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Introduction

One of the great unresolved questions in physics is "How were the heavy elements between
iron and uranium formed?". While it is well known that light elements (Z ≤ 26) of the periodic
table up to and including iron are synthesized by nuclear fusion within stars, the nucleosynthesis
of the heavier elements (Z > 26) remains a great enigma. Indeed, the production of the latter re-
quires very specific physical conditions for neutron capture by atomic nuclei, as nuclear fusion
changes from exothermic to endothermic beyond iron (Ryan and Norton, 2010). Consequently,
all elements heavier than iron (Z > 26) are the result of neutron addition, transforming already
massive atomic nuclei into even more massive elements. Supernova explosions and the extreme
conditions (high pressure and very high temperature) they generate have been considered the
main sources of heavy elements production for sixty years (Cameron, 1957). These conditions
give rise to numerous nuclear reactions, with an abundant production of neutrons whose rapid
flux enables atomic nuclei to transmute into elements heavier than the previous ones. This fast
neutron capture is the nucleosynthesis process well known as the r-process (r for rapid), and its
role in the formation of the heavy elements of the periodic table has been repeatedly described
in the scientific literature (Rauscher, 2020; Shaviv, 2012; Cowan et al., 2021). However, the
development of increasingly advanced numerical simulations for supernovae has revealed that
the conditions necessary for the formation of heavy elements do not last long enough in those
explosions to explain the abundances of elements heavier than iron observed in the Universe
(Cowan et al., 2021). In the late 80s, some researchers suggested that neutron star merger could
be another interesting candidate to be the site of production of heavy elements (Eichler et al.,
1989). However it was felt at that time that this type of collision was too rare to contribute
significantly, although successive theoretical modelings confirmed this hypothesis, as indicated
by hydrodynamical simulations (Goriely et al., 2011).

Neutron stars can evolve in binary systems. Each neutron star approaches each other losing
energy until it merges with the other one. This binary system of neutron stars produces gravita-
tional waves. The latter have fascinated scientists for decades. These waves were theoretically
predicted by the physicist Albert Einstein in 1916 but were only observed for the first time
almost a century later, in 2015, with the detection of a black hole merger (GW150914 event,
Abbott et al. 2016). These oscillations were detected by the LIGO and Virgo Collaboration with
the LIGO interferometers which are Michelson interferometers located at Hanford (Washing-
ton) and Livingston (Louisiana) in the United States. Virgo interferometer located near Pisa in
Italy was not operating at that time since it was shut down for an equipment upgrade and could
therefore not confirm the signal recorded by LIGO interferometers (Castelvecchi and Witze,
2016). Nevertheless, such gravitational waves recorded by LIGO interferometers made it pos-
sible to characterize and partially localize the binary system before it collapsed. Unfortunately,
for this event, no electromagnetic counterpart was observed by the Fermi, INTEGRAL and
Swift space telescopes (Evans et al., 2016).
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INTRODUCTION 2

On August 17, 2017, gravitational waves emitted by a neutron star merger (NSM) were de-
tected for the first time by the above-mentioned interferometers (Abbott, 2017). This event,
named GW170817, was followed by a short gamma-ray burst detected 1.7 seconds later by the
Fermi and INTEGRAL space telescopes (Abbott et al., 2017). This collision also produced
an electromagnetic signal powered by the ejection of hot and radioactive matter, known as a
kilonova (thousand times brighter than a nova) and named AT2017gfo in the case of the above-
mentioned NSM event. The latter was recorded by several tens of telescopes, operating in the
infrared, the visible, the ultraviolet and the X-ray wavelength ranges. The spectral analysis of
AT2017gfo revealed the presence of elements heavier than iron (Kasen et al., 2017). The total
quantity of heavy elements produced by this coalescence was estimated to be 16 000 times the
mass of the Earth, opening up a robust path towards the conviction that a large proportion of
the elements created by the r-process originated in neutron star mergers (Berger, 2017). The
matter ejected during such event is characterized by a substantial opacity. The latter is essen-
tially due to the superposition of millions of spectral lines belonging to ions of the lanthanide
group (Z = 57–71) and actinide group (Z = 89–103) whose atomic structures consist in the
progressive filling of the 4f and 5f subshells, giving rise to complex electronic configurations
with a huge number of closely spaced energy levels. In other words, lanthanide and actinide
ions significantly contribute to the kilonova ejecta opacity. Combining the detection of gravita-
tional and electromagnetic waves to characterize the same celestial object allows the birth of a
new physics, the so-called multi-messenger astronomy. By considering complementary physi-
cal phenomena from different disciplines, it is feasible to localize as accurately as possible the
position of NSM to quickly observe the electromagnetic counterpart and better understand the
formation of heavy elements.

Unfortunately, atomic data for moderately-charged lanthanides and actinides are still too incom-
plete, both in quantity and quality, to accurately model kilonovae, especially with regard to the
opacity and the light curve, i.e the evolution of luminosity as a function of time. However, in the
purpose of interpreting and modeling kilonova spectra, it is imperative to have an accurate un-
derstanding of the radiative parameters that characterize these elements notably for lanthanides
to which the present work is devoted. Although the determination of such parameters has al-
ready been the subject of various studies over the recent years, the latter only concern the first
ionization degrees (up to 3+) and are therefore limited to the analysis of kilonovae in a temper-
ature range below 20 000 K. To extend the modeling of this type of celestial object to higher
temperatures, corresponding to the early phase of kilonovae (less than a day post-merger), it is
essential to know the radiative parameters of lanthanide ions in higher charge stages for which
only few studies have been conducted so far. This work aims to make a significant contribution
in this field as it consists in a detailed study of the radiative processes characterizing moderately-
charged lanthanide ions (from 4+ to 9+) and to deduce the corresponding astrophysical opacities
for typical early-phase kilonova ejecta conditions 0.1 day after the merger. As there is almost
no experimental data available for these ions, our calculations are based on a multi-platform
approach involving different independent theoretical methods, namely the pseudo-relativistic
Hartree-Fock (HFR) (Cowan, 1981), the fully-relativistic Multi-Configuration Dirac-Hartree-
Fock (MCDHF) (Grant, 2007) and the Configuration Interaction and Many-Body Perturbation
Theory (CI+MBPT) (Dzuba et al., 1996) methods. Due to the absence of sufficient experimen-
tal data, this approach is the only way to estimate the accuracy of the results obtained through
systematic comparisons between distinct computational procedures. Nevertheless, some ions
are difficult to treat with these computational methods due to the enormous size of their cor-
responding Hamiltonian matrices. In that case, the so-called Resolved Transition Array (RTA)
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(Bauche et al., 2015) statistical approach is used to simulate atomic data and to compute opaci-
ties.

In the first chapter of this work, we detail the astrophysical context, highlighting the formation
of neutron stars and the evolution of neutron star binary systems. We also explain the r-process
allowing the formation of heavy elements and detail the different types of ejecta formed after a
NSM. The behaviour of a kilonova throught the time is also shown. A brief explanation of gravi-
tational wave detectors is given, followed by a description of the GW170817 event. To conclude
this chapter, we explain the importance of calculating atomic parameters in moderately-charged
lanthanides and we detail the atomic data already available to analyze our atomic results and
opacities computed for lanthanide ions.

In the second chapter, we present the theoretical concepts and computational methods used
to model the atomic structures and radiative data of moderately-charged lanthanide ions. The
first method described is the pseudo-relativistic Hartree-Fock (HFR) method implemented
in Cowan’s code. Then, we detail theoretical background of the fully-relativistic Multi-
Configuration Dirac-Hartree-Fock approach (MCDHF) and also describe the GRASP2018
package which implement such method. Finally, the Configuration Interaction and Many-Body
Perturbation Theory (CI+MBPT) method executed by AMBiT is also explained.

Chapter 3 and 4 present the atomic data and astrophysical opacities obtained using different
computational methods based on the above-mentioned theoretical strategies. In this former, we
first detail the atomic calculations performed for La V–X to Sm V–X ions. Then, we show
how the atomic data for Eu V–VII to Lu V–VII ions are computed. A comprehensive study
and comparison is also carried out in order to determine ground levels of moderately-charged
lanthanide ions. After that, in Chapter 4, we explain the expansion formalism useful to com-
pute expansion opacities in this work. The influence of some parameters such as cancellation
factor (CF), scaling factor (SF), cut-off on oscillator strengths and the use of realistic partition
functions instead of approximating the latter by only considering the statistical weight of the
ground level on the computed opacity is also described. The line-binned formalism is also in-
vestigated for a specific lanthanide, namely Sm ions in order to make a comparison with the
corresponding expansion opacities obtained with the expansion formalism. At the end of this
chapter, we determine Planck mean opacities for moderately-charged lanthanide ions between
25 000 K and 40 000 K, to find out the opacities of which elements are dominant depending on
the temperature.

The last chapter of this work focusses on the determination of simulated atomic data by using
the Resolved Transition Array (RTA) approach. The latter is a statistical method that we used to
calculate opacities for complex ions difficult to treat with the computational methods previously
cited. Statistical distribution used to obtain energy levels, wavelengths and oscillator strengths
through random draws are described in this chapter. Opacities calculated using HFR results
and simulated atomic data are compared for Sm VIII and Eu VI before applying the statistical
method to a complex ion difficult to treat with the Cowan’s code, namely Dy VIII. Finally, we
draw the general conclusions of our investigations and develop some interesting prospects.



Chapter 1

Astrophysical context

The first chapter aims to detail the main motivations of this PhD thesis from an astrophysical
point of view. The first sections describe the formation of neutron stars and the evolution of
neutron star binary systems. Then, the physical processes creating heavy elements that make
up our universe are introduced and the different ejecta types involved in the merger of two
neutron stars (NSM) are explained. In the following section, the concept of opacity is described
and some examples are shown for heavy elements such as lanthanides (lowly- and moderately-
charged). Subsequently, before relating the NSM event observed on August 17, 2017, detectors
used to observe these gravitational waves (their improvements and the latest upcomings) are
briefly presented. Finally, the last part of this chapter explains the importance of obtaining
atomic data for the moderately-ionized lanthanides which are essential to model kilonova light
curves.

1.1 Neutron stars
In the core of the stars, thermonuclear fusion reactions take place, ensuring the stability of

the star. These reactions provide the required energy to the stars to counterbalance their own
weight via radiation pressure, in order to assemble nucleons to form an atomic nucleus heavier
than the initial one. If the nuclear binding energy per nucleon is higher in the formed nucleus,
a release of energy occurs (exothermic reaction). In stars, such reactions happens up to 56 Ni.
The latter is unstable and it decays into 56 Fe, which is stable. This process does not continue
beyond iron because fusion reaction becomes endothermic (i.e. the reaction requires energy to
happen). As no force can counterbalance the weight of the star at this point, there is a gravita-
tional collapse of the star on itself giving rise to a supernova. The latter is extremely bright and
lasts only a few days or few weeks.

Depending on the mass of the initial star, the star of mass M (M > 8Msol where Msol =
1.94× 1030 kg) has two possible scenarii after the supernova stage: either it becomes a neutron
star (8Msol > M > 25Msol) or a black hole (M > 25Msol). If the initial star has a mass lower
than eight solar masses then it will become a white dwarf (i.e. a celestial object of high density
with a high surface temperature) (Pradhan and Nahar, 2011). In this work, only the neutron
stars are of interest.

When the explosion occurs, the collapse only stops when the matter is very dense so that no nu-
cleus can exist and the neutrons are separated by distances on the scale of a fermi (i.e. 10−15 m).
Indeed, the Pauli principle, which describes that two particles cannot occupy the same space at

4



Binary systems of neutron stars 5

the same time t, must be respected. At this point, the strong interaction (responsible for the co-
hesion of the atomic nucleus) is dominant and causes a sufficient pressure to stop the collapse.
There remains only a very dense core composed mainly of neutrons. This remaining star has a
radius of a few tens of kilometers, while its mass is between 1.4 and 3.2 times the mass of the
Sun. Neutron stars are the smallest and densest stars known to date.

A neutron star, whose existence was assumed in 1930 by the physicist Lev Landau (Yakovlev
et al., 2013), was detected and observed for the first time in the 1960s by the physicist Jocelyn
Bell (APS news, 2006), thanks to the pulses of radiation that such stars emit, as illustrated in
Figure 1.1 (Thielmann et al., 2017). Indeed, when neutron stars are formed, they rotate on
themselves at very high speed making their magnetic field amplified. Such stars behave like a
giant magnet turning very quickly on themselves. As the magnetic pole axis is not in the same
direction as the rotation axis, the radio emission is focused along the magnetic poles sweeping
periodically a limited region. A radio pulse can only be detected when Earth occupies this
specific region. Due to the detection of this pulse, such neutron star are called a pulsar (Blanchet
et al., 2017). A neutron star can be also called a magnetar. Such as the pulsar, it turns rapidly
around itself and have a magnetic field’s intensity which is a 100 to 1000 times more powerful
than pulsars.

Figure 1.1: Artist’s view of relativistic jets emanating from a neutron star
(https://www.skyatnightmagazine.com/space-science/
what-is-a-pulsar-a-complete-guide-to-spinning-neutron-stars).

1.2 Binary systems of neutron stars
Some neutron stars evolve in binary systems. They revolve one around the other, as shown

in Figure 1.2, and slowly approach each other while losing energy until they merge. This sce-
nario, predicted theoretically, has been observed experimentally only few years ago. Binary
systems of neutron stars produce gravitational waves (i.e. vibrations of space-time predicted
by the general relativity). These waves have frequencies that are directly related to the orbital
frequency, meaning the rate at which the two stars orbit each other. These waves propagate at
the speed of light and are generated by the relativistic movements of large amounts of matter
(Blanchet et al., 2017).

As shown in Figure 1.2, there are three phases when considering a binary system of neutron
stars. First, the gravitational wave carries away part of the energy of the considered system,

https://www.skyatnightmagazine.com/space-science/what-is-a-pulsar-a-complete-guide-to-spinning-neutron-stars
https://www.skyatnightmagazine.com/space-science/what-is-a-pulsar-a-complete-guide-to-spinning-neutron-stars


Origin of heavy elements 6

causing the two celestial bodies to spiral towards each other. Secondly, stars get closer and
at a certain time, they merge, as illustrated on the third Figure: this phenomenon is called a
coalescence. When the latter happens, gravitational waves may reach the Earth and can be
detected with suitable detectors. Finally, a relaxation phase can be detected in order to define
the object resulting from the coalescence. In the case of neutron star mergers, the remaining
object can be a stable neutron star, a massive long-lived neutron star (i.e. a neutron star with a
mass greater than the maximum mass for a non-rotating neutron star and less than the maximum
mass for a uniformly rotating star), a hypermassive neutron star (i.e. with a mass greater than
the maximum mass for a uniformly rotating star (Baumgarte et al., 2000)) or a black hole. It
mainly depends on the total mass of the binary system. The process is relatively long since it
typically takes 108 years for the neutron star system to merge (Weinsberg and Huang, 2016).

Figure 1.2: Artist’s view of the evolution of a binary system of neutron stars (http://public.
virgo-gw.eu/the-gravitational-wave-universe/).

1.3 Origin of heavy elements
The synthesis of elements ranging from carbon to iron is well known. They are synthesized

by nuclear fusion processes in stars. However, the nucleosynthesis of elements heavier than iron
remains a great enigma. Their production requires very particular physical conditions allowing
the capture of neutrons by the nuclei. Schramm and Symbalisty (1982) suggested that the
physical conditions encountered during the collision of neutron stars could explain the origin of
some heavy elements such as those illustrated in dark blue in Figure 1.3 including in particular
lanthanides (Z = 57–71) (Crockett, 2018).

Figure 1.3: Heavy elements formed during the neutron stars merger illustrated in dark blue (Crockett,
2018).

Two nuclear processes allow the formation of such heavy elements. First, the process of slow
neutron capture, the s-process (s for slow), which consists of the neutron capture by atomic

http://public.virgo-gw.eu/the-gravitational-wave-universe/
http://public.virgo-gw.eu/the-gravitational-wave-universe/
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nuclei. This process is qualified as a slow process since it occurs over a few thousand years.
Indeed, by capturing a neutron, the mass number, A, of an initial nucleus increases and the
resulting nucleus becomes heavier. The latter remains stable for a long time (100 to 100 000
years) but becomes unstable at some point. By decaying via β-decay which converts a neutron
into a proton, an electron and an anti-neutrino, the heavy nucleus becomes stable again and
the neutron capture process can be renewed. This process typically appears in stars aged by a
few million years appearing in the so-called asymptotic giant branch (AGB). Such stars create
half of the elements heavier than iron (Cowan et al., 2021). However, this process takes a long
time to create a heavy nucleus and is therefore too long to allow the synthesis of all the heavy
elements known to date.

The other process called the r-process (r for rapid), is able to produce heavy nuclei faster than
the previous one. This process of nucleosynthesis consists in neutron capture by atomic nuclei
at high temperature and at high neutron flux. While a nucleus capture the neutron flux, it be-
comes unstable. This process is faster than the s-process since the β-decay does not have time
to occur between each neutron capture. The nucleus is therefore filled with neutrons until it can
no longer contain any more neutrons. Such a nucleus, which is thus unstable, can undergo two
possible scenarii. It can either split into two lighter nuclei due to the presence of very energetic
photons in the space, or it can become a stable heavy nucleus when one of these neutrons de-
cays into a proton (in about 0.01 seconds) by β-decay (Crockett, 2018). These decays produce
a large amount of energy and can lead to electromagnetic emissions. This entire process takes
about 1 second in contrast to a few thousand years for the s-process (Cowan et al., 2021).

During the neutron star coalescence, a certain amount of matter is emitted at very high speed in
all directions (Kasen et al., 2013). Neutron star mergers has three types of ejecta (Martin et al.,
2017). According to hydrodynamics simulations, the first ejection called dynamical ejecta, oc-
curring 1 ms after coalescence, has predicted masses of the order of 10−3 to 10−2 solar mass
and a velocity from 0.1c to 0.3c (where c is the speed of light). This ejection, characterized by
the compactness and by the mass of the neutron star, consists in the expulsion of the star’s sur-
face layers (Kasen et al., 2017). Moreover, this ejecta has two components. A cold component
coming from tidal interactions during the merger, ejecting matter along the equatorial plane and
a hot component coming from the matter compressed by hydrodynamic forces at the contact in-
terface, ejecting matter along the polar directions. The outermost layers of the polar ejecta may
contain free neutrons, whose decay causes a UV emission during a few hours after the merger.
In the equatorial plane, the electron fraction (Ye) is relatively small (i.e. Ye < 0.1). It results
in a dominant r-process producing heavy elements (with mass number A exceeding 130), e.g.
lanthanides and actinides (Tanvir et al., 2017). In the polar directions, the electron fraction is
much higher (i.e. Ye > 0.25) and consequently r-process does not occur. Therefore, elements
which are characterized by a mass number less than 130 are then formed (Cowan et al., 2021).

During the coalescence of such stars, matter gathers around the resulting central object and
forms an accretion disk of about 0.01 to 0.3 solar masses (Metzger, 2017). After formation
of the latter, two other ejecta can be highlighted. One of them is formed about 100 ms after
coalescence and comes from a neutrino winds expulsion along the polar directions. It has the
same mass as the first ejection but a velocity of 0.08c (Cowan et al., 2021). This expulsion
contains about 5% of the mass of the accretion disk. The formation of the second ejecta occurs
one second after the stars merge. Some of the ejected material from the viscous flow of the
accretion disk is expelled isotropically. This ejecta has a mass about 10−2 to 10−1 solar mass
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and a velocity ranging from 0.05c to 0.1c. The latter carries away about 40% of the accretion
disk mass. Since the electron fraction is high (i.e. Ye > 0.25) in these two ejecta, elements with
A < 130 can also be created (Cowan et al., 2021).

The amount of matter ejected during the coalescence can be determined by numerical simula-
tions. For that purpose, it is necessary to use simulations that solve both the Einstein equations
(making the link between curvature of space-time, mass and energy densities) and the relativis-
tic hydrodynamics equations (which describe dense matter as present in neutron stars). These
simulations show that the amount of ejected matter depends on many parameters, such as the
masses of the neutron stars, their sizes and the way the matter is gravitationally bound in these
stars (Coté et al., 2019). The amount of lanthanides produced thus depends on the amount of
mass ejected by the binary system.

