temperature is larger
than Tc, the system is in a deconfined, chirally symmetric, phase for any quark chemical potential µ. When
T < Tc however, the system is in a confined phase in which chiral symmetry is either broken or not. The
critical line Tχ(µ), signalling the restoration of chiral symmetry, has the same qualitative features than what
can be obtained within a standard Nc = 3 PNJL model.

Now that we have exposed and summed up the main teaching extracting from our researches, let us
discuss some perspectives. The first one is definitely a better inclusion of the bound-state contributions to
the EoS. Indeed, with the DMB formalism, this sector is completely decoupled from the scattering one; the
bound states being added as free additional species. The main issue is that once these bound states melt
inside the medium, they totally disappear from the EoS. For the pressure computations, this behaviour is
not dramatic: The bound-state contributions are small. However, for the trace anomaly, it is not the same
since it is obtained from a derivative of the pressure respecting to the temperature: Small fluctuations can
thus become important and the step-function behaviour of the bound-state inclusion can generate unphysical
oscillations. A possible way to cure this problem could be to use the peculiarity of the T -matrix to deal with
bound and scattering states in a whole framework. Therefore, a reformulation of the DMB formalism in
order to directly integrate the whole energy range, without dividing it by a threshold energy, is needed.

A second interesting direction that could be explored is the modification of the thermodynamic relations
under the constraint that the Hamiltonian explicitly depends on some intensive variables like the temperature
or the chemical potential. Indeed, within this thesis, we make the implicit assumption that these relations
are not modified despite the fact that our chosen interactions depend on the temperature and that derivatives
in function of the temperature are used. This assumption is currently employed in quasiparticle approaches
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since the particle generally acquires a mass term from the in-medium effects; this mass being a function
of the temperature and the chemical potential, as in HTL formulas. At first sight, it seems that such study
will thus require a reformulation of the thermodynamic relations from first principles in statistical physics,
especially at the level of the introduction of the Lagrange multipliers.

A third way to consider, maybe more straightforward, could be the computations of the gluonic and
mesonic correlators. Indeed, we practically have at our disposal all the needed background to do it since such
correlators can be extracted from our T -matrix computations. Schematically, we have G = G0 + G0TG0

with G0, the lowest-order correlation function [Cabr07]. This information is particularly interesting in order
to have a comparison with the spectral function given in lQCD. It could be a direct manner to check the
validity of our potential choice used to take into account the two-body interactions between particles inside
the medium.

Another natural extension to our researches is the explicit inclusion of the three-body interactions within
our approach in order to estimate their impacts. Even if it is natural and expected to be small, it is not
straightforward to implement. Indeed, we have first to extend the Jacob and Wick’s helicity formalism to
three-body systems, which is a priori not direct. Then, we have to adapt our T -matrix computations by
using for instance Faddeev’s equations. Finally, we have to carefully take into account all the possible
channels inside the medium and compute the third term of the DMB formalism, after having expressed it in
momentum space.

Among the different possible directions which may result from our current researches, the computation
of the quark susceptibilities is also one of them. This latter requires a careful data acquisition and an adap-
tation of the code in order to extract derivatives in terms of small baryonic potentials. This investigation is
particularly interesting since lQCD collaborations (especially the BMW) is nowadays working on it in order
to have a direct check with the experiments.

Finally, let us mention that our EoS could be naturally used as starting point for hydrodynamic com-
putations. In this sense, a calculation of the ratio viscosity over entropy can be considered in order to
characterize the plasma that we have built. A small value of this ratio, as observed in experiments, could
enforce the validity of the model that we have developed.

As you can notice it, the extensions and perspectives to our researches are not missing. It is always
the same in physics: Every time a research is finished, a lot of questions come in mind and numerous and
different directions are open. Nevertheless, carpe diem and let us see what tomorrow will bring.
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Appendix A

Conventions

It is important to specify the general conventions that we have used within this thesis. Therefore, in what
follows, the units [PDG] and the space-time notations are fixed as well as the acronyms and abbreviations
that we have employed.

A.1 Unit system

Concerning the units, a scale in which ~ = 1 = c is chosen. Under these conditions, it thus remains
only a free unit which is the energy and that we can express in multiple of electron-volt (eV); the MeV (106

eV) and the GeV (109 eV) being well-adapted units in hadronic physics. The masses have then the same
dimensions as the energy. The length and time dimensions are in GeV−1. Moreover, in the thermodynamic
relations, we fix the Boltzmann constant kB to unity. Therefore, the temperatures are also expressed in
energy units.

To be complete, we mention some conversion factors to link our conventions to the international system:

• 1 GeV = 1.602176487(40) 10−10 J,

• 1 kg/c2 = 1.782661758(44) 10−45 GeV,

• kB = 8.617343(15) 10−14 GeV K−1,

• ~c = 0.1973269631(49) GeV.fm.