The coalescence phenomenon of two neutron stars is followed by an electromagnetic coun-
terpart (i.e. other types of emission from the same object). A short-lived gamma-ray burst (a
narrow, symmetric beam of matter reaching relativistic speeds) occurs. This burst proves that
nucleosynthesis including radioactive heavy nuclei takes place in a neutron star merger (Tanaka
and Hotokezaka, 2013). In addition, an Ultraviolet-Optical-Infrared (UVOIR) emission, called
kilonova, is emitted, which comes from the decay of these radioactive heavy elements created
by r-process during the coalescence of neutron stars. As shown in Figure 1.4, the blue compo-
nent of the kilonova comes from the production of the light elements (i.e. 28 ≤ Z ≤ 57) and has
a maximum in the optical/blue range whereas the red component comes from the formation of
the heavy elements such as lanthanides or actinides and has a maximum in the optical/red range.
The black curve represents the summation of both components. This one moves towards longer
wavelengths (i.e infrared) and its intensity decreases with time. Such UVOIR emission is called
kilonova because it reaches a much lower maximum luminosity compared to a supernova but it
remains a thousand times brighter than a nova (explosion phenomenon on the surface of a white
dwarf) (Metzger, 2010).

Figure 1.4: Kilonova spectrum model representing the components formed by light r-process (blue) and
the components formed by heavy r-process (red) and the black curve being the sum of both contributions
(Kasen et al., 2017).
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1.4 Heavy element opacities
The production of lanthanides in the equatorial plane within the dynamical ejecta is char-

acterized by a very high opacity. This is due to the numerous spectral lines originating from
the complex atomic structure of lanthanides characterized by configurations with an open 4f
subshell (Kasen et al., 2013). To understand the opacity produced by these elements, the optical
depth τ has to be defined. This dimensionless quantity is such that

I = I0 e
−τ , (1.4.1)

where I is the radiation propagating through matter and I0 is the incident radiation. The expo-
nential factor is known as the probability that the radiation escapes from the material:

P (τ) = e−τ . (1.4.2)

As 0 ≤ P (τ) ≤ 1 thus 0 ≤ τ ≤ ∞. The medium is opaque when the optical depth tends to
infinity and is transparent when it tends to zero. By convention, a medium is optically thin when
τ < 1 and optically thick when τ > 1. The optical depth depends on the geometrical dimensions
of the medium, but also on the quantity of matter passing through it, on its macroscopic states
(temperature and density) and on its microscopic properties (absorption, emission and chemical
composition). Therefore, the macroscopic bolometric opacity can be defined as a function of
the dimensionless optical depth τ as

τ =

∫
ρ κ ds, (1.4.3)

where the curvilinear integral relates to the geometrical path of the radiation and where ρ is
the density (g cm−3). The macroscopic opacity κ is expressed in cm2 g−1 (CGS units). The
opacity depends on the wavelength and on the frequency of the radiation and is known as the
monochromatic opacity. The monochromatic microscopic opacity (cm−1) is thus obtained by

κmicro
ν = κmacro

ν ρ. (1.4.4)

It is no coincidence that the kilonova emission shown in Figure 1.4 is centered in the visi-
ble/infrared band, as this is one of the first spectral windows in which the emission due to
the ejection of expanding fusion material becomes transparent. Figure 1.5 provides a semi-
quantitative illustration of the opacity of neutron star merger ejection as a function of photon
energy. In the radio and far-infrared region, free-free transitions of the ionized gas are pre-
dominant. At near-infrared and visible frequencies, the dominant source of opacity is a dense
window of bound-bound transitions. The magnitude of the effective continuum opacity is deter-
mined by the oscillator strengths and the spectral density of the absorbing lines, which depend
on the composition of the ejecta. If the latter contains elements with relatively simple valence
electron structures, such as iron, the resulting opacity is relatively low (dotted brown line). On
the other hand, if the ejecta contains a fraction of elements with partially filled 4f- or 5f-shells,
such as those of the lanthanide and actinide groups, the opacity is higher. In the far UV and soft
X-rays, bound-free transitions of the partially neutral ejecta dominate the opacity, whereas in
the hard X-rays and γ-rays, it is electron scattering that provides significant opacity (Metzger,
2017).
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Figure 1.5: Schematic illustration of neutron star merger ejection opacity as a function of photon energy
(Metzger, 2017).

Depending on the heavy element considered, the opacity will be relatively different. In Figure
1.6, the Planck mean opacity is represented as a function of the wavelengths. The former is the
average of the opacity over a wavelength range at a certain temperature and defined as

κPlanck =

∫∞
0
B(λ, T )κ(λ)dλ∫∞
0
B(λ, T )dλ

with B(λ, T ) =
2hc2

λ5
1

ehc/λkT − 1
, (1.4.5)

where B(λ, T ) is the Planck black-body function. In this Figure, we can notice that, when
the temperature increases, the excited levels become more populated and the number of op-
tically thick absorption lines increases. The Planck mean opacity increases with temperature
until the gas becomes hot enough to get ionized. This leads to multiple maxima in the opacity
curve, each one occurring around the transition temperatures of the different ionization states.
At sufficiently low temperature, when the element becomes neutral, opacity fade abruptly and
decrease exponentially with decreasing temperature. As it can be seen in this Figure, accord-
ing to some calculations detailed by Kasen et al. (2013), the Planck mean opacity produced by
the f-shell elements in such conditions (ρ = 10−13 g cm−3, a time after the merger t = 1 day
and T < 20 000 K, known to be the conditions corresponding to the presence of lowly-ionized
elements in the ejecta (Tanaka et al., 2020)) is 10 to 100 times higher depending on the tem-
perature than opacity produced by d-shell or p-shell elements, e.g. iron or silicon. A notable
characteristic of f-shell elements (as indicated by the blue curve) is their tendency to maintain
high opacity at comparatively lower temperatures compared to the elements belonging to the
d-shell or p-shell group (green and red curve). Indeed, the ionization potentials of lanthanides
are generally about 30% lower than those of iron group elements (Kasen et al., 2013).
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Figure 1.6: Planck mean opacities for three different elements. Calculations assume a density
ρ = 10−13 g cm−3 and an elapsed time since ejection t = 1 day (Kasen et al., 2013).

It can also be noticed in Figure 1.7 that d-shell elements such as Os II and Fe II have smaller
opacity compared to Nd II and Ce II, lanthanide ions, characterized by a partially filled f-shell.
Another feature that can be seen from this Figure is that the opacity of such elements decrease
much slower compared to opacity of d-shell elements. This is due to the high spectral density
of lanthanides. This feature allows lanthanides to cover not only UV wavelengths but also the
entire optical region of the spectrum.

Figure 1.7: Expansion opacity according to wavelength for different elements. Calculations assume a
density ρ = 10−13 g cm−3 and an elapsed time since ejection t = 1 day (Kasen et al., 2013).

Depending on the lanthanide element considered and also on its ionization degree, the opacity
will be different. For example, lanthanum (La) I–IV and lutetium (Lu) I–II ions have no elec-
trons on the f-shell while Lu III–IV have 14 electrons on the f-shell, i.e. the maximum number
of electrons that this subshell can contain. As they have an empty or a full f-subshell, these
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elements will produce a lower opacity compared to the ones having a half-filled subshell, as
the gadolinium (Gd) I–IV (i.e. 7 electrons on the f-shell). Figure 1.8 shows the Planck mean
opacity computed with conditions such as ρ = 10−13 g cm−3 and an elapsed time since ejection
t = 1 day where lowly-ionized lanthanide elements (from I to IV) are expected to be formed.
As an example, for T = 5 000 K, where typically there are mainly singly ionized lanthanides
(II spectra), Planck mean opacity for Pr, Nd and Pm (Z = 59, 60, and 61) are the highest among
the others according to Tanaka et al. (2020) calculations. Opacity of such elements gradually
decreases for higher charge states (III and IV) as less electrons occupy the 4f-shell.

Figure 1.8: Planck mean opacities for lowly-ionized lanthanides. Calculations assume a density
ρ = 10−13 g cm−3 and an elapsed time since ejection t = 1 day (Tanaka et al., 2020).
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The previous Figures only concern the lowly-ionized lanthanides for conditions encountered in
the kilonova ejecta about 1 day post-merger such as ρ = 10−13 g cm−3 and T < 20 000 K. If
one wants to extend study to higher temperatures, it is essential to study moderately-ionized
lanthanides (from V to X). The conditions to have such degree of ionization are encountered in
early-phases kilonova, i.e. conditions such as ρ = 10−10 g cm−3, a time after the merger t = 0.1
day and T > 20 000 K. These conditions can be deduced from radiative transfer simulations
(Banerjee et al., 2023). When considering such degrees of ionization, lanthanide ions can be
characterized both by a half-filled p-shell and by a half-filled f-shell. An example can be seen
on Figure 1.9 where Tb to Tm ions between VIII to X (corresponding to temperatures ranging
between 60 000 K and 100 000 K) show the highest opacity (Banerjee et al., 2023).

Figure 1.9: Planck mean opacities for moderately-charged lanthanide ions. Calculations assume a
density ρ = 10−10 g cm−3 and an elapsed time since ejection t = 0.1 day (Banerjee et al., 2023).

1.5 Gravitational wave detectors
Gravitational wave detection has predominantly been approached through two main meth-

ods. The first one is based on measuring the amplitude of oscillations of a resonant bar, where
the oscillations originate from gravitational waves. In order to do that, the Allegro, Auriga,
Explorer, Nautilus and Niobe detectors (Baggio et al., 2000) were built based on the works of
Weber (1960). The second approach uses interferometry to detect variations in the space-time,
which are sensed by freely falling masses. Since the 1980s, the latter has seemed to be the most
promising technique to detect gravitational waves. During the passage of these waves, space-
time is distorted. Therefore, the distance between two objects will oscillate in a minimal way.
Figure 1.10 explains the operation of a Michelson interferometer. The light from an ultrastable
laser is split in two by a semi-reflective mirror (the beam splitter). Therefore, each of these
beams travels a certain distance in the arms of the interferometer until it reaches a mirror that
sends the light back to the beam splitter until it reaches the detector. At this point, both beams
interfere. The intensity of the recombined laser beam depends on the length variations of one
arm with respect to the other arm, i.e. on the variation of the path difference of the laser waves
traveling through both arms of the interferometer. Its measurement carries the signature of the
gravitational wave (Mours et al., 2017).
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Figure 1.10: The Michelson interferometer (https://fr.wikipedia.org/wiki/
Interférométrie).

Several detectors based on a Michelson interferometry with km-long arms have been built
namely LIGO, Virgo, GEO600 and KAGRA. The mirrors of the interferometer act as free-
falling test masses. First, LIGO more particularly LIGO-Hanford and LIGO-Livingston located
in the United States respectively in the Washington and Louisiana states are ground-based in-
terferometers built in 2008 and in operation since 2014 (Figure 1.11). Both LIGO detectors are
based on a Michelson interferometer whose perpendicular arms of the interferometer are 4km
long. In these arms, Fabry-Perot cavities are used to increase the interaction time with a grav-
itational wave. Secondly, Virgo interferometer, located near Pisa in Italy, is also a very large
Michelson interferometer with 3 km-long arms. As LIGO interferometers, Virgo is also isolated
from external perturbations (mirrors and instrumentation suspended as well as the laser beams
in a vacuum). The British-German GEO600 interferometer, also a Michelson interferometer
has 0.6 km-long arms and collaborate regularly with LIGO Collaboration. KAGRA (Kamioka
Gravitational Wave Detector) is a Japanese gravitational wave observatory which became oper-
ational at the end of 2019. It is also based on a Michelson interferometer and has a Fabry-Perot
cavity of 3 km in each arm. KAGRA can be characterized as a 2.5-generation gravitational-wave
telescope compared to the previous ones known as the second-generation telescopes. Indeed,
KAGRA is an underground interferometer, located in the Kamioka mine, where it is protected
from seismic noise and wind (Akutsu and Kagra Collaboration, 2019) and its mirrors operate
at cryogenic temperature to reduce thermal noise. This interferometer began its first observing
run in 2020. Finally, the Einstein Telescope, a triangular-shaped tunnel with 10 km-long arms
is scheduled for construction between 2028 and 2035. This telescope will be built underground
at a depth of between 250 and 300 m. The location of the telescope has not been determined
yet. There are several candidates, including the border zone between Germany, the Netherlands
and Belgium. This is one of the most promising sites for the Einstein Telescope, since the soft
soils in this area blocks vibrations caused by human activity on the surface, enabling the under-
ground observatory to take measurements without disturbance. In addition, good connections
and a network of expertise centers and companies make this area attractive. The telescope is
expected to be 1 000 times more precise than the other ones, meaning that it will be able to

https://fr.wikipedia.org/wiki/Interf�rom�trie
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observe up to 1 000 times more gravitational waves at a frequency of 100 per day (Bureau de
projet Einstein Telescope, 2024).

In 2021, LIGO and Virgo interferometers were stopped over two years for maintenance work to
be updated in order to improve their sensitivities. They began their fourth run (O4) of operations
in May 2023. After this maintenance, they are now able to sense even fainter gravitational waves
than before. The sensitivity of LIGO is approximately 160–190 Mpc while Virgo is around 60–
100 Mpc during the O4. During this operational run (which is extended to 18 months) they will
run in tandem with KAGRA observatory (with a sensitivity around 10 Mpc for spring 2024).
The next observational run O5 is already planned to begin in 2027, after some break years to
improve the mirror coatings still in development. It is crucial to understand the kilonova from
various directions, from an early time, to know element abundances from observations. In these
upcoming runs, multiple joint detections per year of both gravitational waves and kilonova are
expected to occur (Colombo et al., 2022).

Figure 1.11: Aerian views of LIGO-Hanford (left) and LIGO-Livingston (right) (https://www.
ligo.caltech.edu/page/ligo-gw-interferometer).

When considering these very sophisticated instruments, there are nevertheless limitations in the
frequency range. Indeed, at low frequencies, a noise can be produced by the vibration of the
ground and thus modify the recombination of the beams. Therefore, scientists have placed the
best dampers on these mirrors to counteract these vibrations, in particular in LIGO and Virgo
interferometers. The KAGRA observatory being located at least at 200 m below the ground sur-
face, brings small seismic motion at low frequencies and a high stability of the detector (Akutsu
and Kagra Collaboration, 2019). Then, as the mirrors are not at zero temperature, they can have
vibrations due to the thermal agitation of the atoms composing them. Thus, the sensitivity is
also limited in the intermediate frequencies. This is the advantage of using cryogenic mirrors as
the KAGRA observatory. It allows to reduce the thermal noise as highlighted before (Akutsu
and Kagra Collaboration, 2019). Finally, at high frequencies, limitations are of quantum origin
and are related to the physics of the laser. The sensitivity is strongly limited in almost all fre-
quency ranges, which explains why these instruments must be updated with the best available
technology (Man, 2017).

Ultimately, the goal is to localize a source of gravitational waves anywhere in the sky. To do
that, four comparable detectors need to be operating simultaneously around the earth. To in-
crease the odds that four detectors are running at the same time, more than four detectors are
needed in a network. A LIGO-India, will be built at Maharashtra in India and is expected to
be operational in 2030. The construction of this observatory, similar to the LIGO described
before, is a collaboration between the LIGO Laboratory and three institutes in India. When its

https://www.ligo.caltech.edu/page/ligo-gw-interferometer
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operational run will start, LIGO-India will significantly improve the probability that four de-
tectors (with LIGO, Virgo and KAGRA being already operational) are operating at any given
moment. This is the critical role that LIGO-India will play in the global gravitational wave
detector network (LIGO-India collaboration, 2024).

1.6 GW170817 event

1.6.1 Gravitational signal
The first detection of a gravitational wave signal known as the GW170817 event occurred

on August 17, 2017. This signal originated from the merger of two neutron stars located in the
galaxy NGC 4993, which is situated at a distance of 130 million light-years. Since the orbital
frequency of such a binary system is increasing while they get closer, the signal, particularly
visible by LIGO-Livingston and Ligo-Hanford, draws a trace moving towards high frequen-
cies according to time, as illustrated in Figure 1.12 (Abbott et al., 2017). The Virgo data does
not show any signal, mainly because of the sensitivity constraints of the Virgo detector at that
specific time. Moreover, since the source’s location was in a less favorable region of the sky
for this particular detector, it also contributed to the lack of signal detection (Mours et al., 2017).

Figure 1.12: Gravitational signal from the August 17, 2017 event measured by the LIGO-Hanford, LIGO-
Livingston and Virgo interferometers (Abbott et al., 2017).
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The signal recorded by LIGO is much longer than in the case of black hole mergers (about 100
seconds compared to a fraction of a second), showing that the two merging objects are lighter
than black holes. The signal frequency indicates that these objects revolves at high speed around
each other and are also very condensed. A more detailed examination of this data confirms the
presence of two neutron stars, with their masses determined from the observed gravitational
wave signals falling within the range of 1.17 to 1.60 times the mass of the Sun (Mours et al.,
2017).

1.6.2 Electromagnetic counterpart
In Figure 1.13, a peak in the gamma-ray signal is observed (whose beginning is indicated by

a green vertical line) at exactly 1.7 seconds after the detection of the gravitational waves. This
peak corresponds to a short gamma-ray burst detected by the Fermi satellite and INTEGRAL
(International Gamma-Ray Astrophysics Laboratory). This GW170817 event is very particular
since it combines a gravitational wave signal and an electromagnetic wave signal (Connaughton
and Goldstein, 2017; Savchenko et al., 2017). Moreover, the coincidence of both signals con-
firms that gravitational waves propagate at the speed of light as predicted by Albert Einstein.

Figure 1.13: Signal of the gamma-ray burst from event GW170817 detected by Fermi tele-
scope (https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/
transients/gw170817.html).

This signal also has surprising features. It is 100 000 times less luminous than those usually
observed, which are at a greater distance than the galaxy in which this event occurred. The
relativistic jet expands in a cone shape with an opening angle ranging from 5 to 10 degrees,
emitted along the axis around which the two neutron stars were revolving prior to their merger.
The low luminosity of the burst associated with the gravitational signal suggests that the system
was observed from a sideways perspective suggesting that the primary emission had already
moved past the Earth (Abbott et al., 2017).

In addition, the neutron-rich matter involved in the collision of neutron stars produces an elec-
tromagnetic counterpart in the UV, visible, and near-infrared (UVOIR). The optical and near-
infrared emissions were detected at t≈ 11 hours (Coulter et al., 2017; Yang et al., 2017; Valenti
et al., 2017), followed by the detection of a bright UV emission by Swift telescope at t ≈ 16
hours (Evans et al., 2017). Then, X-ray and radio emissions were also detected at t= 9 days and
t = 16 days, respectively (Troja et al., 2017; Hallinan et al., 2017; Mooley and Mooley, 2017)
This counterpart fades rapidly and can quickly become undetectable. It is therefore important
to determine as fast as possible the galaxy where these counterparts come from.

The distance of a source can be directly measured thanks to gravitational waves. For this event,
the source has been estimated at 40 Mpc, that is to say 130 million light-years, with a precision

https://heasarc.gsfc.nasa.gov/docs/objects/heapow/archive/transients/gw170817.html
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of about 10 Mpc (about 30 million light-years). However, by considering only the gravitational
waves, it is not possible to determine the position of the source with precision. For this reason,
it is important to consider both gravitational waves with the associated electromagnetic waves.

Moreover, the presence of Virgo, the third interferometer of the network, was essential since
it brought a very high precision to localize the source as illustrated in Figure 1.14. The latter
was located in a region of the sky of approximately 30 square degrees. Without the indispens-
able assistance provided by Virgo, the localization would have been constrained to 190 square
degrees, considerably complicating the task of localizing the merger of the stars.

Figure 1.14: Sky position reconstructed for GW170817 by a fast localization algorithm using LIGO-
Virgo (Abbott et al., 2017).

By considering only these 30 square degrees into the sky, the scientists had to be interested
in only 50 galaxies. They quickly located the galaxy-source by visualizing a luminous point
which was not present in the archival images. The so-called transient visible counterpart of
the GW170817 event was detected by the SWOPE collaboration about 10 hours after the first
signal alert, as shown in Figure 1.14 but also by five other international collaborations that
independently performed the same detection. This counterpart, initially named SSS17a by the
group from Las Campanas Observatory in Chile, was renamed AT2017gfo according to the
nomenclature of the International Astronomical Union as shown in Figure 1.15 (Smartt et al.,
2017).
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Figure 1.15: Point source detected in the halo of the lenticular galaxy NGC 4993 (Smartt et al., 2017).