A.2 Space-time characterization

The space-time metric is the Minskowski one ηµν , with the (−,+,+,+) signature. The length element
is given by

ds2 = −dt2 + dx2 + dy2 + dz2.
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The Dirac’s matrices γµ, are defined by the anticommutation relations {γµ, γν} = 2ηµν whose one repre-
sentation is

γ0 =

(
12 0
0 −12

)
, γj =

(
0 σj
−σj 0

)
, (A.2.1)

where the σj are the Pauli’s matrices
It is also interesting to express some quantities in the euclidean space-time. In this case, the Dirac’s

matrices are denoted Γµ and have to check the anticommutation relations {Γµ,Γν} = 2δµν . They are given
by

Γ0 = iγ0 = i

(
12 0
0 −12

)
, Γj = γj =

(
0 σj
−σj 0

)
. (A.2.2)

A.3 List of acronyms and abbreviations
• AGS: Alternating Gradient Synchrotron

• ALEPH: Apparatus for LEP Physics (LEP experiment)

• BbS: Blankenbecler-Sugar

• BMW: Budapest-Marseille-Wuppertal

• BNL: Brookhaven National Laboratory

• BS: Bethe-Salpeter

• CERN: Organisation européenne pour la Recherche Nucléaire

• CKM: Cabibbo-Kobayashi-Maskawa

• CLQCD: China Lattice QCD

• DESY: Deutsches Elektronen-Synchrotron

• DMB: Dashen, Ma and Bernstein

• EoS: Equation(s) of State

• Fermilab: Fermi National Accelerator Laboratory

• HERA: Hadron Electron Ring Accelerator

• HRG: Hadron Resonance Gas

• HTL: Hard Thermal Loop
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• LEP: Large Electron Positron collider

• LHC: Large Hadron Collider

• LMM: Lagrange-Mesh Method

• lQCD: Quantum Chromodynamics on lattice

• LS: Lippmann-Schwinger

• MC: Monte Carlo

• NJL: Nambu-Jona-Lasinio

• NLO: Next-to-leading order

• N3LO: (Next-to)3-leading order

• PETRA: Positron-Electron Tandem Ring Accelerator

• PNJL: Polyakov-Nambu-Jona-Lasinio

• QCD: Quantum Chromodynamics

• QED: Quantum Electrodynamics

• QGP: Quark-Gluon Plasma

• RHIC: Relativistic Heavy Ion Collider

• SB: Stefan-Boltzmann

• SLAC: Stanford Linear Accelerator Center

• SPEAR: Stanford Positron Electron Asymmetric Rings

• SPS: Super Proton Synchrotron

• YM: Yang-Mills
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Appendix B

Helicity Formalism for Spin-1/2 and
Transverse Spin-1 Particles

B.1 Generalities
The proper way to manage two-body states containing gluons, gluinos or quarks is to use the Jacob and

Wick’s helicity formalism [Jaco59], since a gluon is a transverse spin-1 particle and a quark or a gluino is a
spin-1/2 particle. A two-body state with total spin J , with helicities λ1 and λ2, and with a given parity P
can be written ∣∣JP ,M ;λ1, λ2, ε

〉
=

1√
2

[|J,M ;λ1, λ2〉+ ε |J,M ;−λ1,−λ2〉] , (B.1.1)

with ε = ±1 and |J,M ;λ1, λ2〉, a two-particle helicity state in the rest frame of the system. The parity
is given by P = ε η1η2(−1)J−s1−s2 with ηi and si, the intrinsic parity and spin of particle i. Moreover,
J ≥ |λ1 − λ2|. The helicity states can be expressed as particular linear combinations of usual normalized
basis states

∣∣2S+1LJ
〉
, which is very convenient to perform the computations [Jaco59]

|J,M ;λ1, λ2〉 =
∑
L,S

[
2L+ 1

2J + 1

]1/2

〈L, S; 0, λ1 − λ2|J, λ1 − λ2〉

×〈s1, s2;λ1,−λ2|S, λ1 − λ2〉
∣∣2S+1LJ

〉
. (B.1.2)

The sum (B.1.2) involves all the {L, S} couples such that ~S = ~s1 + ~s2 and ~L + ~S = ~J . The symbols
〈a, b; c, d|ef〉 denote the well-known Clebsch-Gordan coefficients.

In this present thesis, it is sufficient to recall that four families of helicity states can be found, separated
in helicity singlets, ∣∣S±; JP

〉
= |JP ,M ;λ1, λ2,±1〉 with λ1λ2 > 0, (B.1.3)

and doublets, ∣∣D±; JP
〉

= |JP ,M ;λ1, λ2,±1〉 with λ1λ2 < 0. (B.1.4)

This notation follows the pioneering work [Barn81] and is used in [Math09a]. In the special case of identical
particles, the helicity states must also be eigenstates of the operator Ŝ =

[
1 + (−1)2sP12

]
, which is the
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projector on the symmetric (s integer) or antisymmetric (s half-integer) part of the helicity state. It can be
seen that the states [Math09a]∣∣JP ,M ;λ1, λ2, ε, ρ

〉
=

1

2

{∣∣JP ,M ;λ1, λ2, ε
〉

+ ρ
∣∣JP ,M ;λ2, λ1, ε

〉}
, (B.1.5)

with ρ = ±1, are eigenstates of Ŝ with the eigenvalues 1 + ρ(−1)J .

B.2 Two transverse spin-1 particles
The generic form of transverse spin-1 two-particle states (in this work, two-gluon states) has been pre-

sented in [Math09a]. Some properties are given in Table B.1, as well as the average value of some operators,
computed with these states.