Following the visible and infrared counterpart, Chandra telescope could observe an X-ray elec-
tromagnetic signal. A few days after this detection, a counterpart in the radio range was ob-
served by the VLA (Very Large Array) telescope (Nakar and Piran, 2011).

1.6.3 Analysis of the electromagnetic counterpart and production of lan-
thanides

Once the visible counterpart was identified, extensive observations were conducted over
the subsequent hours, employing numerous ground-based and space telescopes, to enable a de-
tailed and highly precise study of the phenomenon. This counterpart had different properties
from other astrophysical phenomena observed previously. A day before the merger, the source
was optically very bright (about 108 times brighter than the Sun at wavelengths of 0.5 µm)
but dimmed rapidly after a few days (Rosswog, 1999; Freiburghaus et al., 1999). The infrared
emission (1-3 µm) remained quite bright for almost two weeks (Rosswog et al., 2000; Goriely
et al., 2011). It is, in particular, this late emission that suggests the production of lanthanides
(Coté et al., 2019).

The spectrum of this counterpart is described as a blackbody spectrum suggesting that a ther-
mal source is present (Korobkin et al., 2012; Panov et al., 2013). The succession of spectra,
obtained with the X-Shooter instrument at the VLT (Very Large Telescope) by the GRAWITA
(Pian et al., 2017) and ePESSTO (Smartt et al., 2017) collaborations, illustrated in Figure 1.16
show excellent consistency with theoretical predictions of a kilonova. Several features are im-
portant to notice in this Figure 1.16. First, the rapid cooling of the kilonova can be seen, as the
light intensity decreases and the spectrum peak gradually shifts from blue to red, indicating a
decrease in temperature. Moreover, after 2.5 days, the ePESSTO collaboration has detected the
spectral signature of the absorption by two heavy elements, cesium and tellurium (Mours et al.,
2017). More generally, the detailed modeling of the light curve and electromagnetic spectra of
the kilonova reveals that the ejected material possesses significant opacity. This opacity arises
from the existence of elements heavier than tellurium or cesium, such as e.g. lanthanides. Due
to their complex atomic structure (open 4f subshell), these elements produce numerous spectral
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lines, as detailed in Section 1.4. Finally, the maximum of the spectrum becomes relatively weak
i.e. the medium becomes transparent when the temperature decreases.

Figure 1.16: Spectrum of the electromagnetic emission from the August 2017 event (spectrum obtained
by the GRAWITA (Pian et al., 2017) and ePESSTO (Smartt et al., 2017) collaborations).

This GW170817 signal is very interesting to study since it associates gravitational waves and
electromagnetic waves. This event gave rise to a new field of astronomy known as multi-
messenger. This illustrates the complementary nature of the gravitational data, which aids in
characterizing and localizing the binary system, and the electromagnetic component, which
provides insights into the events surrounding the coalescence, offering valuable additional in-
formation for locating the system.

1.7 Importance of atomic data in moderately-charged lan-
thanides atomic data

It is now well established that a very large part of the opacity characterizing kilonova spec-
trum results from the very large amount of transitions belonging to the lanthanides (Z = 57–71)
(Pian et al., 2017). These elements are indeed characterized by configurations such as 4fk,
4fk−1nl, 4fk−2nln′l′ (k = 1–14, nl,n′l′ = 5d, 6s, 6p,...) producing a large number of very close
energy levels and, consequently, a multitude of spectral lines contributing in a preponderant
way to the opacity. In order to study kilonova spectra it is essential to have a large amount of
atomic data (such as energy levels, wavelengths and oscillator strength) as reliable as possible.

Atomic structures and radiative processes characterizing lowly-ionized lanthanides have already
been the subject of various theoretical and experimental studies in recent years, such as Nd II–
IV (Gaigalas et al., 2019), Nd II–III (Flörs et al., 2023), Er III (Gaigalas et al., 2020), Pr–Gd
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II (Radžiūtė et al., 2020), Ce II–IV (Carvajal Gallego et al., 2021), La–Lu I–IV (Tanaka et al.,
2020) and La–Yb I–IV (Fontes et al., 2020) with the aim of estimating opacities for kilonova
ejecta conditions one day after the neutron star merger, i.e. for temperatures typically below
20 000 K (Tanaka et al., 2020). Another study about such heavy elements comes from the re-
search group in Atomic Physics and Astrophysics of the University of Mons. Indeed, about 20
years ago, this group undertook a systematic and detailed analysis of the spectroscopic prop-
erties of the first four ionization stages of lanthanide atoms, from neutral to trebly charged.
In order to allow a wide dissemination of the many new radiative parameters deduced from
this work, the UMONS group has created the DREAM database (Database on Rare-Earths
At Mons University) (https://hosting.umons.ac.be/html/agif/databases/
dream.html) which currently contains radiative data (wavelengths, transition probabilities
and oscillator strengths) on more than 72 000 spectral lines belonging to the neutral, singly-,
doubly- and trebly-ionized lanthanides. These investigations gave rise to about fifty publica-
tions, the summary of which is given in a recent review paper (Quinet and Palmeri, 2020).

While the determination of these parameters has already been the subject of various studies
mentioned above, the latter only concern the first degrees of ionization (up to 3+) and are there-
fore limited to the analysis of kilonovae in a temperature range below 20 000 K. In order to
extend the modeling of this type of celestial object to higher temperatures, corresponding to
the early phases of kilonovae, it is essential to know the spectroscopic properties of lanthanide
ions in higher charge stages for which practically no investigation has been published to date.
Indeed, the only theoretical studies concerning moderately-ionized lanthanides are the works
of Banerjee et al. (2022, 2023) showed in Section 1.4 in Figure 1.9. These two publications
are based on HULLAC calculations (Bar-Shalom et al., 2001) with rather limited models. In
order to offer much more accurate results by improving models and by using other theoretical
methods, systematic and detailed studies of the atomic structures and radiative processes char-
acterizing these elements are therefore urgently needed. This work aims to make a significant
contribution in this field as it consists of a detailed study of the radiative processes character-
izing moderately-charged lanthanide ions (from 4+ to 9+) and to compute the corresponding
astrophysical opacities.

As there is almost no experimental data available for these ions, our large-scale calculations
are based on a multi-platform approach involving different independent theoretical approaches,
such as the pseudo-relativistic Hartree-Fock (HFR) (Cowan, 1981), the fully-relativistic Multi-
Configuration Dirac-Hartree-Fock (MCDHF) (Grant, 2007) and Configuration Interaction and
Many-Body Perturbation Theory (CI+MBPT) (Dzuba et al., 1996) methods. In the absence of
sufficient experimental data, this methodology is the only way to estimate the accuracy of the
results obtained through systematic comparisons between distinct computational procedures.
Theoretical approaches as well as the computational methods implementing them are detailed
in the next chapter.

https://hosting.umons.ac.be/html/agif/databases/dream.html
https://hosting.umons.ac.be/html/agif/databases/dream.html


Chapter 2

Theoretical and computational approaches

In this chapter, we provide a comprehensive overview of the theoretical techniques em-
ployed in this study for modeling the atomic structure of lanthanides. First, a summary of the
pseudo-relativistic Hartree-Fock (HFR) method, implemented in the Cowan’s code (Cowan,
1981), is detailed in the first section. Then, the fully-relativistic Multi-Configurational Dirac-
Hartree-Fock method (MCDHF) (Grant, 2007), implemented in the GRASP2018 computational
code (Froese Fischer et al., 2019), is explained in the second section. The third method, namely
the Configuration Interaction and Many-Body Perturbation Theory (CI+MBPT) (Dzuba et al.,
1996) implemented in AMBiT (Kahl and Berengut, 2019), is used to corroborate results ob-
tained with the two other methods for some selected cases. It is important to highlight that all
these methods are independent from each other which is an undeniable quality for the compar-
ison of results.

It should be noted that all the equations written in this manuscript are formulated in Hartree
atomic units, i.e. in the system of units where

me = 1 ; h̄ = 1 ; e = 1 ; 4πϵ0 = 1,

me being the electron mass, e its charge and ϵ0 the vacuum permittivity.

2.1 Pseudo-relativistic Hartree-Fock method and correc-
tions related to the polarization of the atomic core
(HFR+CPOL)

The pseudo-relativistic HFR method consists in solving iteratively the Hartree-Fock equa-
tions by using the central field approximation. First, we remind some basic principles of the
Hartree-Fock (HF) method. Then, relativistic corrections added in a perturbative way are
also explained. The HFR method was improved by the Atomic Physics and Astrophysics
Unit of UMONS (Quinet et al., 1999, 2002) in order to incorporate core polarization effects
(HFR+CPOL). At the end of this section, we also briefly describe the procedure of the compu-
tational Cowan’s code (Cowan, 1981) which implements HFR and also HFR+CPOL method.

22
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2.1.1 Basics principle of the HF method
One way to characterize the electronic structure is to solve the Schrödinger equation, which

enables the determination of eigenvalues (Ek) linked to the corresponding eigenvectors (ψk)

Hψk = Ekψk. (2.1.1)

The non-relativistic Hamiltonian for the atomic system studied is given by:

H =
N∑
i=1

(−1

2
∆i −

Z

ri
) +

∑
i>j

1

rij
, (2.1.2)

where N is the number of electron, ri is the distance between the ith electron and the nucleus
(considered here as point-like), rij is the distance between the ith and the j th electrons and ∆i

is the Laplacian operator acting on ri. This problem is not solvable analytically for N > 1.
Therefore, we have to use the central-field approximation in which each electron move itself
independently from the other electrons in a spherically symmetric potential generated by the
nucleus and the other N − 1 electrons. In this approximation, the Hamiltonian can be rewritten
as:

H =
N∑
i=1

(−1

2
∆i −

Z

ri
+ V (ri)), (2.1.3)

where V (ri) is the spherically symmetric potential for the ith electron. Here, the problem be-
comes a one-electron problem as for the hydrogen atom, which is a problem solvable analyti-
cally. We can therefore write the wavefunction for each electron such as:

ϕi(ri, θi,Φi, si) =
1

ri
Pnili(ri)Y

mi
li

(θi,Φi)σmsi
(si), (2.1.4)

where (ri, θi,Φi) are the spherical coordinates, si the spin coordinate, Pnl(r) is the radial part
of the wavefunction, Y m

l is a spherical harmonic and σms(s) is the spin wavefunction. We can
therefore build an antisymetrical atomic wavefunction by using a Slater determinant 1:

ψ(q1, ..., qN) =
1√
N !

∣∣∣∣∣∣
ϕ1(q1) ... ϕ1(qN)
... ... ...

ϕN(q1) ... ϕN(qN)

∣∣∣∣∣∣ , (2.1.5)

where qi = (ri, θi,Φi, si). The obtained wavefunction is an eigenfunction of the Hamiltonian.
To obtain the atomic wavefunctions giving the atomic states, it is necessary to solve HF equa-
tions. The latter are obtained by applying a variational principle of minimizing the average
energy Eav of a configuration to the radial parts. They form a system of coupled integro-
differential equations. The average energy of a configuration is defined as:

Eav =

∑
i(2Ji + 1)Ei∑
i(2Ji + 1)

, (2.1.6)

where the sum is running over all the energy levels of the configuration. It can also be written
as the sum over all the energy states of the average Hamiltonian operator H in each state |i⟩:

1A Slater determinant allows the wave function to be written as an antisymmetric product of single-electron
spin-orbitals
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Eav =
∑
i∈C

⟨i|H|i⟩
g(C)

, (2.1.7)

where g(C) is the degeneracy of the configuration C. By developing this term, Cowan (1981)
has shown that it appears electronic interaction terms that can be expressed from the Slater
integrals. The generalized Slater integral Rk reflecting the electrostatic interaction between two
electrons belonging to different configurations is given by:

Rk(ij; tu) =

∫ ∞

0

∫ ∞

0

rkmin

rk+1
max

P ∗
i (r1)P

∗
j (r2)Pt(r1)Pu(r2)dr1dr2, (2.1.8)

where rmin and rmax are respectively the smallest and the biggest values of r1 and r2. The
direct electrostatic interaction F k(ij) = Rk(ij; ij) and the exchange electrostatic interaction
Gk(ij) = Rk(ij; ji) which reflects interactions between two electron of the same configuration
are particular cases of the generalized Slater integral. These ones exist only for some values
of k: F k(ij) only exists for k = 0, 2, 4,...,min(2li,2lj) and Gk(ij) only exists for k = |li − lj|,
|li − lj|+ 2,..., li + lj . The HF equations obtained by minimizing the Eav for a configuration:

(n1l1)
w1(n2l2)

w2 ...(nqlq)
wq where

q∑
i=1

wi = N, (2.1.9)

are then given by:

[
− d2

2dr2
+
li(li + 1)

2r2
− Z

r
+

q∑
j=1

(wj − δij)

∫ ∞

0

1

rmax

P 2
j (r

′)dr′ − (wi − 1)Ai(r)
]
Pi(r)

= ϵiPi(r) +

q∑
j=1,j ̸=i

wj[δijϵij +Bij(r)]Pj(r),

(2.1.10)

where

Ai(r) =
2li + 1

4li + 1

∞∑
k=1

(
li k li
0 0 0

)2 ∫ ∞

0

2rkmin

rk+1
max

P 2
i (r

′)dr′, (2.1.11)

Bij(r) =
1

2

∞∑
k=1

(
li k li
0 0 0

)2 ∫ ∞

0

2rkmin

rk+1
max

P 2
i (r

′)P 2
j (r

′)dr′. (2.1.12)

The symbols between the parenthesis are the 3-j symbols of Wigner, wj is the number of elec-
trons in the subshell (nj, lj) and ϵi and ϵij are Lagrange multiplicators introduced in the varia-
tionnal problem to impose orthonormality constraints to Pi such as:∫ ∞

0

P 2
i (r)dr = 1 and

∫ ∞

0

P ∗
i (r)Pj(r)dr = δni,nj

. (2.1.13)

Since the HF equations are coupled equations, they can only be solved by an iterative process,
called the self-consistent field method. This approach involves the selection of a specific set
of initial radial wavefunctions, followed by the calculation of all terms (which do not involve
the one-electron radial wavefunction Pi(r) for which the HF equation is solved) appearing in
each HF equation with this set of radial wavefunctions. Then, the HF equations are solved one
by one to obtain a new set of radial wavefunctions and the process is repeated until a certain
convergence criterion on the radial wavefunctions and energies is reached.
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2.1.2 Relativistic corrections (HFR method)
In order to take into account selected relativistic effects, we have to introduce mono-electronic

corrections such as the mass-velocity correction, the spin-orbit correction and the Darwin term.
The latter are added to the non-relativistic HF equations in a pertubative way to form the pseudo-
relativistic Hartree-Fock equations (namely HFR).

Mass-velocity correction

The first adjustment introduced to the non-relativistic HF equations is the mass-velocity cor-
rection. The latter is due to the relativistic dependence of the electron’s mass on its velocity. In
order to obtain this correction, it is necessary to compute the difference between the relativistic
energy and the non-relativistic energy of an electron, namely Er − Enr where:

Er = c
√
c2 + p2 − c2 + Epot, (2.1.14)

and

Enr =
p2

2
+ Epot. (2.1.15)

By expanding the square root in Eq. (2.1.14) into the power series:√
1 +

p2

c2
≃ 1 +

1

2

p2

c2
− 1

8

p4

c4
, (2.1.16)

which gives for the energy expression:

E ≃ (
p2

2
+ Epot)−

p4

8c2
= Enr −∆Er. (2.1.17)

For Ekin ≤ c2 higher terms can be neglected. In this approximation the last term in Eq. (2.1.17)
represents the relativistic correction ∆Er to the non-relativistic energy. The quantum mechan-
ical value of this correction is obtained by substituting p⃗ → ih̄∇⃗ by taking the mean value of
Er − Enr of a state characterized by quantum numbers (n, l,m), which leads to the expression
(Demtröder, 2018):

∆Er =
h̄4

8c2

∫
ψ∗
n,l,m∇ψn,l,mdτ. (2.1.18)

If one takes the atomic wavefunction ψ of the hydrogen atom, we have:

∆Er = −Enr
Z2α2

n

( 3

4n
− 1

l + 1/2

)
. (2.1.19)

where α is the fine-structure constant which is equal to 1/137 (Demtröder, 2018).

Spin-orbit correction

The second correction is the spin-orbit correction which explains the interaction between
the orbital angular momentum of an electron (l⃗i) and its spin (s⃗i). This interaction leads to a
shift and a splitting of the energy levels. This splitting is also called the fine structure. This
correction is introduced in the Hamiltonian by adding a term proportional to l⃗i.s⃗i. This factor is
called the spin-orbit parameter and it is noted as ζni,li . The latter is expressed as:
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ζni,li =
α2

4

∫ ∞

0

1

r

(dV
dr

)
|Pni,li |dr, (2.1.20)

where V is the central-field potential and α is the fine-structure constant.

Darwin term

The last correction is the Darwin term. This correction appears since even in a model which
describes the electron as a point charge, the instantaneous position of an electron can only be
defined within a volume corresponding to λ3C , where λC represents the Compton wavelength. Its
charge is therefore spread on a given volume which induce modification on its potential energy.
The latter is now the weighted average of all values of the electric field within the volume λ3C
around r and can be written as (Demtröder, 2018):

⟨Epot(r)⟩ =
∫
f(ρ)Epot(r + ρ)d3ρ, (2.1.21)

where the integral corresponds to the λ3C volume around the point r. If we expand this expres-
sion in a Taylor series around the point ρ = 0, we obtain:

Epot(r + ρ) = Epot(r) + (
dEpot

dρ
)ρ→0ρ+

1

2

d2Epot

dρ2
ρ2. (2.1.22)

The first term corresponds to the unperturbed energy, while the second term is zero due to
the spherical symmetry of the Coulomb field (Demtröder, 2018). The third term gives the
relativistic Darwin correction, which will be approximately equal to 1/c2∆Epot(r) where ∆ is
the Laplacian operator. For the Coulomb potential Epot = −Z/r, we obtain:

∆Epot = 4πZδ(r). (2.1.23)

where δ(r) is the Dirac delta function δ(r = 0) = 1 for and δ(r ̸= 0) = 0 and the relativistic
correction becomes (Demtröder, 2018):

∆Er,D = 4π
Z

c2
δ(r), (2.1.24)

and the Darwin term is the average value of the latter (Demtröder, 2018):

⟨∆Er,D⟩ = 4π
Z

c2
|ψ(r = 0)|2. (2.1.25)

This term is non-zero for the s-subshell (i.e. l = 0), meaning that Darwin term only affects
s-electrons.

2.1.3 Core-polarization corrections (HFR+CPOL method)
Within an ion, it is possible to distinguish core orbitals from valence orbitals. It is well

established that the spectroscopic properties of an atom are mainly affected by the valence elec-
trons. Therefore, the Hamiltonian can be modified by adding an approximated potential which
describes the core electrons interactions. Nevertheless, it must be ensured that this simplifica-
tion preserves the effects of the ionic core on the wavefunctions of valence electrons (screening
effect and orthogonality of the wavefunction of a valence electron to the one of a core elec-
tron). Correlation effects can be categorized into three types: those occurring among valence
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electrons, those between core electrons, and those between core and valence electrons. For
heavy ions, Migdalek and Baylis (1979) developed an approach according to which the corre-
lation between the valence electrons is represented by the configuration interaction introduced
explicitly in the model while the core-valence correlation is described by a model potential re-
flecting the core polarization. For an ion containing N valence electrons, the one-body part of
the polarization potential can be written as (Quinet et al., 1999, 2002):

VP1 = −1

2
αd

N∑
i=1

r2i
(r2i + r2c )

3
, (2.1.26)

where αd is the dipole polarizability of the core and rc is the cut-off radius. Interactions between
electric fields modified by valence electrons generate a two-particle term written as:

VP2 = −αd

∑
i>j

r⃗i.r⃗j
[(r2i + r2c )(r

2
j + r2c )]

3/2
. (2.1.27)

An additional correction was introduced by Hameed (1972). This term accounts for a more
realistic core penetration of valence electrons. When introducing the core polarization into the
Hamiltonian, the dipole moment operator appearing in the transition matrix must be modified.
Consequently, the dipole radial integral becomes:∫ ∞

0

Pnl(r)r
(
1− αd

(r2 + r2c )
3/2

)
Pn′l′(r)−

αd

r3c

∫ rc

0

Pnl(r)rPn′l′(r)dr. (2.1.28)

The αd value can be obtained experimentally or by theoretical calculations (Fraga et al., 1976),
and the rc value, being not measurable, is taken to be the average value of the outermost orbital
of the core computed by HFR.