State S A
〈
~L2
〉 〈

~S2
〉 〈

~L · ~S
〉

∣∣S+; JP
〉

(even-J ≥ 0)+ (odd-J ≥ 1)− J(J + 1) + 2 2 −2∣∣S−; JP
〉

(even-J ≥ 0)− (odd-J ≥ 1)+ J(J + 1) + 2 2 −2∣∣D+; JP
〉

(even-J ≥ 2)+ (odd-J ≥ 3)− J(J + 1)− 2 6 −2∣∣D−; JP
〉

(odd-J ≥ 3)+ (even-J ≥ 2)− J(J + 1)− 2 6 −2

Table B.1: Symmetrized (S) and antisymmetrized (A) transverse spin-1 two-particle helicity states, fol-
lowing the notation of [Barn81, Math09a], with the corresponding quantum numbers and some averaged
operators.

We give here the explicit form of the states considered in this work; the number between braces being
the value of

〈
~L2
〉

. The first symmetric states are:

∣∣S+; 0+{2}
〉

=

[
2

3

]1/2 ∣∣1S0

〉
+

[
1

3

]1/2 ∣∣5D0

〉
, (B.2.1)∣∣S−; 0−{2}

〉
= −

∣∣3P0

〉
, (B.2.2)∣∣D+; 2+{4}

〉
=

[
2

5

]1/2 ∣∣5S2

〉
+

[
4

7

]1/2 ∣∣5D2

〉
+

[
1

35

]1/2 ∣∣5G2

〉
. (B.2.3)

The first antisymmetric states are:

∣∣S+; 1−{4}
〉

=

[
2

3

]1/2 ∣∣1P1

〉
−
[

2

15

]1/2 ∣∣5P1

〉
+

[
1

5

]1/2 ∣∣5F1

〉
, (B.2.4)

∣∣S−; 1+{4}
〉

=

[
1

3

]1/2 ∣∣3S1

〉
−
[

2

3

]1/2 ∣∣3D1

〉
, (B.2.5)

∣∣D−; 2−{4}
〉

= −
[

4

5

]1/2 ∣∣5P2

〉
−
[

1

5

]1/2 ∣∣5F2

〉
. (B.2.6)
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All other states are characterized by
〈
~L2
〉
≥ 8.

B.3 States containing one transverse spin-1 particle

The generic form of states containing one transverse spin-1 particle (in this work, states containing one
gluon) can also be expressed as particular linear combinations of usual basis states

∣∣2S+1LJ
〉
, following the

procedure given in [Math09a]. Some properties are given in Table B.2, as well as the average value of some
operators, computed with these states.

State J min
〈
~L2
〉 〈

~S2
〉 〈

~L · ~S
〉

∣∣S±; JP
〉

1
2 J(J + 1) + 5

4
7
4 − 3

2∣∣D±; JP
〉

3
2 J(J + 1)− 3

4
15
4 − 3

2

Table B.2: Helicity states containing one transverse spin-1 particle, following the notation of [Barn81,
Math09a], with the corresponding quantum numbers and some averaged operators.

We give here the explicit form of the states considered in this work; the number between braces being
the value of

〈
~L2
〉

. The first qg states are:

∣∣∣∣S+;
1

2

+

{2}
〉

=

[
2

3

]1/2 ∣∣∣2P 1
2

〉
−
[

1

3

]1/2 ∣∣∣4P 1
2

〉
, (B.3.1)∣∣∣∣S−;

1

2

−
{2}
〉

=

[
2

3

]1/2 ∣∣∣2S 1
2

〉
−
[

1

3

]1/2 ∣∣∣4D 1
2

〉
, (B.3.2)∣∣∣∣D+;

3

2

−
{3}
〉

=

[
1

2

]1/2 ∣∣∣4S 3
2

〉
+

[
1

2

]1/2 ∣∣∣4D 3
2

〉
, (B.3.3)∣∣∣∣D−;

3

2

+

{3}
〉

= −
[

9

10

]1/2 ∣∣∣4P 3
2

〉
−
[

1

10

]1/2 ∣∣∣4F 3
2

〉
, (B.3.4)∣∣∣∣S+;

3

2

−
{5}
〉

=

[
1

6

]1/2 ∣∣∣4S 3
2

〉
+

[
2

3

]1/2 ∣∣∣2D 3
2

〉
−
[

1

6

]1/2 ∣∣∣4D 3
2

〉
, (B.3.5)∣∣∣∣S−;

3

2

+

{5}
〉

=

[
2

3

]1/2 ∣∣∣2P 3
2

〉
+

[
1

30

]1/2 ∣∣∣4P 3
2

〉
−
[

3

10

]1/2 ∣∣∣4F 3
2

〉
. (B.3.6)

All other states are characterized by
〈
~L2
〉
≥ 8. The parity is reversed for q̄g states. It is not relevant for g̃g
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states [Zuk83]. Within the nomenclature defined in Section 4 and Section 6, we have the following relation:

(J1) →
∣∣∣∣S+;

1

2

+

{2}
〉
, (B.3.7)

(J2) →
∣∣∣∣S+;