Biémont et al. (2001) showed that HFR+CPOL calculations give similar results to a completely
relativistic calculation taking into account valence interactions and core-valence interaction in
an explicit way.

2.1.4 The matrix method
The matrix method also called the Slater-Condon theory is a method to solve the Schrödinger

equation. We develop atomic wavefunctions Ψk which are eigenvectors of Hamiltonian H on a
set of basis wavefunctions ψb in general characterized by an electronic coupling scheme as:

Ψk =
∑
b

xkbψb. (2.1.29)

The basis functions are assumed to take part of a set of orthonormal function such as:

⟨ψb|ψb′⟩ = δbb′ . (2.1.30)

The series corresponding to Ψk is in general an infinite serie (in other words, the basis is made
up of an infinite number of basis states). However, in practice, it is truncated by choosing
electronic configurations which will be then introduced explicitly into the model. It is thus
necessary that these basis functions be of an appropriate type to be included in Eq. (2.1.29).
If one consider a set of M suitable basis functions and want to determine the values of the M
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expansion coefficients xb, by substituting Eq. (2.1.29) in the Schrödinger equation Eq. (2.1.1),
we have:

M∑
b=1

Hxkbψb = Ek

M∑
b=1

xkbψb. (2.1.31)

If we multiply this equation from the left by ψb (a basis function), integrate over all 3N space
coordinates and sum over both possible directions of each of the N spins, we have:

M∑
b=1

Hbb′x
k
b = Ek

M∑
b=1

xkb where Hbb′ = ⟨ψb|H|ψ′
b⟩ . (2.1.32)

The Hbb′ is the matrix element of the Hamiltonian operator between the basis functions b and b′.
The latter equation has a set of M simultaneous linear homogeneous equations in the M un-
knowns xkb′ . This set of equations has a non-trivial solution if the determinant of the matrix
(Hbb′ − Ekδbb′) is zero. To do that, it is possible to expand this determinant into a polynomial
of degree M in Ek. Each value of Ek substituted in Eq. (2.1.32) gives M − 1 independent
equations for the M − 1 ratios xkb/x

k
i with b ̸= i. To have a normalized Ψk, the value of xki has

to be chosen such that: ∑
b

(xkb )
2 = 1. (2.1.33)

For larger M , the only practical procedure is to numerically diagonalize the Hamiltoninan ma-
trix H , if one writes the set of expansion coefficients in the form of:

Xk =


xk1
xk2
xk3
.
.
.

 , (2.1.34)

Eq. (2.1.32) can be written as the single matrix equation such as:H11 ... H1n

... ... ...
Hn1 ... Hnn

xk1...
xkn

 = Ek

xk1...
xkn

 . (2.1.35)

The diagonalization of the Hamiltonian will thus provide the eigenvalues and the mixing coef-
ficients xkb . The latter, via the series development, will finally give the expression of the atomic
wavefunctions Ψk.

2.1.5 Line strengths, transition probabilities and oscillator strengths
The so-called configuration interaction (i.e. interactions between the basis states belonging

to different configurations when atomic wavefunctions do not belong to a pure state but rather
to a superposition of states) reflected by Eq. (2.1.29) is characterized by a truncated summation.
The latter introduces undesired effects in the calculation of transition probabilities because of
the inaccuracies that arise during the truncation process, known as cancellation effects.
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The latter can result in a transition being calculated with a much lower intensity than its real
value. To evaluate the importance of these cancellation effects for a calculated transition (be-
tween a |Ψi⟩ state and a |Ψj⟩ state), the cancellation factor (CF) is employed. It can be derived
from the line strength of the transition defined as:√

Sij = ⟨Ψi|P (1)|Ψj⟩. (2.1.36)

The line strength (for an E1 transition) is the square of the electric dipole transition matrix
element P (1) between the states considered: Sij = |⟨Ψi|P (1)|Ψj⟩|2. If one expands Ψi (and Ψj)
in a suitable set of basis functions ψc (or ψb), one gets:√

Sij =
∑
b

∑
c

xbjx
c
i⟨ψc|P (1)|ψb⟩. (2.1.37)

The CF factor is then defined as:

CFij :=
( ∑

b

∑
c x

b
jx

c
i⟨ψc|P (1)|ψb⟩∑

b

∑
c |xbjxci⟨ψc|P (1)|ψb⟩|

)2

. (2.1.38)

For a given transition, the smaller is the CF-value, the less reliable the corresponding values are
(namely transition probability and oscillator strength). In this work, we will consider that the
values of radiative parameters calculated with CF < 0.05 are unreliable and should be treated
with caution.

The transition probabilities and oscillator strengths can be defined using the expression of line
strengths written in Eq. (2.1.37). The weighted transition probability from a state γ′J ′M ′ to all
states M of the level γJ can be calculated such as:

gA = (2J + 1)A = 2.0261× 10−6σ3S, (2.1.39)

where σ is the wavenumber (cm−1). Another important quantity is the oscillator strength, which
is also related to the line strength S. For absorption, it can be written as:

fij =
(Ej − Ei)

3(2J + 1)
S, (2.1.40)

where Ej − Ei is the transition energy and refers to the total probability of absorption from a
specific state of the lower level i to all (2J ′+1) states of the upper level j. Concerning emission
processes, the oscillator strength can be written as:

fji =
(Ei − Ej)

3(2J ′ + 1)
S. (2.1.41)

A weighted oscillator strength can be also defined just as for the weighted transition probability
such as:

gf = (2J + 1)fij = −(2J ′ + 1)fji = 3.0376× 10−6σS. (2.1.42)

It is also possible to link both quantities, weighted transition probability and weighted oscillator
strength such as:

gA = 0.66702 σ2gf. (2.1.43)

It is also important to highlight that the g (i.e. (2J+1)) appearing to weight the transition prob-
ability and the oscillator strength in emission refers to the upper level while for the oscillator
strength in absorption g refers to the lower level.



Pseudo-relativistic Hartree-Fock method and corrections related to the polarization of the
atomic core (HFR+CPOL) 30

2.1.6 Cowan’s code procedure
The Cowan’s code, which implements the HFR method, enables the modeling of the atomic

structure for a given atom. This approach computes the radial and angular parts of the wave-
function, enabling the determination of energy levels and the atomic system’s wavefunctions.
This is achieved through the diagonalization of the Hamiltonian H using the Slater-Condon
method, as detailed in the previous subsections.

The procedure to calculate atomic parameters includes four different programs used in a row.
All these programs are executed ab initio, meaning that parameters can be calculated without
introducing any experimental data. The first program RCN requires the introduction of con-
figurations considered within the in36 file. This program calculates radial parts (Pnl(r)) of
monoelectronic wavefunctions by solving HF equations with the self-consistent field approxi-
mation. It also calculates the monoconfigurational parameters of each configuration, the average
energy (Eav), electrostatic Slater interaction such as F k(ij) and Gk(ij) and also the spin-orbit
parameter ζnl.

The second program, RCN2, then calculates the Slater integrals Rk, which reflect the electo-
static interaction between different electronic configurations and the radial parts of the transition
amplitudes such as the electric dipole transition radial integrals. It also includes scaling factors
(SF) in the in2 file. In fact, as we cannot model the entire configuration interactions (because
we choose to enter a finite and limited number of configurations) it creates a systematic error
which consist to have values of the radial Slater integrals F k, Gk and Rk calculated too high
compared to their optimal values. Therefore, we introduce these scaling factors (SF) to have a
better agreement between the calculated energy levels and experimental values. For moderately-
charged heavy elements such as considered in this thesis, F k, Gk and Rk were arbitrarily scaled
down by a factor 0.90 while the spin-orbit parameters (ζnl), computed using the Blume-Watson
method, were kept at their ab initio values, as recommended by Cowan (1981).

The final program, namely RCG, builds the Hamiltonian using various parameters calculated
by the RCN and RCN2 programs (F k, Gk, Rk, ζnl and Eav). By diagonalizing the Hamiltonian,
we have then access to eigenvalues, mixing coefficients and eigenvectors of the atomic system.
Then, electric dipole transitions (E1) are calculated in order to obtain radiative parameters such
as transition probabilities, oscillator strengths, wavelengths and cancellation factors.

As mentioned previously, all these programs can be run in a row. For all of the ions considered
in this work, we used the HFR method without using the polarization corrections since we
demonstrated in Deprince et al. (2023) that these corrections have a relatively weak impact on
opacities for heavy elements. Here is a summary of the main steps when using Cowan’s code.

RCN Monoelectronic wavefunctions radial parts calculation
↓

RCN2 Slater interaction parameters Rk calculation + introduction of scaling factors
↓

RCG Diagonalization of the Hamiltonian ⇒ Generation of atomic data
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2.2 Multi-Configurational Dirac-Hartree-Fock method
(MCDHF)

The MCDHF approach (Grant, 2007) consists in solving approximately the Dirac equa-
tion for each bound electron of the considered atom by using the central-field approximation.
Firstly, some fundamental notions of relativistic quantum mechanics are reminded in the be-
ginning of this section. Then, theoretical principles of MCDHF method are explained such as
the construction of the Hamiltonian. After the description of the method to obtain spin-orbitals,
the corrective terms related to quantum electrodynamics (QED) and the transition probabili-
ties are also detailed. Finally, we briefly describe the procedure of the computational program
GRASP2018, (Froese Fischer et al., 2019), used to calculate the atomic structures elements.

2.2.1 Relativistic quantum mechanics: the hydrogen atom problem
In relativistic quantum mechanics, the motion of a free electron is described by the Dirac

equation
(iγµ∂µ − c)ψ = 0, (2.2.1)

where γµ represent the (4×4) Dirac matrices with µ = 0,1,2,3 and are written as:

γ0 :=

(
11 0
0 −11

)
; γi :=

(
0 σi

−σi 0

)
, (2.2.2)

where i = 1,2,3, σi are the (2×2) Pauli matrices, c is the speed of the light in the vacuum, ψ is
the four components Dirac spinor solution of the equation and ∂µ is the partial derivative acting
on the Dirac spinor.

When we consider the hydrogen atom (monoelectronic case), i.e. one electron in a Coulomb
potential := Vnucl(r) (i.e. spherically symmetric potential generated by the nucleus), it is inter-
esting to determine the bound states of this electron to know the energy levels. To do that, we
have to find the eigenvectors ψ of the monoelectronic Dirac Hamiltonian operator hD:

hDψ = Eψ, (2.2.3)

where hD = cα⃗.p⃗+ (β − 1)c2 + Vnucl(r),

where operators αi with i = 1,2,3 and β are defined from the Dirac matrices Eq. (2.2.2) such as

αi := γ0γi ; β := γ0. (2.2.4)

If we treat the nucleus as point-like, then the nuclear potential included in the monoelectronic
Hamiltonian in Eq. (2.2.3) can be written as: Vnucl(r) = −Z/r.

The eigenvectors of the Hamiltonian written in Eq. (2.2.3) can be noted in spherical coordinates
as

ψ(r, θ, ϕ) =
1

r

(
Pn,κ(r) χκ,m(θ, ϕ)
iQn,κ(r) χ−κ,m(θ, ϕ)

)
, (2.2.5)

where Pn,κ(r) and Qn,κ(r) are respectively the large and the small radial components which
are solutions of a system of differential equations (analytically solvable) and χκ,m(θ, ϕ) are the
angular parts, which are eigenvectors of j⃗ 2, j3, l⃗ 2 and s⃗ 2 (where j⃗, l⃗, s⃗ are respectively the
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total angular moment, the orbital angular moment and the spin, with j⃗ = l⃗+ s⃗). The χκ,m(θ, ϕ)
are also eigenvectors of the operator

K = −(1 + σ⃗.⃗l ), (2.2.6)

with eigenvalues

κ =
(
j +

1

2

)
η when l = j +

1

2
η with η = ±1, (2.2.7)

which makes it possible to clarify the angular parts such as (Grant, 2007)

χκ,m(θ, ϕ) =
∑
σ=± 1

2

(l,m− σ, 1/2, σ|l, 1/2, j,m)Y m−σ
l (θ, ϕ)ψσ, (2.2.8)

with ψσ basis spinors with two components:

ψ1/2 =

(
1
0

)
et ψ−1/2 =

(
0
1

)
.

2.2.2 Basic principle of the MCDHF method
Polyelectronic case and atomic state functions

When we consider an atom with N electrons, the corresponding relativistic Hamiltonian is
given by the Dirac-Coulomb Hamiltonian

HDC =
N∑
i=1

hD(r⃗i) +
∑
i>j

1

rij
, (2.2.9)

where rij = |r⃗i − r⃗j| and hD(r⃗i) is the monoelectronic Dirac Hamiltonian in Eq. (2.2.3) for the
ith considered electron. Considering the central-field approximation, each electron is assumed to
move in a spherically symmetric potential created by the nucleus and the other N − 1 electrons
of the atom, noted as U(r). This allows us to modify the single-electron Hamiltonian operator
in Eq. (2.2.3) as

h̃D = cα⃗.p⃗+ (β − 1)c2 + V (r), (2.2.10)

where V (r) = −Z/r + U(r). Therefore, we can rewrite the Dirac-Coulomb Hamiltonian as

H̃DC =
N∑
i=1

h̃D(r⃗i). (2.2.11)

By considering this approximation, it is thus possible to write the eigenstates of the Hamiltonian
in the same way as for the hydrogen atom, i.e. Eq. (2.2.5). The difference with the former is the
determination of the radial parts Pn,κ(r) and Qn,κ(r) through the self-consistent field method
by solving a system of coupled differential equations.

An atomic state function (ASF) describing a stationary atomic state of parity π characterized by
the total angular momentum quantum number J , of projectionM is represented by Ψ (π, J,M).
A configuration state function (CSF) is represented by Φ(γ, π, J,M), where γ contains all the
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information necessary to uniquely define the CSF (the coupling scheme and the orbital occu-
pancy numbers). These CSFs are constructed from Slater determinants (as mentioned previ-
ously, it enables the wavefunction to be expressed as an anti-symmetric combination of indi-
vidual single-electron spin-orbitals). When the MCDHF method is used, the basic step is to
expand each Ψ (π, J,M) ASF into a linear combination of Φ(γ, π, J,M) CSFs as follows:

Ψ(π, J,M) =
nc∑
r=1

crΦ(γr, π, J,M), (2.2.12)

where cr are the mixing coefficients and nc is the number of CSFs in the chosen model. The
coefficients must satisfy the normalization condition such that

nc∑
r=1

|cr|2 = 1. (2.2.13)

When orbitals are optimized, these mixing coefficients can be determined using the configura-
tion interaction method. The energy of an atom in a Γ state described by an ASF with a form
such that the expression Eq. (2.2.12) is written:

EΓ = c⃗Γ
†Hc⃗Γ, (2.2.14)

where H is the Hamiltonian matrix in the chosen basis of the CSFs and c⃗Γ is a column vector
whose components are the mixing coefficients of the ASF which describes the atomic state Γ
with the normalization condition Eq. (2.2.13), which is rewritten such as c⃗Γ†c⃗Γ = 1. Finding
the eigenstates of the Hamiltonian thus involves to solve the following equation:

H̃DC c⃗Γ = EΓc⃗Γ. (2.2.15)

Eigenvalues and eigenvectors are obtained by diagonalizing the Hamiltonian. These correspond
to the atomic energy levels and mixing coefficients of the considered ASF and allow us to
describe the atomic state.

Construction of the Hamiltonian matrix in the selected CSF basis

In order to solve Eq. (2.2.15), the Hamiltonian must be constructed. The elements of the
Hamiltonian matrix can be expressed from the angular coefficients which depend only on the
angular parts of the chosen CSFs and from monoelectronic and bi-electronic radial integrals
(Grant, 2007).

The monoelectronic radial integral for an electron initially in an orbital a (this orbital being
characterized by the quantum numbers na, κa) is written as:

I(ab) = δκaκb

∫ ∞

0

[
cQ∗

a(r)
( d

dr
+
κb
r

)
Pb(r)− cP ∗

a (r)
( d

dr
− κb

r

)
Qb(r)

−2c2Q∗
a(r)Qb(r) + Vnucl(r)[P

∗
a (r)Pb(r) +Q∗

a(r)Qb(r)]
]
dr.

(2.2.16)

The bi-electronic radial integral describing the electrostatic interaction between two electrons
that may belong to two different configurations is given as a generalized relativistic Slater inte-
gral and is denoted Rk(abcd):

Rk(abcd) =

∫ ∞

0

[(
P ∗
a (r)Pc(r) +Q∗

a(r)Qc(r)
)1
r
Y k(bd; r)

]
dr, (2.2.17)
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where Y is the relativistic Hartree function and is defined as

Y k(bd; r) = r

∫ ∞

0

Uk(r, s)
(
P ∗
b (s)Pd(s) +Q∗

b(s)Qd(s)
)

ds, (2.2.18)

with

Uk(r, s) =


rk

sk+1
if r ≤ s

sk

rk+1
if r > s.

(2.2.19)

The direct and exchange radial integrals, F k(ab) and Gk(ab) respectively, are two special cases
of the Slater integral in a monoconfiguration case. The direct radial integral reflects the di-
rect electrostatic interaction, while the second describes the electrostatic exchange interaction
between two electrons of the same configuration. They are written as:

F k(ab) = Rk(abab) ; Gk(ab) = Rk(abba). (2.2.20)

The diagonal elements of the Hamiltonian matrix in the chosen CSF basis are written as

Hrr =
no∑
a=1

(
qr(a)I(aa) +

no∑
b≥a

[ ko∑
k=0,2,...

fk
r (ab)F

k(ab) +

k2∑
k=k1,k1+2,...

gkr (ab)G
k(ab)

])
, (2.2.21)

where no is the number of orbitals, qr(a) is the number of occupancy of an orbital a, i.e. the
number of electrons in that orbital represented by the quantum numbers (na, κa) and fk

r (ab)
gkr (ab) are angular coefficients whose general expressions are defined by Grant (2007). They
depend on the coupling scheme between equivalent (those on the same subshell) and non-
equivalent electrons (those on different subshells). Therefore, they also depend on the number
of occupancy of each subshell. The coupling scheme used in the MCDHF method in order to
construct the CSFs is a jj coupling. In this coupling scheme, the electrons of the same subshell
a, with occupation number q(a) ≤ 2ja+1, are coupled together in jj coupling to give an angular
momentum Ja to each subshell. Then, successive subshell a and b of angular momentum Ja and
Jb are coupled in a jj manner to give an intermediate angular momentum X1 which is coupled
with the angular momentum Jc of the following subshell c to give an intermediate angular mo-
mentum X2. This process is repeated until all the subshells are coupled to give a total angular
momentum J . It can be summarized as follows:

(...((JaJb)X1Jc)X2...)J. (2.2.22)

In Eq. (2.2.21), the limits of summation k0, k1 and k2 are given by:

k0 = (2ja − 1)δab,

k1 =

{
|ja − jb| if κaκb > 0
|ja − jb|+ 1 if κaκb < 0,

k2 =

{
ja + jb if ja + jb + k is even
ja + jb − 1 otherwise.

(2.2.23)

The non-diagonal elements (r ̸= s) of the Hamiltonian matrix in the considered CSF basis,
which reflect the configuration interactions between the different CSFs, are expressed as:
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Hrs =
∑
a,b

trs(ab)I(ab)δκaκb
+
∑
k

∑
a,b,c,d

vkrs(abcd)R
k(abcd), (2.2.24)

where trs(ab) and vkrs(abcd) are angular coupling coefficients of the same form as those appear-
ing in Eq. (2.2.21) and whose expressions are given by Grant (2007). They also depend on the
coupling scheme and the subshells a,b,c and d contributing to Hrs.

Obtaining spin-orbitals by the MCDHF equations

It remains to optimize the radial parts in order to obtain the spin-orbitals. To do this, a sys-
tem of integro-differential equations must be solved. Such a system of equations is obtained by
applying a variational principle to an energy functional of atomic states. This energy functional
has to be stationary with respect to the variations of the radial parts of the spin-orbitals.