3

2

−
{5}
〉
, (B.3.8)

(J3) →
∣∣∣∣D+;

3

2

−
{3}
〉
, (B.3.9)

(J4) →
∣∣∣∣S−;

1

2

−
{2}
〉
, (B.3.10)

(J5) →
∣∣∣∣S−;

3

2

+

{5}
〉
, (B.3.11)

(J6) →
∣∣∣∣D−;

3

2

+

{3}
〉
. (B.3.12)



Appendix C

Gauge Group Factors

In this appendix, we summarize all the useful gauge factors entering in the diverse approaches developed
within this thesis. The representations of the different two-body tensor products of interest, their dimension,
their symmetry (when it is defined) as well as their values of κC given by (4.3.13) are displayed in the
following tables. Note that the software LIE has been used and their conventions are followed for the
enumeration of the fundamental weights of the various algebras associated to the gauge groups.

C.1 SU(N ) gauge groups
In order to correctly interpret the tables below, it is important to mention some conventions and remarks.

First of all, a representation C of the considered gauge groups is denoted (a1, . . . , ak, . . . , aN−1) and cor-
responds to a Young diagram with ak columns of length k. The notation of its conjugate representation is
simply obtained by reversing the numbers; For example, the conjugate representation of (2, 0, . . . , 1, 0) is
(0, 1, . . . , 0, 2).

Some interesting relations can be employed to check the different values given in what follows. Indeed,
the dimension of each representation Ci, appearing in the tensor product of C1 and C2, has to respect

dim C1 × dim C2 =
∑
i

dim Ci. (C.1.1)

Moreover, in group theory [Fuch97], the second order Dynkin indices IC in a tensor product obey a sum rule
that can be rewritten using our notations as ∑

C
dim C κC = 0. (C.1.2)

A general method for computing the quadratic Casimir of SU(N ), needed to obtain the value of κC given by
(4.3.13), can be found in e.g. [Luci01].
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Since the background of this thesis is essentially the QCD, let us associate to the standard particles, their
gauge group representation.

Particle Representation Dimension Quadratic Casimir

g (1, 0, . . . , 0, 1) N2 − 1 N

q (1, 0, . . . , 0, 0) N N2−1
2N

q̄ (0, 0, . . . , 0, 1) N N2−1
2N

qA (0, 1, . . . , 0, 0) N(N−1)
2 −1− 2

N +N

q̄A (0, 0, . . . , 1, 0) N(N−1)
2 −1− 2

N +N

This notation will be used just hereafter within the tables in which the condition of existence, the symmetry
(if it is meaningful), the dimension (dim C) and the colour factor (κC) of the colour channels (C) appearing
in the considered tensor product are given. The SU(3) case is also indicated. Moreover, since the particle
and its antiparticle share the same properties, they generate the same numbers in the tables below. That is
the reason why we will not double the tables. It is just necessary to replace the representation notation by its
conjugate one.

gg

SU(N) • (1, 0, . . . , 0, 1) (2, 0, . . . , 0, 2) (2, 0, . . . , 1, 0) (0, 1, 0, . . . , 0, 1, 0)
(0, 1, . . . , 0, 2)

SU(3) • (1,1) (2,2) (0,3), (3,0) -

N ≥ 2 2A, 3S 2 3 4

Symmetry S A, S S A S

dim C 1 N2 − 1
N2(N + 3)(N − 1)

4

(N2 − 4)(N2 − 1)

4

N2(N − 3)(N + 1)

4

κC −1 −
1

2

1

N
0 −

1

N

qq qq̄

SU(N) (2, 0, . . . , 0) (0, 1, 0, . . . , 0) • (1, 0, . . . , 0, 1)

SU(3) (2, 0) (0, 1) • (1, 1)

N ≥ 2 2 2 2

Symmetry S A - -

dim C
N(N + 1)

2

N(N − 1)

2
1 N2 − 1

κC
N − 1

2N2
−
N + 1

2N2
−
N2 − 1

2N2

1

2N2



C.1. SU(N ) GAUGE GROUPS 159

qg

SU(N) (1, 0, . . . , 0) (2, 0, . . . , 0, 1) (0, 1, . . . , 0, 1)

SU(3) (1, 0) (2, 1) (0, 2)

N ≥ 2 2 3

dim C N
(N + 2)N(N − 1)

2

(N + 1)N(N − 2)

2

κC −
1

2

1

2N
−

1

2N

qAqA

SU(N) (0, 2, 0, . . . , 0) (1, 0, 1, 0 . . . , 0) (0, 0, 0, 1, 0, . . . , 0)

SU(3) (0, 2) (1, 0) -

N ≥ 2 3 4

Symmetry S A S

dim C
N2(N2 − 1)

12

N(N2 − 1)(N − 2)

8

N(N − 1)(N − 2)(N − 3)

24

κC
N − 2

N2
−

2

N2
−

2(N + 1)

N2

qAq̄A

SU(N) • (1, 0, . . . , 0, 1) (0, 1, 0, . . . , 0, 1, 0)

SU(3) • (1, 1) -

N ≥ 2 3 4

dim C 1 N2 − 1
(N − 3)N2(N + 1)