Let the energy functional be such that:

ε =
nc∑
r=1

nc∑
s=1

drsHrs +
∑
a

∑
b

(1− δab)q̄(a)ϵab(a|b), (2.2.25)

where ϵab are the Lagrange multipliers ensuring the orthonormality of the radial parts of the
spin-orbitals, q̄(a) is the generalized occupation number and is defined as:

q̄(a) :=
nc∑
r=1

drrqr(a), (2.2.26)

and where
(a|b) =

∫ ∞

0

(
P ∗
a (r)Pb(r) +Q∗

a(r)Qb(r)
)
dr. (2.2.27)

The drs coefficients noted in Eq. (2.2.25) are generalized statistical weights which may be ex-
pressed differently depending on the mode used:

1. If one uses the OL (Optimal Level) mode, the optimization is done on one ASF at a time,
each ASF will be optimized independently from the others. Spin-orbitals obtained can
thus vary from one ASF to another. For a certain atomic state i, the weights drs are such
that:

drs = cricsi. (2.2.28)

2. The EOL (Extended Optimal Level) mode allows the optimization to be performed on a
set of levels. The generalized weights are given by:

drs =
1

nL

nL∑
i=1

cricsi, (2.2.29)

where nL is the number of chosen levels (with nL < nc). In this case, the same set
of spin-orbitals is used to describe the set of ASFs corresponding to the chosen energy
levels when constructing the energy functional ε.
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3. The AL (Average Level) mode optimizes the trace of the Hamiltonian matrix. Different
from the OL and EOL modes, this mode optimizes all energy levels in a global way. The
generalized weights are independent of the mixing coefficients and each CSF is weighted
by its own statistical weight:

drs = δrs
2Jr + 1∑nc

t=1(2Jt + 1)
. (2.2.30)

4. The EAL (Extended Average Level) mode allows the optimization of a weighted trace of
the Hamiltonian matrix. The weights, being independent of the mixing coefficients, can
therefore be chosen by the user.

By applying the variational principle to the energy functional of a relativistic orbital a, we derive
a set of coupled integro-differential equations, known as MCDHF equations, characterized as
follows:

−Z − Y (a; r)

r
Pa(r) + c

(
− d

dr
+
κa
r

)
Qa(r)− ϵaaPa(r) = −X+1(a; r)

c
( d

dr
+
κa
r

)
Pa(r) +

(
− 2c2 − Z − Y (a; r)

r

)
Qa(r)− ϵaaQa(r) = −X−1(a; r),

(2.2.31)

with the normalization condition∫ ∞

0

(P ∗
a (r)Pa(r) +Q∗

a(r)Qa(r))dr = 1, (2.2.32)

where Y (a; r) is the direct interaction potential andXα with α=± 1 is the exchange interaction
potential. The expression for the direct interaction potential is given by:

Y (a; r) =
∑
k

n0∑
b=1

[
yk(ab)Y k(bb; r)−

n0∑
c=1

yk(abac)Y k(bc; r)
]
, (2.2.33)

with Y k being the relativistic Hartree function given in Eq. (2.2.18) and yk(ab) is described
such that:

yk(ab) =
1 + δab
q̄(a)

nc∑
r=1

drrf
k
r (ab), (2.2.34)

yk(abac) =
1

q̄(a)

nc∑
r=1

nc∑
s=1

drsv
k
rs(abac). (2.2.35)

The expression for the exchange interaction potential is given by:

Xβ(a, r) = −
∑
b̸=a

δκaκb
ϵabRγbβκb

(r)

+
∑
k

[∑
b ̸=a

xk(ab)
Y k(ba; r)

r
Rγbβκb

(r)

−
∑
bcd

(
1− δacx

k(abcd)
Y k(bd; r)

r
Rγcβκc

(r)
)]
,

(2.2.36)

with

Rγ,βκ(r) =

{
Pγ,κ(r) if β = +1
Qγ,κ(r) if β = −1,

(2.2.37)
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and where

xk(ab) =
1

q̄(a)

nc∑
r=1

drrg
k
r (ab), (2.2.38)

xk(abcd) =
1

q̄(a)

nc∑
r=1

nc∑
s=1

drsv
k
rs(abcd). (2.2.39)

The only way to solve this system is by an iterative method. The technique used is the self-
consistent field (SCF) which is applied to obtain the radial parts P(r) and Q(r) of each spin-
orbital written in Eq. (2.2.5). The SCF method is divided into three parts:

(i) Choice of initial radial functions P(r) and Q(r) (for example the radial parts of the screened
hydrogenic spin-orbitals),

(ii) Calculation of all terms appearing in the MCDHF equations with the radial parts chosen
in (i),

(iii) Solving the MCDHF equations to obtain new radial functions.

These steps are repeated iteratively until a certain convergence criterion is reached.

2.2.3 Quantum electrodynamics corrections
In a relativistic context, the Coulomb interaction term is not sufficient to describe the interac-

tions between the bound electrons of atoms. Indeed, it is necessary to consider some corrections
from quantum electrodynamics (QED). In this context, the most important corrections are the
Breit transverse interaction, self-energy and vacuum polarization. They are added in a pertur-
bative way to the Hamiltonian to solve the eigenvalue equation in order to correct ASFs as well
as the energy levels. Each of these QED contributions is briefly described below.

Breit transverse interaction.

The electron-electron scattering is explained by the exchange of a virtual photon. The Feynman
diagram representing this interaction is shown in Figure 2.1.

Figure 2.1: Feynman diagram representing the electron-electron scattering (transverse interaction).

The transverse interaction is the first-order correction to the Coulomb interaction term between
two bound electrons (one belonging to an i orbital and the other to a j orbital) in an atom re-
sulting from the exchange of a virtual photon between them. This correction is described by
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a transverse interaction Hamiltonian operator added to the Dirac-Coulomb Hamiltonian men-
tioned above. This operator is written as follows (Grant, 2007)

BT
ij = −α⃗i.α⃗j

eiωijrij/c

rij
− (α⃗i.∇⃗ij)(α⃗j.∇⃗ij)

eiωijrij/c − 1

ω2
ijrij/c

2
, (2.2.40)

where α⃗i = (α1
i ,α2

i ,α3
i ) is a vector whose components are the three Dirac matrices cited in

Eq. (2.2.4) acting on an electron that occupies the i orbital, rij = |r⃗i − r⃗j| and ωij is the
frequency of the virtual photon exchanged.

Self-energy

The self-energy correction is a second-order correction corresponding to the phenomenon whereby
the electron spontaneously emits a virtual photon of energy ∆E and reabsorbs it after a certain
time ∆t such that the Heinsenberg uncertainty principle ∆E.∆t ≥ h̄ is satisfied. Such a phe-
nomenon is described by the Feynman diagram in Figure 2.2. It contributes to the mass-energy
of electrons through the interaction of the electron with its own electromagnetic field, which
results in the modification of the electronic structure of atoms.

Figure 2.2: Feynman diagram representing the self-energy.

Vacuum polarization

The polarization of the vacuum is another second-order correction of the QED theory. The latter
states that an energy fluctuation ∆E of the vacuum can allow the creation of an electron-positron
pair annihilating after a certain time ∆t such that ∆E.∆t≥ h̄ is satisfied. The Feynman diagram
describing this phenomenon is shown in Figure 2.3. Dipoles appear spontaneously from the
vacuum for very short periods of time, thus modifying the surrounding electromagnetic field.
Indeed, an electron interacting with these dipoles disturbs the spatial distribution of the latter,
giving rise to a polarization of the vacuum as well as a modification of the electromagnetic field
generated by the electron (spreading of its charge). The electronic structure of the atoms is
therefore also modified.

Figure 2.3: Feynman diagram representing the vacuum polarization.

2.2.4 Transition probabilities
When the electronic structure of an atom is defined, it is possible to calculate the radiative

transitions occurring within that atom and their corresponding transition probabilities. The
latter are defined as the rate of spontaneous emission of a photon per unit of time for each of
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the possible radiative de-excitation paths of the atom. These probabilities are obtained from the
calculation of relativistic line strengths (i.e. matrix elements of an electromagnetic transition
operator described as a multipole expansion) between ASFs corresponding to two atomic states
involved in each transition. It is also convenient to define the absorption oscillator strength as

fab = − c

2ω2

2jb + 1

2ja + 1
Aab, (2.2.41)

where ω is the angular frequency associated with the transition, c is the speed of light and Aab

is the relativistic transition probability for a transition from a b level to an a level (where the b
level has a higher energy than the a level), which is written as follows (Grant, 2007):

Aab = 2αω
2ja + 1

2K + 1

(
jb K ja
1
2

0 −1
2

)2

|Mab|2, (2.2.42)

where α is the fine-structure constant, ω is the angular frequency associated with the transition,
K is the order of the electric or magnetic multipole transition, the symbol in brackets is a 3-j
Wigner symbol, which is written using Clebsh-Gordan coefficients such that:(

j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

(j1m1j2m2|j3(−m3)), (2.2.43)

and Mab is a function of ω depending on the electrical or magnetic character of the transition as
well as the chosen gauge.

In atomic physics, it is generally common to work with a gauge other than the Lorentz gauge
for the potential quadrivector. It is common to use either the Babushkin gauge or the Coulomb
gauge. In the framework of non-relativistic quantum mechanics, the transition operator between
an initial and a final state is either expressed in the position representation (i.e. length gauge)
or in the momentum representation (i.e. velocity gauge). The relativistic transition operator
computed in the Babushkin gauge relates, in the non-relativistic limit, to the transition opera-
tor computed in the length gauge, whereas the relativistic transition operator computed in the
Coulomb gauge relates to the transition operator computed in the velocity gauge.

The computation of transition probabilities is carried out in either of these two gauges
(Babushkin and Coulomb) in order to compare the results obtained. To verify the reliability
of the latter, the gauge invariance of the theory of electromagnetism guarantees that the same
theoretical results must be obtained in both gauges. In the case of electric multipole transitions,
Mab depends linearly on a parameter G which is the gauge parameter. In the Coulomb gauge, it
is zero while in the Babushkin gauge, it is [(K + 1)/K]1/2. Therefore, Mab is written:

Mab(ω,G) =Mab(ω, 0) +GM̃ab(ω), (2.2.44)

where

Mab(ω, 0) = −ik
[( K

K + 1

)1/2[
(κa − κb)I

+
K+1 + (K + 1)I−K+1

]
−
(K + 1

K

)1/2[
(κa − κb)I

+
K−1 +KI−K−1

]]
,

(2.2.45)

and

M̃ab(ω) = −ik
[
(κa − κb)I

+
K+1 + (K + 1)I−K+1

+(κa − κb)I
+
K−1 +KI−K−1 − (2K + 1)JK

]
,

(2.2.46)
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with integrals I±K and JK defined by

I±K =

∫ ∞

0

[
P ∗
a (r)Qb(r)±Q∗

a(r)Pb(r)
]
jK

(ωr
c

)
dr, (2.2.47)

JK =

∫ ∞

0

[
P ∗
a (r)Pb(r) +Q∗

a(r)Qb(r)
]
jK

(ωr
c

)
dr, (2.2.48)

where P (r) et Q(r) are respectively the large and small components of the radial part of the
spin-orbitals and where jK(ωrc ) is a spherical Bessel function.

2.2.5 GRASP2018 code procedure
The GRASP2018 code (General purpose Relativistic Atomic Structure Program 2018) is

a program to obtain the relativistic wavefunctions of an atomic system that implements the
MCDHF method described above. It represents the most recent (Froese Fischer et al., 2019)
and most powerful version of the relativistic atomic structure calculation programs originally
developed by Grant et al. (1980). It consists of several modules that are used in a row.

Initially, after incorporating data concerning the nucleus of the element we aim to model in
the RNUCLEUS program, the RCSFGENERATE program is supplied with a list of orbitals
and configurations of interest in this model. The purpose is to generate the list of Configu-
ration State Functions (CSFs). Then, to reduce the list of CSFs, we run RCSFINTERACT
which is going to retain only CSFs that interact with CSFs of a reference list. Subsequently,
the RANGULAR program is employed to compute a set of angular components required for
the expression of the Hamiltonian matrix elements as defined in Eq. (2.2.21) and Eq. (2.2.24)
(Grant, 2007), using the list of CSFs generated by the RCSFGENERATE program. Following
this, the RWFNGENERATE program is used to generate the initial radial components. When
executing this program, there are several options available. It is either possible to use a set of
orbitals optimized in a previous calculation, or to use a set of spin-orbitals of the screened hy-
drogenic type, or also to generate a set of orbitals by means of a Thomas-Fermi potential (e.g.
free electrons confined in a box).

Finally, the RMCDHF program is run in order to obtain the optimized spin-orbitals. For this
purpose, the SCF method is used to iteratively solve the coupled MCDHF integro-differential
equations by OL, EOL or EAL method described previously. This program calculates the radial
interaction integrals but also different terms appearing in the MCDHF equations using initial
radial parts generated by the RWFNGENERATE program. This step is repeated iteratively and
stops when radial parts of the spin-orbitals have reached a certain convergence criterion. When
the latter is satisfied, spin-orbitals are constructed from the optimized radial parts, and the CSFs
are then given by Slater determinants constructed with these optimized spin-orbitals. To obtain
the complete expression of the wavefunction for each ASF, the Hamiltonian matrix is assem-
bled in the selected basis of CSFs. This matrix incorporates both diagonal and non-diagonal
elements and is subsequently diagonalized to yield the energy levels and mixing coefficients for
each ASF. The QED corrections aforementioned, are also included when RCI module is run.
The corrected Hamiltonian is diagonalized again to obtain the corrected atomic energy levels
and mixing coefficients. Finally, as a last step, a biorthonormal transformation is performed
using the RBIOTRANSFORM module in order to gather and obtain an orthonormalized set of
spin-orbitals that have been determined from separate RMCDHF runs for each parity. Finally,
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RTRANSITION is run and gives transition probabilities, transition wavelengths and oscillator
strengths involving all the atomic levels from the considered model.

In conclusion of this section, we provide a summary of the sequence followed, outlining the
various modules employed throughout the calculation process.

RNUCLEUS Generation nucleus data
↓

RCSFGENERATE Generation CSF lists
↓

RCSFINTERACT Reduce CSF list by retaining only CSF interacting with CSF of a reference list
↓

RANGULAR Generation of the angular parts
↓

RWFNESTIMATE Provides first estimates of radial parts
↓

RMCDHF Self-consistent field method (obtaining spin-orbitals)
↓

RCI Addition of relativistic corrections
↓

RBIOTRANSFORM Biorthonormal transformation
↓

RTRANSITION Generation of atomic parameters
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2.3 Configuration Interaction and Many-Body Perturbation
Theory (CI+MBPT)

Configuration Interaction (CI) and Many-Body Perturbation Theory (MBPT) is an ab initio
method used for high accuracy calculations initially developed by Dzuba et al. (1996). CI treats
valence-valence correlations while MBPT describes valence-core and core-core correlations. It
has been implemented in the AMBiT atomic structure code (Kahl and Berengut, 2019).

2.3.1 Configuration Interaction theory
The many-electron Hilbert space is separated into two subspaces P and Q. The first one,

correspond to the frozen core approximation and the second one is complimentary to it and
includes all the states with core excitations (Dzuba et al., 1996). The subspace Q is treated using
MBPT (Many-Body Perturbation Theory) since the projections of the wavefunctions associated
with the lower-energy levels of the atom onto subspace Q are relatively small. On the other
hand, subspace P is handled using the CI method (Configuration Interaction) since perturbation
theory is not as effective within this subspace P . The decomposition of the wavefunction in
those subspaces depend on the definition of the core (i.e. definition of the number of electrons
to be included in the core, Ncore). It is also crucial to specify the one-particle wavefunctions for
the core electrons, which must be eigenfunctions of the one-particle Hamiltonian expressed as
outlined by Dzuba et al. (1996) as

h0ϕi = ϵiϕi. (2.3.1)

We can use Slater determinants |I⟩ of the functions ϕi as a basis set in the many-electron space.
It is straightforward to determine the specific subspace to which a particular determinant |I⟩
belongs. If all Ncore of the lowest states are occupied in |I⟩, then it pertains to the subspace P
otherwise, it belongs to the subspace Q. We can define a projector to the subspace P and Q
such that

P =
∑
I∈P

|I⟩ ⟨I| and P +Q = 1. (2.3.2)

As the subspace P is infinite-dimensional, it is impossible to find an exact solution of the
Schrödinger equation in this subspace. Nonetheless, if the count of valence electrons is suffi-
ciently low (less than three or four), it is possible to find a very good approximation with the CI
method. This approach involves the introduction of a finite-dimensional model space PCI ⊂ P
by defining the allowed configurations for the valence electrons. In the CI method, the atomic
level wavefunctions ψ for a given total angular momentum and parity Jπ are then constructed
as a linear combination of Slater determinants |I⟩ (Dzuba et al., 1996):

ψ =
∑

I∈PCI

CI |I⟩ , (2.3.3)

where CI are the coefficients obtained from the matrix eigenvalue problem of the CI Hamilton-
inan: ∑

J∈PCI

HIJCJ = ECI , (2.3.4)
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where HIJ is the matrix element of the exact Dirac-Coulomb Hamiltonian operator projected
on the model subspace using the projection operator PCI . As the core is frozen in the latter sub-
space, core electrons can be excluded by averaging the Hamiltonian over the single-determinant
wavefunction of the core electrons:

HCI = PCIHPCI = Ecore +
∑

i>Ncore

hCI
i +

∑
j>i>Ncore

1

rij
, (2.3.5)

where Ecore includes the kinetic energy of the core electrons and their Coulomb interaction with
the nucleus and each other. The one-particle operator hCI

i operates on the valence electrons
and incorporates the kinetic term, the Coulomb interaction with the nucleus and the Coulomb
interaction with the core electrons. The final term takes into consideration the interaction among
the valence electrons themselves. We can rewrite Eq. (2.3.5) using P instead of PCI as it is
possible to choose PCI so that the accuracy of the solution of the Schrödinger equation in the
P subspace can be achieved:

HCI = PHP = Ecore +
∑

i>Ncore

hCI
i +

∑
j>i>Ncore

1

rij
. (2.3.6)

2.3.2 Exact Hamiltonian expansion
Operator written in Eq. (2.3.6) can be used in Eq. (2.3.4) instead of H. In this case deter-

minants |I⟩ and |J⟩ only include the valence electrons. This corresponds to the pure CI method
in the frozen-core approximation. To express the exact equivalent of the original Schrödinger
equation within the subspace P , we need to perform the P-Q decomposition of both the Hamil-
tonian and the wave function of the many-body problem (Dzuba et al., 1996; Berengut and
Flambaum, 2006):

H(P +Q)ψ = Eψ,

H = PHP + PHQ+QHP +QHQ.
(2.3.7)

The Feshbach operator yields the exact energy when operating on the model function ψP =Pψ.
The Schrödinger equation can be written as:

PHPψP + PHQψQ = EψP and QHPψP +QHQψQ = EψQ, (2.3.8)

where ψQ = Qψ. By eliminating ψQ, this gives us a Schrödinger-like equation in the subspace
P , with an energy-dependent effective Hamiltonian:

(PHP + Σ(E))ψP = EψP , (2.3.9)

where
Σ(E) = PHQ 1

E −QHQ
QHP . (2.3.10)

If the subspace P includes only one electron the operator PHP is reduced to the Dirac-Fock
operator with the V N−1 potential that only includes the interaction among all the other N − 1
electrons and Σ is reduced to the single-particle self-energy operator.
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2.3.3 Many-body perturbation theory
Perturbation expansion of Σ(E)

In order to have a pertubation expansion for Σ(E) it will depend on the choice of h0 in Eq.
(2.3.1). The simplest h0 corresponds to the V Ncore approximation, for which h0 is the Dirac-Fock
operator for the core. However, when we consider a atom with more than one valence electron,
this approximation becomes too crude to start with. This implies that, in the self-consistent
procedure, some or all of the valence electrons should also be incorporated. The one-electron
Dirac-Fock operator in Eq. (2.3.1) is (Berengut and Flambaum, 2006):

h0 = hDF = cα⃗.p⃗+ (β − 1)c2 − Z

r
+ V NDF , (2.3.11)

where V NDF is the potential (both direct and exchange) of the NDF electrons included in the
self-consistent field Hartree-Fock procedure. It is important to note that NDF electrons are not
necessarily the number of electrons in the closed-shell core, as Ncore < NDF < N , where N
is the total number of electrons. In the context of CI calculations, there are N − Ncore valence
electrons. The remaining parameters such as α and β are Dirac matrices and the wavefunction
can be written as

ψ(r) =
1

r

(
Pnκ(r)χκ,m(r̂)

iQnκ(r)χ−κ,m(r̂)

)
, (2.3.12)

where κ = (−1)j+l+1/2(j + 1/2) and χκ,m, are the usual spherical spinors. The eigenvalue
equation hDFψi = ϵiψi can be written in the form of coupled ordinary differential equations
(ODEs)

dPi

dr
= −κ

r
Pi(r) +

1

c

(
ϵi +

Z

r
− V NDF + 2c2

)
Qi(r), (2.3.13)

dQi

dr
= −1

c

(
ϵi +

Z

r
− V NDF

)
Pi(r) +

κ

r
Qi(r), (2.3.14)

for each orbital ψi. These ODEs can be solved numerically with some methods explained in
Johnson (2007) .