4

κC −
(N − 2)(N − 1)

N2

−N2 + 2N + 4

2N2

2

N2



160 APPENDIX C. GAUGE GROUP FACTORS

qAg

SU(N) (2, 0, . . . , 0) (0, 1, 0 . . . , 0) (1, 1, 0, . . . , 0, 1) (0, 0, 1, 0, . . . , 0, 1)

SU(3) (2, 0) (0, 1) (1, 2) -

N ≥ 2 3 3 4

dim C
N(N + 1)

2

N(N − 1)

2

N2(N2 − 4)

3

N(N2 − 1)(N − 3)

6

κC −
N − 2

2N
−

1

2

1

2N
−

1

N

C.2 G2 gauge group
Another interesting group under consideration is G2 which is also the best studied gauge group so far

beyond SU(N ). The adjoint representation of G2 has dimension 14, and reads (0, 1) in a highest weight
representation. Since we only consider the gauge-group dependence in the Yang-Mills sector, it is only
necessary to look at the tensor product of two gluons. The useful numbers are then given in the table below,
following the canvas proposed for the SU(N ) tables.

gg

G2 • (0, 1) (0, 2) (2, 0) (3, 0)

Symmetry S A S S A

dim C 1 14 77 27 77

κC −1 −1/2 1/4 −5/12 0



Appendix D

Lagrange-Mesh Method

The Lagrange-mesh method (LMM) is initially a powerful procedure, expressed in configuration space,
to solve eigenproblems mainly associated to a two-body Schrödinger equation [Baye86, Baye95, Baye06,
Vinc93] or a semi-relativistic Hamiltonian [Buis05, Sema01]. It is very simple to implement and very
accurate. The trial eigenstates are expanded in a basis of well chosen functions, the regularized Lagrange
functions which vanish at the origin and at all mesh points except one. Using their special properties and
a Gauss quadrature rule, the method requires only the evaluation of the potential at the mesh points. Mean
values of observables can then be easily obtained as well as the Fourier transform of the configuration space
wave functions [Lacr11].

Afterward, the LLM has been adapted to solve eigenequations written directly in momentum space
[Lacr12]. It has been shown in [Lacr12] that the convenience and the accuracy of the original technique are
preserved. In particular, the kinetic operator is a diagonal matrix. Mean values of observables and wave
functions expressed in configuration space can also be easily computed with a good accuracy using only
eigenfunctions computed in the momentum space.

This appendix is based on a short compilation of the papers [Lacr11, Lacr12]. Only the philosophy of the
method in configuration and in momentum space will be summarized. The numerical results demonstrating
the efficiency of the LMM will not be exposed here. Interested readers can refer to all the articles mentioned
in this introduction to realize its efficiency.

D.1 Method in configuration space

D.1.1 Lagrange functions
The basic tools for the LMM are a N -point mesh {xi} associated with an orthonormal set of N indefi-

nitely derivable functions fj(x), called the Lagrange functions and satisfying [Baye86, Baye95, Vinc93]

fj(xi) = λ
−1/2
i δij . (D.1.1)

This condition means that it vanishes at all mesh points except one. The xi and λi are respectively the
abscissae and the weights of a Gauss quadrature formula,∫ ∞

0

g(x)dx ≈
N∑
k=1

λkg(xk). (D.1.2)
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162 APPENDIX D. LAGRANGE-MESH METHOD

As we usually work with the radial part of wave functions, we consider the case of the Gauss-Laguerre
quadrature because the domain of interest is [0,∞[. Nevertheless, it is worth mentioning that a general
procedure for deriving other Lagrange meshes related then to orthogonal and non-orthogonal bases has also
been developed in [Baye02]. The Gauss formula (D.1.2) is exact when g(x) is a polynomial of degree 2N−1
at most, multiplied by exp(−x). The Lagrange-Laguerre mesh points are the zeros of a Laguerre polynomial
of degree N : LN (xi) = 0 [Baye86] while the weights can be computed by the following formula [Baye02]:

lnλi = xi − lnxi + 2 ln Γ(N + 1)−
N∑

j 6=i=1

ln(xi − xj)2. (D.1.3)

For physical purposes, it is preferable to use the regularized Lagrange functions whose explicit form is
given by

fi(x) = (−1)ix
−1/2
i x(x− xi)−1LN (x) exp(−x/2). (D.1.4)

Besides nullifying at xj with j 6= i, such a function also vanishes at the origin while checking (D.1.1).

D.1.2 Eigenvalue problems
With the LMM, the solution of a quantum equation (as for instance, the Schrödinger equation or a semi-

relativistic Hamiltonian) reduces to the determination of eigensolutions of a given matrix. Let us consider
the eigenvalue equation [

T (~p 2) + V (r)
]
|ψ〉 = E |ψ〉, (D.1.5)

where T (~p 2) is the kinetic energy term of the Hamiltonian and V (r) the potential which depends only on
the radial coordinate r = |~r |. A trial state |ψ〉, approximation of the genuine eigenstate, is expanded on a
basis of the regularized Lagrange functions (D.1.4)

|ψ〉 =

N∑
j=1

Cj |fj〉 with 〈~r |fj〉 =
fj(r/h)√

hr
Ylm(r̂), (D.1.6)

with r̂ = ~r/r. The coefficients Cj are linear variational parameters and the scale factor h is a non-linear
parameter aimed at adjusting the mesh to the domain of physical interest. Contrary to some other mesh
methods, the wave function is also defined between mesh points by (D.1.4) and (D.1.6).