In the CI space, the CSFs can also include valence-holes in otherwise filled shells, which can
lie between the Fermi level of the system and some minimum n and l, the latter of which is
referred as the frozen core. In this particle-hole (PH-CI) formalism, the CI Hamiltonian can be
written as:

h0 = hDF = cα⃗.p⃗+ (β − 1)c2 − Zei
ri

− eiV
Ncore +

∑
i<j

eiej
|ri − rj|

, (2.3.15)

where ei = −1 for valence electron states and +1 for holes. It is important to note that the one-
body potential V Ncore in the CI Hamiltonian only includes contributions from the core electrons
since valence-valence correlations are included directly via the two-body Coulomb operator
(Kahl and Berengut, 2019). To generate CSFs, a basis set of monoelectronic states |i⟩ has to
be built, that includes the core and valence states and a large number of virtual states. In the
majority of the literature, they used B-splines basis set, formed by diagonalizing the Dirac-Fock
operator on the basis set of B-splines and excluding orbitals with high energy. The large and
small component Pnκ(r) and Qnκ(r) of the virtual orbitals are linear combinations of two sets
of B-splines {li} and {si}:

Pnκ(r) =
∑
i

pili(r) and Qnκ(r) =
∑
i

pisi(r). (2.3.16)
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Each component of the wavefunction has the same set of expansion coefficients, which are
obtained variationally by solving the generalized eigenvalue problem (Johnson et al., 1988;
Beloy and Derevianko, 2008):

Ap = ϵSp, (2.3.17)

where Aij = ⟨i|hDF |j⟩ is the matrix representation of the Dirac-Fock operator in the B-spline
basis, Sij = ⟨i|j⟩ is the overlap matrix, |i⟩ =

(
li(r)
si(r)

)
are the B-spline basis functions and ϵ

is the single particle energy of the virtual orbital. There is some freedom when choosing the
exact values for the sets {l} and {s} as well as the boundary conditions of the resulting B-
spline basis functions. The Dirac-Fock operator, hDF is modified in order to take into account
some corrections as the effects of finite nuclear size (Berengut et al., 2008), nuclear mass-shift
(Berengut and Flambaum, 2006; Berengut, 2011) and the Breit interaction:

Bij = − 1

2rij
(αi.αj + (αi.rij)(αj.rij)/r

2
ij). (2.3.18)

The Lamb shift correction (calculated with the radiative potential method originally developed
by (Flambaum and Ginges, 2005) is also considered in the Hamiltonian just as the self-energy
and the vacuum polarization corrections (Ginges and Berengut, 2016a,b).

In order to do a perturbation expansion of Σ, let us define the single-particle Hamiltonian as:

hDFa
†
i |0⟩ = ϵia

†
i |0⟩ with ϵi ≡ ⟨i|hDF |i⟩ , (2.3.19)

where operators a†i and ai are introduced to respectively create and annihilate a particle. The
corresponding Dirac-Fock operator in the many-electron space, i.e. the many-body zero order
Hamiltonian, can be written as

H0 = Ecore +
∑
i

{a†iai}ϵi, (2.3.20)

where the brackets denote normal ordering with respect to the closed-shell core. The exact
Hamiltonian is written as:

H =
∑
i

hnucl
i +

∑
i<j

1

rij
, (2.3.21)

where hnucl = cα⃗.p⃗+ (β − 1)mec
2 − Z/ri can be separated into zero, one and two-body parts:

H(0) = Ecore,

H(1) =
∑
ij

a†iaj

[
⟨i|hnucl|j⟩+

core∑
m

(⟨im|r−1
12 |jm⟩ − ⟨im|r−1

12 |mj⟩

]
=

∑
ij

a†iaj ⟨i|hCI |j⟩ ,

H(2) =
∑
ijkl

a†ia
†
jalak ⟨ij|r−1

12 |kl⟩ .

(2.3.22)
If one expands the Eq. (2.3.10) in the residual Coulomb interaction, V = H−H0, we obtain

Σ(E) = PHQ 1

E −H0

QHP + PHQ 1

E −H0

QVQ 1

E −H0

QHP + ... (2.3.23)
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One advantage of this formalism is that h0 is not necessarily identical to hDF . In principle,
we have the flexibility to employ any set of functions in the virtual basis, provided that they
maintain orthogonality. This necessitates that

V(1) = ⟨i|hCI − h0|j⟩ , (2.3.24)

has to be small. We can write Σ in matrix form such as

ΣIJ =
∑
M∈Q

⟨I|H|M⟩ ⟨M |H|J⟩
E − EM

+
∑

M,L∈Q

⟨I|H|M⟩ ⟨M |V |L⟩ ⟨L|H|J⟩
(E − EM)(E − EL)

+... = (Σ2)IJ+(Σ3)IJ+...,

(2.3.25)
where I and J enumerate determinants from the subspace P , and M and L are determinants
from the subspace Q. In the literature, Σ is calculated to the second order of the pertubation
expansion and shows for the one-valence-electron case, that this level of perturbation theory
is sufficient to obtain accurante results (Berengut and Flambaum, 2006). Substituting Σ2 into
Eq. (2.3.9), we obtain the final matrix eigenvalue problem for the CI+MBPT technique:∑

J∈P

(
HIJ +

∑
M∈Q

⟨I|H|M⟩ ⟨M |H|J⟩
E − EM

)
CJ = ECI . (2.3.26)

This method, CI+MBPT, includes the core-correlation effects by simply altering the matrix
elements in the CI calculation.

Diagrammatic technique: MBPT corrections to valence-valence integrals

In previous implementations of CI+MBPT, Q space is defined to include all configurations
with holes in the core. Now that we can include configurations with holes (PH-CI method) in
the CI calculation, Q space has to be redefined. The PH-CI method introduces the possibility
of an additional type of diagram that does not involve extra core holes but does include electron
excitations beyond the valence space (Berengut, 2016). The number of terms in the MBPT
corrections grows rapidly but the diagrammatic technique greatly simplifies the calculation of
these terms (Dzuba et al., 1996). In this formalism, each contribution to the MBPT expansion
is represented by a Goldstone diagram, with the number of external lines corresponding to the
number of valence electrons included in the interaction (Berengut and Flambaum, 2006). At
second order in the residual Coulomb interaction these valence-valence diagrams occur in the
one-body, two-body, and effective three-body operators.

At the zero order of MBPT, we describe the interaction between valence electrons and the core
using the two diagrams as shown in Figure 2.4. In these diagrams, summations for the internal
lines run over the core. When considering the interaction with the Hartree-Fock field, the same
diagrams apply, but the summations involve NDF electrons. When the N core ≥ NDF , there is a
complete cancellation of these two contributions. This implies that all diagrams containing the
elements shown in Figure 2.4 as one of their components vanish. The same principle applies
to those blocks where one of the external electron lines is replaced by a hole line. In the case
where N core < NDF , only a partial cancellation of the core-valence interaction and the Hartree-
Fock field occurs. Consequently, the diagrams containing elements similar to those in Figure
2.4 persist, but the summations now run from N core+1 to NDF . These diagrams are termed
subtraction diagrams because they arise from the stronger influence of the Hartree-Fock field
in contrast to the core-valence interaction.
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Figure 2.4: First-order diagrams for the valence electron interactions with the core (Dzuba et al., 1996)

Figure 2.5 shows an example of a one-body MBPT diagram describing the self-energy correc-
tion arising from core-valence interactions (left) and a subtraction diagram involving an inter-
action with an external field (right) (Dzuba et al., 1996). In these diagrams the external lines
marked a, b, ... are valence electrons or holes, while the internal lines marked α, β are virtual
electron orbitals outside the CI valence space. Diagrams with external field lines (such as at the
right for Figure 2.5 and 2.6) are known as subtraction diagrams since the one-body external field
operator is hCI − hDF . If hCI = hDF these diagrams are then zero and cancelled each other.
There are also three other one-valence-electron diagrams of Σ with their four subtraction dia-
grams that can be found in (Dzuba et al., 1996) and nine diagrams for the two-valence-electrons
with four subtraction diagrams (an example is shown in Figure 2.6).

Figure 2.5: Example of some Goldstone diagrams describing a one-body core-valence correlation (left)
and one-body subtraction diagram (right). Electrons are represented by lines running left to right, while
lines running right to left are holes. |a⟩ and |b⟩ are valence orbitals, |α⟩ and |β⟩ are virtual, and |n⟩ is a
hole in the core (Berengut and Flambaum, 2006)
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Figure 2.6: Two-body valence-valence diagram (left) and valence-valence subtraction diagram (right).
External lines a, b, c, d correspond to valence or hole orbitals in the CI subspace P . Interior lines α and
β are virtual electron orbitals.(Berengut, 2016).

Subtraction diagrams are partially cancelled out by some two- and three-body diagrams in the
MBPT expansion (Berengut, 2011). Therefore, it is necessary to systematically incorporate
all one-, two-, and three-body MBPT diagrams in the CI+MBPT procedure to ensure precise
spectra. Despite this compensation, subtraction diagrams can become significant enough to
be non-perturbative in open-shell systems, potentially impacting the accuracy of the resulting
spectra (Berengut, 2011). As a result, there is a trade-off between generating more spectroscopic
orbitals through calculations in a V N potential and the potential presence of large subtraction
diagrams when V NDF ̸= V Ncore . The optimal choice will be contingent on the characteristics of
the target system.

2.3.4 Emu CI
As explained above, the CI method relies on constructing and diagonalizing the Hamilto-

nian matrix over a set of many-electrons CSFs. The number of CSFs grows exponentially as we
include a greater number of electrons within the CI problem subspace. Furthermore, it is worth
noting that CI convergence is slow even for relatively straightforward systems with only a few
valence electrons. This slow convergence makes it impractical to achieve saturation in open-
shell systems given the current computational time and memory limitations of supercomputers
(Geddes et al., 2018).

To compensate the computational limits associated with CI calculations, a technique called emu
CI (Dzuba et al., 2017) is employed. The term emu is used because the resulting CI matrix ex-
hibits a resemblance to an emu’s footprint. This approach is directly integrated into the AMBiT
programs (Kahl and Berengut, 2019), ensuring that accuracy is maintained in the results (Ged-
des et al., 2018). This emu CI approach is particularly well-suited to the common case where
only a few of the lowest-lying energy levels are calculated. In this strategy, the concept is that
while higher-energy configurations contribute to the formation of lower-energy levels of inter-
est, the impact of interactions among these higher-energy configurations on this contribution is
relatively weak. Therefore, a complete CI matrix (as shown in Figure 2.7) is constructed with
the matrix elements between these higher-energy CSFs deliberately set to zero. A CI matrix
with fewer elements will require less memory and less time to diagonalize. In order to construct
such a matrix, all important CSFs that contribute strongly to the low-energy levels of interest
have to be situated on one side of the CI matrix. There are Nsmall lower-energy CSFs (interac-
tions between these crucial CSFs, represented as the dark triangle in Figure 2.7 which is a real
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and symmetric matrix), which are considered as the small side of the matrix. This small-side
is created by permitting electron and/or hole excitations from a collection of leading configu-
rations (which may not necessarily be the same as those used for the main CI-space) up to a
specified maximum principal quantum number n and orbital angular momentum l. There are
also interactions between higher-energy CSFs and lower-energy CSFs (represented by the left-
hand rectangle in Figure 2.7 whereN is considered as the large side) which will be included into
the CI calculations since they have a significant impact on the lower-energy eigenstates. Con-
versely, interactions between one high-energy state and another high-energy state are expected
to have negligible contributions to the overall CI wavefunction. Therefore, all interactions be-
tween higher-energy CSFs are set to zero (unshaded areas in Figure 2.7). Additionally, elements
within the squares along the diagonal correspond to matrix elements between CSFs associated
with the same relativistic configurations. Subsequently, the CI matrix can be assembled in such
a way that the notable off-diagonal elements are clustered together in a block, leading to the
structure represented in Figure 2.7.

The significant reduction in the number of non-zero elements within the emu CI matrix, com-
pared to the standard CI matrix, leads to a substantial decrease in the computational resources
required to accurately compute atomic spectra.

Figure 2.7: Schematic representation of the emu CI method, resembling an emu’s footprint. The most
crucial CSFs are located in the upper left corner, and the shaded regions constitute our effective CI
matrix. Each square along the diagonal contains matrix elements between CSFs associated with the
same relativistic configuration. The unshaded area symbolizes interactions between high-energy states,
which are intentionally set to zero (Geddes et al., 2018).

The core-valence effects can be taken into account using MBPT as explained previously.

2.3.5 AMBiT package
The AMBiT software package (Kahl and Berengut, 2019) is designed to implement

CI+MBPT for the comprehensive relativistic computation of atomic energy levels, as well as
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electric and magnetic multipole transition matrix elements. Notably, the AMBiT software in-
corporates three-body MBPT corrections, resulting in a substantial improvement in accuracy,
particularly for systems with several electrons. This capability enables the precise calculation of
open-shell systems with a substantial number of valence electrons (N ≥ 5) in a highly efficient
computational manner. The CI+MBPT procedure can be performed in either the electron-only
mode or in the particle-hole formalism (PH-CI) (Berengut and Flambaum, 2006). This adapt-
ability enables the generation of open-shell configurations, characterized by partially occupied
electron states. This can be achieved either by considering the entire electron population or by
introducing an equivalent number of positively charged holes into an otherwise fully occupied
shell. While both the electron-only and particle-hole approaches are theoretically equivalent
within the CI framework, the particle-hole formalism offers a notable advantage. It allows for
more precise Many-Body Perturbation Theory (MBPT) corrections by minimizing the impact of
the so-called subtraction diagrams which can compromise accuracy in open-shell calculations.
Furthermore, an emu CI approach has been incorporated into the traditional CI+MBPT method,
as previously explained. This extension significantly reduces the computational complexity of
CI+MBPT problems while preserving the accuracy of results.



Chapter 3

Atomic data obtained from pseudo- and
fully-relativistic computational methods

In this chapter, we first detail the atomic computations for moderately-charged lanthanide
ions (V–X) from Z = 57 to 62. We describe how the atomic data are obtained using HFR,
MCDHF and CI+MBPT methods. After comparing theoretical results obtained with the differ-
ent methods, we also provide a comparison between the available experimental data with our
calculated theoretical values. Then, atomic data calculations for moderately-charged lanthanide
ions (V–VII) from Z = 63 to 71 are also described and compared. For such elements (Eu to Lu),
experimental values are only available for two ions, namely Yb V and Lu V and are compared
with our theoretical values. Finally, we provide a detailed explanation about the ground state
calculation for these elements with also a comparison with the available data in the literature.

3.1 Atomic structures for moderately-charged lanthanides
from Z = 57 to 71

3.1.1 La V–X ions
In recent decades, various studies have been conducted on the lanthanum ions from La V

to La X, employing spectral line observations to determine experimental energy levels. These
investigations were performed using a variety of normal incidence and grazing incidence spec-
trographs while the sources used to excite the spectra were either traditional triggered sparks or
laser-produced plasmas as the excitation sources.

For La V, 47 lines were registered by Epstein and Reader (1976) in the 389 – 825 Å wavelength
region leading to the identification of 29 levels belonging to the 5s25p5, 5s25p45d, 5s25p46s,
and 5s5p6 configurations. In La VI, between 335 – 1 031 Å, there exists 103 lines that were
identified by Gayasov et al. (1997) from the 5s25p4 ground configuration to 5s25p35d, 5s25p36s,
and 5s5p5 configurations, leading to the determination of 5 even- and 42 odd-parity levels. Con-
cerning La VII, Gayasov et al. (1998) recorded 102 lines in the 307 – 1 005 Å wavelength range.
The latter were identified due to transitions from the 5 levels of the 5s25p3 odd configuration
to 37 levels of the 5s25p25d, 5s2 5p26s, and 5s5p4 even configurations. In 2008, Tauheed et al.
(2008) established for La VIII all the 5 levels of the 5s25p2 ground configuration and all the
26 levels belonging to the 5s25p5d, 5s25p6s, and 5s5p3 odd configurations thanks to the mea-
surement of 71 lines between 280 – 1 145 Å. In 2001, Churilov and Joshi (2001) classified 155

51



Atomic structures for moderately-charged lanthanides from Z = 57 to 71 52

lines in the 363 – 870 Å region thanks to the analysis of complex transition arrays in La IX such
as (5p3 + 5s5p5d + 4f5p2 + 5s26p + 5s25f) – (5s5p2, 5s4f5p + 5s25d). This study completed
the previous investigation of the La IX spectrum by Gayasov and Joshi (1998) who identified
49 lines belonging to the (5s25p + 5s2 4f) (5s25d + 5s26s + 5s25g + 5s5p2 + 5s5p4f) transition
arrays. These two last works enabled the determination of 64 odd levels and 35 even levels in
La IX. Finally, Ryabtsev et al. (2002) analyzed the spectrum of La X listing 140 lines between
117 – 801 Å as being due to transitions from the 5s2, 5p2, 4f5p, 5s5d and 5s6s even config-
urations to the 5s5p, 5s6p, 5s5f, 5p5d, 4f5s and 4f5d odd configurations. This work allowed
them to classify 24 and 40 energy levels in even- and odd-parities, respectively, confirming and
extending the earlier study of Gayasov et al. (1999). Concerning the radiative decay rates for
electric dipole transitions in those lanthanum ions, very few results were published so far. Only
results for La IX and La X were published. In order to obtain radiative data as reliable as pos-
sible for those ions, we calculated atomic data for lanthanum ions using the three theoretical
methods described in the previous chapter. After a comparison with the experimental data, a
cross-check between the calculated data from these theoretical methods is done to assess the
agreement between them.

We first used the pseudo-relativistic Hartree-Fock method described by Cowan (1981) to cal-
culate the atomic structure and the radiative parameters. We do not include core-polarization
(CPOL) effects in this work since we showed in Deprince et al. (2023) for uranium ions (U
II and U III, which are analogous to the lanthanide ions Nd II and Nd III), that the opacity
is lowered by a few percents in average as a result of the oscillator strength lowering due to
core-polarization effects. As the lanthanide ions are similar to the actinides due to their com-
plex configurations (actinides and lanthanides are characterized by a 5f and 4f unfilled subshell,
respectively), the CPOL effects can be neglected for the ions of interest in this work, namely
lanthanide ions, since these effects do not have a major impact on the opacities (Deprince et al.,
2023). Moreover, CPOL effects becomes less important when the ionization degree is higher
such as for the ions considered in this study.

We used a physical model in which valence-valence correlations are assumed to take place out-
side a Pd-like La XII ionic core. For this purpose, we introduced explicitly in the calculations
the interacting configurations listed in Table 3.1. These configurations were chosen so that the
most important valence-valence correlations outside the 4d10 subshell were considered.

While the spin-orbit parameters (ζnl), calculated by the Blume-Watson method, were main-
tained at their ab initio values as advised by Cowan (1981), the radial Slater integrals corre-
sponding to direct electrostatic interactions (F k), exchange electrostatic interactions (Gk), and
configuration interactions (Rk) were arbitrarily scaled down by a factor 0.90. In fact, Cowan
(1981) proved that this process made it possible to artificially account for the impact of config-
urations that were not explicitly considered in the calculations in order to reduce the differences
between the experimental energy levels, when known, and the calculated eigenvalues of the
Hamiltonian.
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Table 3.1: Configurations introduced in HFR calculations for La V–X ions.