Basis states |fi〉 built with the regularized Lagrange functions are orthogonal only at the Gauss approx-
imation, i.e. 〈fj |fi〉 = δji. So, all mean values has to be performed using the Gauss quadrature formula
(D.1.2). The potential matrix elements are then given by

〈fi|V (r)|fj〉 = V (hxi) δij . (D.1.7)

The potential matrix is both simple to obtain and diagonal.
The only non-trivial part to compute is the matrix elements 〈fi|T |fj〉 ≈ Tij . Let us first look at the

matrix P whose elements are Pij = 〈fi|~p 2|fj〉. With (D.1.2), these matrix elements are given by

Pij =
1

h2

(
tij +

l(l + 1)

x2
i

δij

)
, (D.1.8)

where l is the orbital angular momentum quantum number, and where

tij =

∫ ∞
0

fi(x)

(
− d2

dx2

)
fj(x) dx ≈ −λ1/2

i f ′′j (xi). (D.1.9)
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This compact expression is exact for some Lagrange meshes. This is not the case for the regularized Laguerre
mesh. An exact expression for tij can easily be obtained (see Appendix in [Vinc93]). However, as shown
in [Baye95], it is preferable to use the approximation (D.1.8)-(D.1.9). The kinetic matrix elements are then
even easier to obtain and read [Baye95]

tij =

{
(−)i−j(xixj)

−1/2(xi + xj)(xi − xj)−2 (i 6= j),
(12x2

i )
−1[4 + (4N + 2)xi − x2

i ] (i = j).
(D.1.10)

For a non-relativistic Hamiltonian, Tij = 1
2µPij , where µ is the reduced mass of the system. For a more

general operator T (~p 2), the calculation is much more involved (think for instance to the kinetic part of a
spinless Salpeter equation 2

√
~p 2 +m2). The idea is to use a four-step method suggested in [Fulc94] and

applied in [Sema01]:
1. Computation of the matrix P whose elements are Pij = 〈fi|~p 2|fj〉, given by (D.1.8)-(D.1.10).
2. Diagonalization of the matrix P . If PD is the diagonal matrix formed by the eigenvalues of P , we

have
P = S PD S−1, (D.1.11)

where S is the transformation matrix composed of the normalized eigenvectors.
3. Computation of TD, a diagonal matrix obtained by taking the function T (x) of all diagonal elements

of PD.
4. Determination of the kinetic matrix T in the original basis by using the transformation (D.1.11)

T = S TD S−1. (D.1.12)

The elements Tij computed with (D.1.12) are of course approximations of the numbers 〈fi|T (~p 2)|fj〉.
However, it has been shown in [Sema01], that this four-step procedure can give very good results for physical
problems.

Now, let us apply the variational method to (D.1.5). It provides a system of N mesh equations

N∑
j=1

[Tij + V (hxi) δij − E δij ]Cj = 0. (D.1.13)

It is worth noticing that the Hamiltonian matrix elements in (D.1.13) are computed at the Gauss approxi-
mation. So, the variational character of the method cannot be guaranteed, except if an exact quadrature is
performed. In practice, for a sufficiently high number of basis states, the method is often variational and, in
most cases, a very high accuracy can be achieved in the framework of the Gauss approximation. Neverthe-
less, the mathematical reasons for this high efficiency of the LMM are not well known yet [Baye02].

The accuracy of the eigensolutions depends on two parameters: The number of mesh points N and
the value of the scale parameter h. For a sufficiently high value of N (which can be as low as 20 or 30),
the eigenvalues present a large plateau as a function of h. This is a great advantage since the non-linear
parameter must not be determined with a high precision. Nevertheless, if h is too small, a significant part
of the wave function is not covered by the points of the Lagrange mesh and when h is too large, all mesh
points are located in its asymptotic tail. Therefore, a procedure to directly estimate a reasonable value of h
is necessary. We have remarked that the best results are obtained when the last mesh points are located “not
too far” in the asymptotic tail. So, if we choose a point rmax in the tail of the wave function, the value of
h can be obtained by h = rmax/xN , where xN is the last mesh point. A methode to evaluate rmax has been
developed but will not be detailed here. Interested readers can refer to [Brau98, Lacr11].
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D.1.3 Mean values of radial observables

The mean value of the operator U(r) for a trial state |ψ〉 is given by

〈ψ|U(r)|ψ〉 =

N∑
i,j=1

Ci Cj 〈fi|U(r)|fj〉. (D.1.14)

Using the Lagrange condition (D.1.1) and the Gauss quadrature (D.1.2), this integral reduces to

〈ψ|U(r)|ψ〉 =

N∑
j=1

C2
j U(hxj). (D.1.15)

If U is the identity, we recover the normalization condition as expected. A very high accuracy can be
obtained with this simple procedure [Baye06, Hess99].