La V La VI La VII La VIII La IX La X
Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p5 5s25p4 5s25p3 5s25p2 5s25p 5s2

5s25p46p 5s25p36p 5s25p26p 5s25p6p 5s26p 5s5d
5s25p47p 5s25p37p 5s25p27p 5s25p7p 5s27p 5s6d
5s25p48p 5s25p38p 5s25p28p 5s25p8p 5s28p 5s7d
5s25p44f 5s25p34f 5s25p24f 5s25p4f 5s24f 5s8d
5s25p45f 5s25p35f 5s25p25f 5s25p5f 5s25f 5s6s
5s25p46f 5s25p36f 5s25p26f 5s25p6f 5s26f 5s7s
5s25p47f 5s25p37f 5s25p27f 5s25p7f 5s27f 5s8s
5s25p48f 5s25p38f 5s25p28f 5s25p8f 5s28f 5s5g
5s25p34f2 5s25p24f2 5s25p4f2 5s24f2 5s5p5d 5s6g
5s25p35d2 5s25p25d2 5s25p5d2 5s25d2 5s5p6d 5s7g
5s25p36s2 5s25p26s2 5s25p6s2 5s26s2 5s5p7d 5s8g
5s25p35d6s 5s25p25d6s 5s25p5d6s 5s25d6s 5s5p8d 5p2

5s5p55d 5s5p45d 5s5p35d 5s5p25d 5s5p6s 5d2

5s5p56d 5s5p46d 5s5p36d 5s5p26d 5s5p7s 4f2

5s5p57d 5s5p47d 5s5p37d 5s5p27d 5s5p8s 5p6p
5s5p58d 5s5p48d 5s5p38d 5s5p28d 5s4f5d 5p7p
5s5p56s 5s5p46s 5s5p36s 5s5p26s 5s4f6d 5p8p
5s5p57s 5s5p47s 5s5p37s 5s5p27s 5s4f7d 5p4f
5s5p58s 5s5p48s 5s5p38s 5s5p28s 5s4f8d 5p6f
5s5p44f5d 5s5p34f5d 5s5p24f5d 5s5p4f5d 5s4f6s 5p7f
5s5p44f6d 5s5p34f6d 5s5p24f6d 5s5p4f6d 5s4f7s 5p8f
5s5p44f7d 5s5p34f7d 5s5p24f7d 5s5p4f7d 5s4f8s 4f6p
5s5p44f8d 5s5p34f8d 5s5p24f8d 5s5p4f8d 5p3 4f7p
5s5p44f6s 5s5p34f6s 5s5p24f6s 5s5p4f6s 4f3 4f8p
5s5p44f7s 5s5p34f7s 5s5p24f7s 5s5p4f7s 5p4f2

5s5p44f8s 5s5p34f8s 5s5p24f8s 5s5p4f8s 5p24f
5p44f3 5p6 5p5 5p4

5p54f2 5p44f2 5p24f3 5p4f3

5p64f 5p54f 5p34f2 5p24f2

5p44f 5p34f
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p46s 5s25p36s 5s25p26s 5s25p6s 5s26s 5s5p
5s25p47s 5s25p37s 5s25p27s 5s25p7s 5s27s 5s6p
5s25p48s 5s25p38s 5s25p38s 5s25p8s 5s28s 5s7p
5s25p45d 5s25p35d 5s25p25d 5s25p5d 5s25d 5s8p
5s25p46d 5s25p36d 5s25p26d 5s25p6d 5s26d 5s4f
5s25p47d 5s25p37d 5s25p27d 5s25p7d 5s27d 5s5f
5s25p48d 5s25p38d 5s25p28d 5s25p8d 5s28d 5s6f
5s25p45g 5s25p35g 5s25p25g 5s25p5g 5s25g 5s7f
5s25p46g 5s25p36g 5s25p26g 5s25p6g 5s26g 5s8f
5s25p47g 5s25p37g 5s25p27g 5s25p7g 5s27g 5p5d
5s25p48g 5s25p38g 5s25p28g 5s25p8g 5s28g 5p6d
5s25p34f5d 5s25p24f5d 5s25p4f5d 5s24f5d 5s5p2 5p7d
5s25p34f6s 5s25p24f6s 5s25p4f6s 5s24f6s 5s5p6p 5p8d
5s5p6 5s5p5 5s5p4 5s5p3 5s5p7p 5p6s
5s5p56p 5s5p46p 5s5p36p 5s5p26p 5s5p8p 5p7s
5s5p57p 5s5p47p 5s5p37p 5s5p27p 5s5p4f 5p8s
5s5p58p 5s5p48p 5s5p38p 5s5p28p 5s5p5f 4f5d
5s5p54f 5s5p44f 5s5p34f 5s5p24f 5s5p6f 4f6d
5s5p55f 5s5p45f 5s5p35f 5s5p25f 5s5p7f 4f7d
5s5p56f 5s5p46f 5s5p36f 5s5p26f 5s5p8f 4f8d
5s5p57f 5s5p47f 5s5p37f 5s5p27f 5s4f2 4f6s
5s5p58f 5s5p48f 5s5p38f 5s5p28f 5s4f6p 4f7s
5s5p44f2 5s5p34f2 5s5p24f2 5s5p4f2 5s4f7p 4f8s
5s5p44f6p 5s5p34f6p 5s5p24f6p 5s5p4f6p 5s4f8p
5s5p44f7p 5s5p34f7p 5s5p24f7p 5s5p4f7p 5p25d
5s5p44f8p 5s5p34f8p 5s5p24f8p 5s5p4f8p 4f25d
5p65d 5p55d 5p45d 5p35d 5p4f5d
5p44f25d 5p44f5d 5p24f25d 5p4f25d
5p54f5d 5p34f5d 5p24f5d
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Table 3.2 gives a summary of the number of levels and lines obtained with HFR method. An
information about the ionization potential (IP) taken from the NIST database (Kramida et al.,
2024) is also given since the HFR levels retained for the opacity computation were selected
below this limit.

Table 3.2: Number of levels and transitions obtained in HFR calculations for La V–X ions. The ionization
potentials are also given for each ion.

Ion Number of levelsa Number of linesb IP (cm−1)c

La V 7 826 308 724 497 000
La VI 7 694 738 090 597 000
La VII 8 298 818 233 710 000
La VIII 3 974 749 088 847 000
La IX 1 001 86 088 960 000
La X 380 17 024 1 221 300
a Total number of levels considered in HFR calculations.
b Total number of transitions involving energy levels below

the IP with HFR calculated log(gf )–values ≥ -5.
c Ionization potential taken from NIST (Kramida et al., 2024).

To evaluate the precision of the HFR atomic structure calculations, a preliminary analysis was
conducted by comparing the results with existing experimental data. More specifically, when
the computed wavelengths were compared to those measured by Epstein and Reader (1976) for
La V, by Gayasov et al. (1997) for La VI, by Gayasov et al. (1998) for La VII, by Tauheed et al.
(2008) for La VIII, by Gayasov and Joshi (1998) and Churilov and Joshi (2001) for La IX and
by Ryabtsev et al. (2002) for La X, we found a good overall agreement, for which the average
differences ∆λ/λobs (with ∆λ= λHFR − λobs) were respectively equal to -0.055 ± 0.035 (La V),
-0.054 ± 0.032 (La VI ), -0.042 ± 0.018 (La VII), -0.037 ± 0.041 (La VIII), -0.010 ± 0.033 (La
IX), and 0.005 ± 0.020 (La X). Figure 3.1 presents a comprehensive comparison between HFR
calculations and the available experimental wavelengths for all the lanthanum ions examined in
this section.
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Figure 3.1: Deviation between HFR and observed wavelengths, ∆λ/λobs (with ∆λ = λHFR − λobs) as
a function of λHFR for spectral lines in La V–X ions. Experimental wavelengths are from Epstein and
Reader (1976) for La V, by Gayasov et al. (1997) for La VI, by Gayasov et al. (1998) for La VII, by
Tauheed et al. (2008) for La VIII, by Gayasov and Joshi (1998) and Churilov and Joshi (2001) for La IX
and by Ryabtsev et al. (2002) for La X.

The second method used to obtain the radiative parameters is the fully-relativistic Multi-
Configuration Dirac-Hartree-Fock (MCDHF) method described by Grant (2007) imple-
mented in the latest version of GRASP (General Relativistic Atomic Structure Program), i.e.
GRASP2018 (Froese Fischer et al., 2019). For each of the lanthanum ions, a multi-reference
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(MR) of spectroscopic configurations (representing physical orbitals directly involved in the
transitions studied) was chosen. Then, different physical models were implemented in order
to optimize the wavefunctions and the corresponding energy levels by gradually increasing the
basis of configuration state functions (CSFs), thus taking into account more correlations. From
this MR, the valence-valence (VV) and core-valence (CV) interactions were progressively built
by adding single and double (SD) excitations to an active set of correlation orbitals (providing
corrections to spectroscopic orbitals due to electronic correlations), as outlined in Table 3.3.
In this table and from now on, the sets of active orbitals are denoted ns, n′p, n′′d,... where n,
n′, n′′,... are the maximum principal quantum numbers considered for each azimuthal quantum
number l. In the case of La V–IX, orbitals 1s to 5p were optimized on the 5s25pk (k = 1–5)
ground configuration while the 4f and 5d orbitals were optimized using the MR configurations,
keeping all other orbitals fixed. For La X, orbitals 1s to 5s were optimized on the 5s2 ground
configuration while the 5p, 5d and 4f orbitals were optimized on the MR. In the VV steps, only
the new orbitals introduced (i.e. correlations orbitals) were optimized, the other ones being
kept to their values obtained before. Finally, from the last valence-valence calculation (VV3),
a CV model was built by adding SD excitations from the 4d core orbital to the VV1 valence
orbitals, namely 5s, 5p, 5d, 5f and 5g. This last strategy led to extensive computations, as the
total count of J–dependent configuration state functions (CSFs) ranged from several hundred
thousand (La X) to more than four million (La V) when considering both parities together, as
indicated in Table 3.3.

Table 3.3: Computational strategies used in MCDHF calculations for La V–X ions.

Calculation La V La VI La VII La VIII La IX La X
MR Odd parity Even parity Odd parity Even parity Odd parity Even parity

5s25p5 5s25p4 5s25p3 5s25p2 5s25p 5s2

5s25p44f 5s25p34f 5s25p24f 5s25p4f 5s24f 5p2

5s25p34f2 5s25p24f2 5s25p4f2 5s24f2 5s5p5d 5p4f
5p24f 5s5d
5p4f2

5p3

Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s5p6 5s5p5 5s5p4 5s5p3 5s5p2 5s5p
5s5p54f 5s5p44f 5s5p34f 5s5p24f 5s5p4f 5s4f
5s25p45d 5s25p35d 5s25p25d 5s25p5d 5s25d 4f5d

5s4f2 5p5d
VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
VV3 {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g}
CV {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
CSFs 4 389 357 3 707 264 2 084 541 839 430 1 222 461 271 640

A comparison of our MCDHF energy level values obtained in CV models with available
experimental energy levels revealed a good agreement, the mean deviation ∆E/Eexp (with
∆E = EMCDHF − Eexp) being found to be equal to 0.016 ± 0.005 (La V), 0.012 ± 0.019 (La
VI), 0.020 ± 0.014 (La VII), -0.003 ± 0.021 (La VIII), -0.001 ± 0.011 (La IX), and 0.048 ±
0.050 (La X) when considering the experimental data reported by Epstein and Reader (1976),
Gayasov et al. (1997, 1998), Tauheed et al. (2008), Gayasov and Joshi (1998), Churilov and
Joshi (2001) and Ryabtsev et al. (2002).

The last theoretical method used was the Particule-Hole Configuration Interaction (PH-CI)
method (Berengut and Flambaum, 2006) as implemented in the AMBiT package (Kahl and
Berengut, 2019). This method was used for three specific ions, namely La V, La VIII and La X
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in order to determinate their radiative parameters and to benchmark the theoretical results ob-
tained with HFR and MCDHF methods. Actually, the emu CI approximation (Geddes et al.,
2018) as coded in the AMBiT package was further used to reduce the size of the problem with-
out much loss of accuracy, as the size of the matrices were too big using the PH-CI approach
for such ions.

In terms of AMBiT computations, they were predicated on the properties of the experimental
energy levels that have been reported in the literature. Table 3.4 summarizes the various com-
putational strategies that were used for the three ions in order to perform these calculations.
The QED and Breit interactions were taken into account in all of the computations. In La V, the
core spin-orbitals and the frozen core potential V Ncore(r) were generated by solving the Dirac–
Hartree–Fock (DHF) equations for the Cd-like ground configurations [Pd]5s2 consisting in 48
electrons. The valence orbitals were determined by diagonalizing a set of B-splines using the
DHF hamiltonian with the abovementioned frozen core potential. The emu CI expansions with
symmetries as Jπ = 1/2even–5/2even, 1/2odd–3/2odd were obtained by considering, for the large
side, the single and double (SD) electron and hole excitations from the leading configurations,
listed in Table 3.4, in which nl−k stands for k holes in the nl shell to an active set of orbitals
considered as correlations orbitals {12s, 12p, 12d, 12f, 12g}. All the core orbitals lower than 5s
were considered as inactive orbitals. For the small side, the active set of orbitals were reduced
to {6s, 6p, 6d, 6f, 6g}. The dimensions (N ) related to the large and small side are also given in
the Table 3.4.

Regarding La VIII, the DHF equations were solved in a first step for the ground configuration
of the Cd-like La X system, i.e. [Pd]5s2, with 48 electrons in order to obtain the core orbitals.
Then, this allowed to build the core electron potential V Ncore(r) and to solve the frozen core
DHF equations for the valence orbitals. The 57-electron wavefunction expansions in the emu
CI step with symmetries as Jπ = 0even–2even, 0odd–3odd were produced by taking into account,
on the large side, all single and double electron and hole excitations from the leading config-
urations listed in Table 3.4 to the {22s, 22p, 22d, 22f, 22g} active set, while maintaining the
inactive status of all core orbitals below 5s. The double electron and hole excitations were lim-
ited to the {12s, 12p, 12d, 12f, 12g} active set for the small side.

Lastly, the strategy for La X was the same as to the one used for La VIII, the leading configura-
tions (as it can be seen in Table 3.4) and the multi-electron wavefunction symmetries being the
only modifications. The latter being such that Jπ = 0even–5even, 0odd–6odd.

For each ion, the E1 line strengths, were calculated in the Babushkin gauge with photon fre-
quencies ω = 0 (i.e. in the non-relativistic limit) using our AMBiT models for the observed
transitions reported by Epstein and Reader (1976), Tauheed et al. (2008) and Ryabtsev et al.
(2002). The corresponding weighted oscillator strengths, gf , were determined afterward from
the AMBiT S-values using the formula given below (Cowan, 1981) :

gf = 3.0376× 10−6 σ S, (3.1.1)

where σ is the wavenumber (cm−1) of the E1 transition as deduced from the AMBiT eigenvalues
and S is the line strength (a.u).
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Table 3.4: Computational strategies used in emu CI calculations for La V, La VIII and La X ions.

Ions La V La VIII La X
Leading configurations 5p5 5p2 5s−0

5s−15p6 5s−15p3 5s−15p
5p44f 5s−14f
5p45d
5p46s

Active setlarge side {12s, 12p, 12d, 12f, 12g} {22s, 22p, 22d, 22f, 22g} {22s, 22p, 22d, 22f, 22g}
Active setsmall side {6s, 6p, 6d, 6f, 6g} {12s, 12p, 12d, 12f, 12g} {12s, 12p, 12d, 12f, 12g}
Nlarge 3 959 094 611 676 49 763
Nsmall 52 571 424 386 34 863

Concerning La V, the relative differences, ∆E = (Ecalculated − Eexp)/Eexp, with respect to the
experimental energy levels published by Epstein and Reader (1976) ranged from less than −4%
to 3% with an average of −0.4% and a standard deviation of 1.4%. For La VIII, the relative dif-
ferences, ∆E, between our values and the available experimental energy levels (Tauheed et al.,
2008) ranged from −5% to 4% with an average of 0.05% and a standard deviation of 2.4%.
Finally, for La X, the relative differences with the experimental level energies of Ryabtsev et al.
(2002) ranged from −4% to 2% with an average of −0.6% and a standard deviation of 1.1%.

We found a very good agreement between theoretical energy levels obtained by the three in-
dependent theoretical methods and the experimental energy levels available in the literature for
each lanthanum ion. As these atomic data will be used in the determination of astrophysical
opacities, it is therefore crucial to have the greatest number of spectral lines. The HFR method
gives the highest number of lines compared to the two other theoretical methods since, in the
former, we include much more spectroscopic configurations, i.e. between which transition pa-
rameters are determined. It is, thus, interesting to compare theoretical radiative data (such as
oscillator strengths and transition probabilities) from this theoretical method with experimental
data from the literature. Therefore, in Tables A.1 to A.6 in Appendix A, the HFR transition
probabilities (gA) and oscillator strengths (log(gf )) are listed for all experimentally observed
lines published to date from the papers listed before for each lanthanum ion. We have compared
these values with the gA-values previously calculated by Churilov and Joshi (2001) and Ryabt-
sev et al. (2002) for La IX and La X, respectively and were reported in the Table A.5 and A.6.
Figure 3.2 provides additional illustration of this comparison, showing the ratio gAHFR/gAPrevious

as a function of gAHFR. This figure shows that, although there are some notable discrepancies
(larger than a factor of 2) between the two sets of results, overall agreement is fairly satisfactory.
The average ratios for La IX and La X are 0.800 ± 0.756 and 0.791 ± 0.349, respectively. While
Churilov and Joshi (2001) and Ryabtsev et al. (2002) introduced a limited number of interact-
ing configurations in their HFR calculations respectively for La IX and La X, it is reasonable to
assume that our HFR results are more accurate than those previous published data.
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Figure 3.2: Comparison between HFR transition probabilities (gA) and previously published values for
experimentally observed lines in La IX and La X ions. For each ion, the ratio gAHFR/gAPrevious as a
function of gAHFR is shown. Previous data were taken from Churilov and Joshi (2001) for La IX and
from Ryabtsev et al. (2002) for La X. The solid line corresponds to ratios equal to unity while the dotted
lines correspond to deviations of a factor of 2.

We can also measure the accuracy of our HFR computations in the specific case of 5s2 1S0 - 5s5p
1,3P1 transitions in La X for which Chou and Huang (1992), Curtis et al. (2000), and Biémont
et al. (2000) calculated the radiative parameters. While the transition probabilities computed by
Curtis et al. (2000) and Biémont et al. (2001) using the MCDHF approach show differences of 5-
30 % from our gA–values, the oscillator strengths obtained by Chou and Huang (1992) using the
multi-configuration relativistic random-phase approximation (MCRRPA) method were found
to deviate by 10-25 % from our gf–values. We discovered that these data agreed fairly well
with our conclusions. This is supported by the general good agreement we observed between
the radiative parameters obtained for the entire set of lanthanum ions of interest in our work
using the HFR, MCDHF and emu CI methods as it can be also seen in Table A.7 in Appendix
A. Figures 3.3 and 3.4 display these comparisons. In fact, with reference to Figure 3.3, we
can see that there is a good agreement between these theoretical values, with the majority of
transitions in La V–X ions falling within the range of 30-35 %. In contrast, the mean deviation
was found to be approximately 30 % when comparing HFR with emu CI for transitions in
La V, La VIII, and La X ions as shown in Figure 3.4. However, in the latter, we notice some
larger discrepancies between the different theoretical methods. These relate to a relatively small
number of particular transitions whose line strength was found to be affected by significant
cancellation effects. For instance, in Figure 3.4, it can be noticed, the three points that exhibit
a significant deviation from the diagonal. They correspond to the transitions at λ = 370.024,
411.267 (La VIII), and 564.420 Å (La X) for which our HFR calculations yielded very small CF-
values of 0.003, 0.007, and 0.006, respectively, for the cancellation factor (CF). This suggests
that the corresponding oscillator strengths were likely underestimated and should be used with
caution. Nevertheless, opacity calculations which rely on the global accuracy of the atomic data
used, should remain unchanged.
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Figure 3.3: Comparison between oscillator strengths (log(gf )) computed in this work using HFR and
MCDHF methods for experimentally observed lines in La V–X ions.
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Figure 3.4: Comparison between oscillator strengths (log(gf )) computed in this work using HFR and
emu CI (AMBiT) methods for experimentally observed lines in La V, La VIII and La X ions.