D.1.4 Mean values of momentum-dependent observables

As previously, the mean value of the operator K(p) for a trial state |ψ〉 is given by

〈ψ|K(p)|ψ〉 =

N∑
i,j=1

Ci Cj 〈fi|K(p)|fj〉. (D.1.16)

The matrix elements 〈fi|K(p)|fj〉 can be determined by a procedure identical to the one used to compute
〈fi|T (~p 2)|fj〉. An intermediate step is the calculation of the matrix KD, a diagonal matrix obtained by
taking the functionK(

√
x) of all diagonal elements of PD (remember that P is linked to the matrix elements

of ~p 2, not p = |~p|). The numbers 〈fi|K(p)|fj〉 are well approximated by the elements of the matrix K
obtained by using the transformation: K = S KD S−1. As it can be seen in [Lacr11], a very good accuracy
can be reached for the mean values 〈K(p)〉.

D.1.5 Fourier’s transform

For some particular problems, it can be useful to compute the Fourier’s transform of a wave function in
the position space in order to obtain the corresponding wave function in the momentum space. The Fourier’s
transform φFT(~p ) of a wave function φ(~r ) is defined by

φFT(~p ) =
1

(2π)3/2

∫
φ(~r ) e−i~p.~rd~r. (D.1.17)

Using the spherical representation of the wave function

φ(~r ) = Rnl(r)Ylm(r̂), (D.1.18)

and expanding e−i~p.~r in spherical waves [Vars88], it can be shown that

φFT(~p ) = RFT
nl (p) Ỹlm(p̂), (D.1.19)
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where p = |~p | and p̂ = ~p/p, and where

RFT
nl (p) = (−1)l

√
2

π

∫ ∞
0

Rnl(r) jl(p r) r
2 dr, (D.1.20)

Ỹlm(p̂) = il Ylm(p̂). (D.1.21)

jl(x) is a spherical Bessel function [Abra65] and Ỹlm(x̂) is called a modified spherical harmonic [Vars88].
Using (D.1.6), the radial part R(r) of the trial function is given by

R(r) =

N∑
j=1

Cj
fj(r/h)√

hr
. (D.1.22)

The Fourier’s transform RFT(p) of this radial function is defined by (D.1.20). It is tempting to use the Gauss
quadrature rule (D.1.2) with the Lagrange condition (D.1.1) to perform this calculation. The problem is that
spherical Bessel functions are rapidly oscillating functions. It is then not obvious that such a procedure could
work. Actually, we have checked that the Fourier’s transform of a unique regularized Lagrange function,
which is also a rapidly oscillating function, can not be obtained in this way with a good accuracy. Fortunately,
the radial part of a wave function has a much smoother behaviour. Its Fourier’s transform can be easily
obtained in the framework of the LMM by taking benefit of the very special properties of the regularized
Lagrange function [Lacr11]. Using (D.1.2) with (D.1.1), the integral (D.1.20) simply reduces to

R̄FT(p) = (−1)l
√

2

π
h3/2

N∑
i=1

Ci
√
λi xi jl(hxi p), (D.1.23)

where we use the “bar” to indicate that this is not the exact Fourier’s transform RFT(p). For a sufficiently
high value of N (which can be as low as 50), R̄FT(p) Ỹlm(p̂) can be a very good approximation of the
genuine eigenstate in the momentum space for values of p ∈ [0, pmax], where pmax can be determined with
the procedure used to compute rmax [Brau98, Lacr11]. For values of p & pmax, R̄FT(p) can present large
unphysical rapid oscillations.

D.2 Method in momentum space

D.2.1 Eigenvalue problems
Let us go back to the eigenequation (cfr. (D.1.5))[

T (~p 2) + V (r)
]
|φ〉 = E |φ〉. (D.2.1)

We have shown in the previous section that the wave functions in configuration space φr(~r ) = 〈~r |φ〉 and
in momentum space φp(~p ) = 〈~p |φ〉 can be written using the spherical representation (we could use the
notation RFTnl in (D.2.3) but we prefer to keep the notation of [Lacr12])

φr(~r ) = Rnl(r)Ylm(r̂), (D.2.2)

φp(~p ) = Pnl(p) Ỹlm(p̂), (D.2.3)
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and linked by the following Fourier’s transforms [Saku93]

φp(~p ) =
1

(2π)3/2

∫
φr(~r ) e−i~p·~r d~r, (D.2.4)

φr(~r ) =
1

(2π)3/2

∫
φp(~p ) e+i~p·~r d~p. (D.2.5)

These equations lead to [Lacr11]

Pnl(p) = (−1)l
√

2

π

∫ ∞
0

Rnl(r) jl(p r) r2 dr, (D.2.6)

Rnl(r) = (−1)l
√

2

π

∫ ∞
0

Pnl(p) jl(p r) p2 dp. (D.2.7)

Written in the momentum space, (D.2.1) takes the following form

T (~p 2)φp(~p ) +

∫
VFT(~p− ~p ′)φp(~p ′) d~p ′ = E φp(~p ) (D.2.8)

with VFT(~p− ~p ′), the Fourier’s transform of V (r), given by

VFT(~p− ~p ′) =
1

(2π)3

∫
V (r) e−i(~p−~p

′)·~rd~r. (D.2.9)

This potential is a continuous function of the momentum, even if parts of the interaction in configuration
space present discontinuities. One can think of square well or Dirac delta function. As the potential depends
only on r, we have VFT(~p− ~p ′) = VFT(|~p− ~p ′|) and (D.2.9) becomes [Grad80]

VFT(k) =
1

2π2k

∫ ∞
0

V (r) sin(k r) r dr. (D.2.10)

Using the standard decomposition of an angular function [Vars88], the eigenvalue equation (D.2.8) takes the
form of an integral equation for the wave function Pnl(p)

T (p2)Pnl(p) +

∫ ∞
0

Vl(p, p
′)Pnl(p′) p′

2
dp′ = E Pnl(p) (D.2.11)

with the partial potentials

Vl(p, p
′) = 2π

∫ +1

−1

Pl(t)VFT

(√
p2 + p′2 − 2pp′t

)
dt. (D.2.12)

The Legendre polynomial Pl(t) depends on the variable t = p̂ · p̂′.
Within this formulation, the action of the kinetic operator is just an ordinary multiplication. So, non-

relativistic and semi-relativistic systems are computed with the same manner. Moreover, more complicated
kinetic parts, with momentum-dependent masses [Agui11, Llan00, Szcz96], can be equally treated. Though
the formulations in the configuration and momentum spaces are completely equivalent, this does not mean
that the technical difficulties to solve the eigenequations are the same in both spaces.
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To express the integral equation (D.2.11) within LMM, the idea is to expand the wave function Pnl(p)
with the regularized Lagrange functions in such a way that a trial state |ψ〉 is written

|ψ〉 =

N∑
j=1

Cj |fj〉 with 〈~p |fj〉 =
fj(p/h)√

h p
Ỹlm(p̂). (D.2.13)

This formula is identical to (D.1.6) with just two differences: the replacement of the variable r by p and the
dimension of the parameter h (a dimension of a momentum versus a dimension of a distance). For a good
value of h and a sufficiently high value of N , the function

P̄nl(p) =

N∑
j=1

Cj
fj(p/h)√

h p
(D.2.14)

can also be a good approximation of the exact function Pnl(p). We have checked that the method in momen-
tum space keeps the advantage of a large plateau for the determination of h. It is sufficient that this value be
located within a given interval. However, the generalization of an automatic procedure for determining the
value of h, as developed in the configuration space, is very difficult to obtain due to the non-local nature of
the interaction in (D.2.11). A study of the convergence of the method as a function of the scale parameter
h and the number of mesh points N for non-relativistic and semi-relativistic kinematics has been done in
[Lacr12].

Inserting expansion (D.2.14) in (D.2.11) gives

T (h2x2)

N∑
j=1

Cj
fj(x)

x
+

N∑
j=1

Cj h
3
√
λj xj Vl(hxj , h x) = E

N∑
j=1

Cj
fj(x)

x
, (D.2.15)

where x = p/h is a dimensionless variable. We can now multiply this equation by x fj(x) and integrate on
[0,∞[ with again the Gauss quadrature formula (D.1.2). Finally, we obtain

N∑
j=1

Cj

[
T (h2x2

i ) δij + h3
√
λi λj xi xj Vl(hxi, h xj)− E δij

]
= 0. (D.2.16)

The Hamiltonian matrix is symmetric since Vl(p, p′) = Vl(p
′, p). A similar expression is obtained for

calculations with the LMM in the configuration space for a non-local potential [Hess02].
In [Lacr12], we have cross-checked our results by comparing eigenvalues and mean values of observables

computed with the LMM in both configuration and momentum spaces. The Fourier’s transform is naturally
used to pass from one space to another.

D.2.2 Mean values of momentum-dependent observables

As the analogue case in the configuration space, the mean value of the operator U(p) for a trial state |ψ〉
is given by

〈ψ|U(p)|ψ〉 =

N∑
i,j=1

Ci Cj 〈fi|U(p)|fj〉. (D.2.17)
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It naturally reduces to the simple expression

〈ψ|U(p)|ψ〉 =

N∑
j=1

C2
j U(hxj). (D.2.18)

If U is the identity, we recover the normalization condition as expected.

D.2.3 Mean values of radial observables
The mean value of the operator K(r) for a trial state |ψ〉 is given by

〈ψ|K(r)|ψ〉 =

N∑
i,j=1

Ci Cj 〈fi|K(r)|fj〉. (D.2.19)

The method to compute matrix elements 〈fi|K(r)|fj〉 relies on the fact that ~r 2 = −~∇2
~p in the momentum

space [Luch90]. If we look at the matrixRwhose elements areRij = 〈fi|~r 2|fj〉, we find similar expressions
as the one developed in Section D.1.2. This case is therefore analogue at the computation of momentum-
dependent observables in the configuration space.

D.2.4 Fourier’s transform
The Fourier’s transform of the wave function computed in momentum space is of course given by

R̄nl(r) = (−1)l
√

2

π
h3/2

N∑
i=1

Ci
√
λi xi jl(hxi r). (D.2.20)

This formula is identical to (D.1.23) with just the replacement of the variable r by p. The same conclusions
as the ones drawn in the configuration space can be done here.
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