3.1.2 Ce V–X ions
There exists various studies concerning the spectra experimentally observed for cerium ions.

The spectrum of Ce V, has been observed with a sliding-spark discharge and a 10.7 m normal-
incidence vacuum spectrograph. A total of 107 lines have been classified as transitions between
51 energy levels that belong to the configurations 5p6, 5p54f, 5p55d, 5p56s, 5p56p, and 5p56d.
These lines are ranging between 365.661 – 2 518.038 Å and were determined by Wajid et al.
(2021). For Ce VI, 45 lines from 5s25p5 – (5s5p6-5p45d-5p46s) ranging between 311.989 and
743.876 Å were classified by Churilov and Joshi (2000). Concerning Ce VII, the levels of three
configurations, namely 5s25p4 – (5s5p5 + 5p36s) were identified by Tauheed and Joshi (2008)
and also by Wajid and Jabeen (2019a), allowing the identification of 40 lines. Spectrum of Ce
VIII was photographed by Wajid and Jabeen (2019b) using a spark source on a normal incident
spectrograph and studied the ground and first excited configurations of this ions theoretically
and experimentally. In this study, the ground state level of Ce VIII has been established for the
first time. For the theoretical part, they used GRASP2018 package to calculate energy levels,
wavelengths and transition rates for the 5s25p3 and 5s5p4 configurations. They classified 24
lines coming from 13 levels of those configurations. For Ce IX, there is no experimental data
published to date to our knowledge. Finally, the spectra of Ce X was investigated for the first
time by Joshi et al. (2001) who could classified 34 lines in the 225 – 732 Å region coming from
8 odd-parity levels and 17 even-parity levels that belong to the configurations 5s25p, 5s25d,
5s26s, 5s5p2, 4f5s2, 4f5s5p and 5s5p5d.

In this work, atomic data calculations were performed, as for the lanthanum ions, using the
three theoretical methods mentioned before. First, we provide a detailed explanation of the
HFR (Cowan, 1981) computations. For each cerium ion considered in the present study, a large
number of configurations was included in the physical model as listed in Table 3.5
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Table 3.5: Configurations included in HFR calculations for Ce V–X ions.

Ce V Ce VI Ce VII Ce VIII Ce IX Ce X
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p6 5s25p5 5s25p4 5s25p3 5s25p2 5s25p
5s25p56p 5s25p46p 5s25p36p 5s25p26p 5s25p6p 5s26p
5s25p57p 5s25p47p 5s25p37p 5s25p27p 5s25p7p 5s27p
5s25p58p 5s25p48p 5s25p38p 5s25p28p 5s25p8p 5s28p
5s25p54f 5s25p44f 5s25p34f 5s25p24f 5s25p4f 5s24f
5s25p55f 5s25p45f 5s25p35f 5s25p25f 5s25p5f 5s25f
5s25p56f 5s25p46f 5s25p36f 5s25p26f 5s25p6f 5s26f
5s25p57f 5s25p47f 5s25p37f 5s25p27f 5s25p7f 5s27f
5s25p58f 5s25p48f 5s25p38f 5s25p28f 5s25p8f 5s28f
5s25p44f2 5s25p34f2 5s25p24f2 5s25p4f2 5s24f2 5s5p5d
5s25p45d2 5s25p35d2 5s25p25d2 5s25p5d2 5s25d2 5s5p6d
5s25p46s2 5s25p36s2 5s25p26s2 5s25p6s2 5s26s2 5s5p7d
5s25p45d6s 5s25p35d6s 5s25p25d6s 5s25p5d6s 5s25d6s 5s5p8d
5s5p65d 5s5p55d 5s5p45d 5s5p35d 5s5p25d 5s5p6s
5s5p66d 5s5p56d 5s5p46d 5s5p36d 5s5p26d 5s5p7s
5s5p67d 5s5p57d 5s5p47d 5s5p37d 5s5p27d 5s5p8s
5s5p68d 5s5p58d 5s5p48d 5s5p38d 5s5p28d 5s4f5d
5s5p66s 5s5p56s 5s5p46s 5s5p36s 5s5p26s 5s4f6d
5s5p67s 5s5p57s 5s5p47s 5s5p37s 5s5p27s 5s4f7d
5s5p68s 5s5p58s 5s5p48s 5s5p38s 5s5p28s 5s4f8d
5s5p54f5d 5s5p44f5d 5s5p34f5d 5s5p24f5d 5s5p4f5d 5s4f6s
5s5p54f6d 5s5p44f6d 5s5p34f6d 5s5p24f6d 5s5p4f6d 5s4f7s
5s5p54f7d 5s5p44f7d 5s5p34f7d 5s5p24f7d 5s5p4f7d 5s4f8s
5s5p54f8d 5s5p44f8d 5s5p34f8d 5s5p24f8d 5s5p4f8d 5p3

5s5p54f6s 5s5p44f6s 5s5p34f6s 5s5p24f6s 5s5p4f6s 4f3

5s5p54f7s 5s5p44f7s 5s5p34f7s 5s5p24f7s 5s5p4f7s 5p4f2

5s5p54f8s 5s5p44f8s 5s5p34f8s 5s5p24f8s 5s5p4f8s 5p24f
5p54f3 5p44f3 5p6 5p5 5p4

5p64f2 5p54f2 5p44f2 5p24f3 5p4f3

5p64f 5p54f 5p34f2 5p24f2

5p44f 5p34f
Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p56s 5s25p46s 5s25p36s 5s25p26s 5s25p6s 5s26s
5s25p57s 5s25p47s 5s25p37s 5s25p27s 5s25p7s 5s27s
5s25p58s 5s25p48s 5s25p38s 5s25p38s 5s25p8s 5s28s
5s25p55d 5s25p45d 5s25p35d 5s25p25d 5s25p5d 5s25d
5s25p56d 5s25p46d 5s25p36d 5s25p26d 5s25p6d 5s26d
5s25p57d 5s25p47d 5s25p37d 5s25p27d 5s25p7d 5s27d
5s25p58d 5s25p48d 5s25p38d 5s25p28d 5s25p8d 5s28d
5s25p55g 5s25p45g 5s25p35g 5s25p25g 5s25p5g 5s25g
5s25p56g 5s25p46g 5s25p36g 5s25p26g 5s25p6g 5s26g
5s25p57g 5s25p47g 5s25p37g 5s25p27g 5s25p7g 5s27g
5s25p58g 5s25p48g 5s25p38g 5s25p28g 5s25p8g 5s28g
5s25p44f5d 5s25p34f5d 5s25p24f5d 5s25p4f5d 5s24f5d 5s5p2

5s25p44f6s 5s25p34f6s 5s25p24f6s 5s25p4f6s 5s24f6s 5s5p6p
5s5p66p 5s5p6 5s5p5 5s5p4 5s5p3 5s5p7p
5s5p67p 5s5p56p 5s5p46p 5s5p36p 5s5p26p 5s5p8p
5s5p68p 5s5p57p 5s5p47p 5s5p37p 5s5p27p 5s5p4f
5s5p64f 5s5p58p 5s5p48p 5s5p38p 5s5p28p 5s5p5f
5s5p65f 5s5p54f 5s5p44f 5s5p34f 5s5p24f 5s5p6f
5s5p66f 5s5p55f 5s5p45f 5s5p35f 5s5p25f 5s5p7f
5s5p67f 5s5p56f 5s5p46f 5s5p36f 5s5p26f 5s5p8f
5s5p68f 5s5p57f 5s5p47f 5s5p37f 5s5p27f 5s4f2

5s5p54f2 5s5p58f 5s5p48f 5s5p38f 5s5p28f 5s4f6p
5s5p54f6p 5s5p44f2 5s5p34f2 5s5p24f2 5s5p4f2 5s4f7p
5s5p54f7p 5s5p44f6p 5s5p34f6p 5s5p24f6p 5s5p4f6p 5s4f8p
5s5p54f8p 5s5p44f7p 5s5p34f7p 5s5p24f7p 5s5p4f7p 5p25d
5p54f25d 5s5p44f8p 5s5p34f8p 5s5p24f8p 5s5p4f8p 4f25d
5p64f5d 5p65d 5p55d 5p45d 5p35d 5p4f5d

5p44f25d 5p44f5d 5p24f25d 5p4f25d
5p54f5d 5p34f5d 5p24f5d
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Table 3.6 summarizes the number of levels and transitions obtained using this method consid-
ered in opacity calculations. IP from NIST database (Kramida et al., 2024) are also mentioned
since the calculated levels selected for opacity calculations are below those IPs.

Table 3.6: Ionization potentials, number of levels and number of spectral lines included in the opacity
calculations for Ce V–X ions.

Ion Number of levelsa IP (cm−1)b Number of linesc

Ce V 3 444 528 700 131 248
Ce VI 7 826 626 000 657 090
Ce VII 7 694 734 000 918 542
Ce VIII 8 298 855 000 1 113 548
Ce IX 3 974 1 008 000 834 383
Ce X 1 001 1 129 000 99 259
a Total number of HFR levels considered in opacity calcula-

tions
b Ionization potential from NIST atomic database (Kramida

et al., 2024)
c Total number of transitions involving energy levels below the

IP with HFR calculated log(gf )–values ≥ -5.

One way to assess the accuracy of the atomic structures obtained using the HFR method is to
look at the good overall agreement (to within a few percent) between the wavelengths measured
in the laboratory and those calculated. Indeed, it was found that the average relative difference
∆λ/λObs (with ∆λ = λHFR − λObs) was equal to 0.028 ± 0.081 (Ce V), -0.063 ± 0.023 (Ce VI),
-0.044 ± 0.019 (Ce VII), -0.034 ± 0.045 (Ce VIII) and -0.011 ± 0.015 (Ce X) when consider-
ing the experimental wavelengths published by Churilov and Joshi (2000), Joshi et al. (2001),
Tauheed and Joshi (2008), Wajid and Jabeen (2019a,b) and Wajid et al. (2021). It is however in-
teresting to note that the biggest deviations (roughly 25%) were found for a small number of Ce
V lines between 507 and 537 Å. These lines were all related to 5s25p54f – 5s5p64f transitions,
for which it was exceedingly difficult to theoretically reproduce the observed wavelengths. This
was primarily because both configurations involved in these transitions seemed to be heavily in-
fluenced by other configurations, 5s25p6, 5s25p44f2, 5s25p45d2, 5s5p65d, 5s5p54f5d, 5p54f3 for
the lower even-parity one, and 5s25p55d, 5s25p44f5d, 5s5p54f2, 5p54f25d, 5p64f5d for the up-
per odd-parity one. Figure 3.5 presents a comprehensive comparison of HFR with available
experimental wavelengths for all cerium ions taken into consideration in this work.
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Figure 3.5: Deviation between HFR and observed wavelengths, ∆λ/λObs (with ∆λ = λHFR − λObs) as
a function of λHFR for spectral lines in Ce V, Ce VI, Ce VII, Ce VIII and Ce X ions.

We also used the two other independent theoretical approaches, the purely relativistic Multi-
Configuration Dirac-Hartree-Fock (MCDHF) (Grant, 2007) and the Particle-Hole Configuration
Interaction (PH-CI) (Berengut, 2016) methods, as for La ions, to further evaluate the accuracy
of the HFR results. More specifically, the radiative parameters and atomic structures of three
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distinct cerium ions (Ce V, Ce VIII, and Ce X) were determined using those techniques.

Concerning the MCDHF method, for each cerium ion, a MR of spectroscopic configurations
was chosen. From this MR, as for La ions, we built VV and CV interactions by adding progres-
sively SD excitations as summarized in Table 3.7. In the case of Ce V, orbitals 1s to 5p were
optimized on the 5s25p6 ground configuration while the 4f and 5d orbitals were optimized using
the MR configurations, keeping all other orbitals fixed. A first valence-valence model (VV1)
was built by adding to the MR configurations, single and double (SD) excitations from 5s, 5p,
5d and 4f to VV1 active orbitals. In this step, only the new orbitals, 5f and 5g, were optimized,
the other ones being kept to their values obtained before. The same strategy was used to build
a more elaborate VV model, namely VV2, by considering the additional set of 6s, 6p, 6d, 6f
and 5g active orbitals. From the latter calculation, a CV model was then built by adding SD
excitations from the 4d core orbital to the MR valence orbitals, namely 5s, 5p, 5d, and 4f. This
gave rise to a total of 862 213 and 675 385 J-dependent configuration state functions for the
even- and odd-parities, respectively.

For Ce VIII, VV and CV models were then built using exactly the same strategy as the one fol-
lowed in the case of Ce V. CV computations lead to the consideration of 328 029 and 716 638
configuration state functions in the calculations within the odd- and even-parities, respectively.

Finally, for Ce X, configurations listed in Table 3.7 were considered to build the MR. From this
MR, the above mentioned VV1 and VV2 models were added by a VV3 model in which the
active set included 7s, 7p, 7d, 6f and 5g orbitals. From the latter VV3 model, CV calculations
were then carried out by allowing SD excitations from the 4d core orbital to 5s, 5p, 5d, 4f,
5f and 5g, giving rise to 849 798 and 372 663 configuration state functions in the odd- and
even-parities, respectively.

Table 3.7: Computational strategies used in MCDHF calculations for Ce V, Ce VIII and Ce X ions.

Calculation Ce V Ce VIII Ce X
MR Even parity Odd parity Odd parity

5s25p6 5s25p3 5s25p
5s25p54f 5s25p24f 5s24f
5s25p44f2 5s25p4f2 5s5p5d
5s5p65d 5p5 5p24f
5p64f2 5s5p35d 5p4f2

5p44f 5p3

Odd parity Even parity Even parity
5s5p64f 5s5p4 5s5p2

5s25p55d 5s5p34f 5s5p4f
5s5p54f2 5s25p25d 5s25d

5s5p24f2 5s4f2

VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
VV3 {7s,7p,7d,6f,5g}
CV {5s,5p,5d,4f} {5s,5p,5d,4f} {5s,5p,5d,5f,5g}
CSFs 1 537 598 1 044 667 1 222 461
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The mean deviation ∆E/Eexp was found to be equal to 0.059 ± 0.049 (Ce V), -0.012 ± 0.014
(Ce VIII), and -0.001 ± 0.015 (Ce X) when taking into account the experimental data reported
by Wajid et al. (2021), Wajid and Jabeen (2019b), and Joshi et al. (2001), respectively. This
comparison between our MCDHF energy level values obtained in CV models and available ex-
perimental energy levels revealed a good agreement.

Finally, we applied the PH-CI method and more particularly the emu CI approach (Geddes
et al., 2018) in order to calculate the atomic data for Ce ions. Calculations have primarily fo-
cused on the characteristics of the experimental energy levels reported in the literature as listed
in the beginning of this section. In all the calculations for each cerium ion, the Breit and QED
interactions have been included.

In order to perform emu CI calculations, different computation strategies have been employed
for the three ions. A model similar to the one used for Ne-like Fe XVI by Kuhn et al. (2020)
has been applied to Ce V. Specifically, the DHF equations for the Xe-like ground configurations
[Pd] 5s25p6 with 54 electrons have been solved, yielding the core spin-orbitals and the frozen
core potential V Ncore(r). By diagonalizing a set of B-splines with the aforementioned frozen
core potential and the DHF hamiltonian, the valence orbitals have been determined. The emu
CI expansions with symmetries as Jπ = 0even–5even, 0odd–4odd have been obtained by considering
for the large side the SD electron and hole excitations from this leading configurations, namely
5p6, 5p−14f, 5p−15d, 5p−16s, 5p−16p, 5p−16d to the active set of orbitals {10s, 10p, 10d, 10f,
10g} with all the core orbitals lower than 5s inactive, i.e. 5s to 10s, 5p to 10p, 5d to 10d, 4f to
10f and 5g to 10g. For the small side, the active set of orbitals were reduced to {6s, 6p, 6d, 6f,
6g}, SD electron only excitations have been considered and the leading configurations set were
extended by adding 5p−24f2, 5s−15p−14f2, 5s−24f2, 5p−24f5d, 5s−15p−14f5d, 5s−24f5d. The
resulting emu CI matrix dimensions were N = 6 651 739 for the large side and Nsmall = 13 819
for the small side. Wajid et al. (2021) published experimental energy levels that have agree-
ments ranging from less than 1% to 2%, with the exception of the 5p−14f even levels, where
the agreements were around 8 %.

Concerning Ce VIII, the DHF equations have been solved with 48 electrons in order to obtain
the core orbitals for the ground configuration of the Cd-like Ce XI system, i.e. [Pd]5s2. This
allowed us to solve the frozen core DHF equations for the valence orbitals and construct the
core electron potential V Ncore(r) in a second step. The 51-electron wavefunction expansions in
the emu CI step with symmetries as Jπ = 1/2even–5/2even, 1/2odd–5/2odd were produced by taking
into account, for the large side, all SD electron and hole excitations from the 5p2 and 5s−15p3

leading configurations to {22s, 22p, 22d, 22f, 22g} maintaining all core orbitals below 5s as
inactive. For the small side, the double electron and hole excitations have been restricted to
the {12s, 12p, 12d, 12f, 12g} active set. For the large side, the corresponding dimensions were
N = 1 146 875, and for the small side, they wereNsmall = 513 545. Our eigenvalues differed by
less than 1% to 2.4% from the available experimental energy levels (Wajid and Jabeen, 2019b).

Lastly, the approach for Ce X was essentially the same as the one for Ce VIII, with the ex-
ception of the multielectron wavefunction symmetries and leading configurations. These were
respectively 5p, 5s−15p2 and 4f with symmetries such as Jπ = 1/2even–9/2even, 1/2odd–7/2odd. The
dimensions of the emu CI large and small sides were N = 577 246 and Nsmall = 53 973, re-
spectively. The level energies were in accordance with the experimental ones from Joshi et al.
(2001) and ranged from less than 1% to 5%, except for the 4f 2F0

5/2,7/2 doublet, where it was



Atomic structures for moderately-charged lanthanides from Z = 57 to 71 67

roughly 19%.

At this stage, atomic data calculations were performed and energy levels were compared be-
tween these three independent theoretical methods and the data available in the literature. As
we mentioned earlier, HFR method gave the greatest number of lines compared to the two other
theoretical methods as we included much more spectroscopic configurations. It is, thus, inter-
esting, such as for the La ions, to compare theoretical wavelengths and radiative data from HFR
method such as oscillator strengths and transitions probabilities with experimental data from
the literature when they are available.

Tables B.1 to B.5 in Appendix B contain a summary of the oscillator strengths (log(gf )) and
transition probabilities (gA) obtained by the HFR theoretical approach for all experimentally
observed lines in Ce V, Ce VI, Ce VII, Ce VIII, and Ce X. When available, we also include
previously published data for gA- and/or log(gf )-values in the same tables. These data were
taken from the works of Wajid et al. (2021) for Ce V, Churilov and Joshi (2000) for Ce VI,
Wajid and Jabeen (2019a) for Ce VII, Wajid and Jabeen (2019b) for Ce VIII, and Joshi et al.
(2001) for Ce X. The comparison between both sets of results is illustrated in Figure 3.6 where
the ratio gAHFR/gAPrevious is shown as a function of gAHFR for all the experimentally observed
lines in cerium ions. Examining this figure reveals that for the vast majority of the transitions
in each ion, there is a reasonably good overall agreement (within a factor of two). Upon closer
examination, we found that, in the case of Ce VII, Ce VIII, and Ce X ions, there is a much better
agreement (of the order of 25% on average with a much smaller dispersion in the discrepancies).
This can be explained by the fact that our HFR calculations for Ce V and Ce VI ions were based
on far more complex physical models than the theoretical studies previously published by Wajid
et al. (2021) and Churilov and Joshi (2000), who included fewer interacting configurations in
their HFR calculations. However, the radiative parameters for Ce VII, Ce VIII, and Ce X
ions, as reported by Wajid and Jabeen (2019a), Wajid and Jabeen (2019b) and Joshi et al.
(2001), were derived from more comprehensive theoretical frameworks. Indeed, Wajid and
Jabeen employed the purely relativistic multi-configurational Dirac-Fock (MCDF) method in
the cases of Ce VII and Ce VIII, accounting for numerous valence-valence and core-valence
interactions up to n= 8 from the MR 5s25p4, 5s5p5 and 5s25p3, 5s5p4, 5s25p25d, and 5s25p26s,
respectively. Joshi et al. (2001) used a less comprehensive set of HFR calculations for Ce
X, but even so, by including 13 odd-parity and 12 even-parity configurations in their model,
they were able to account for the most significant valence-valence correlation effects. This ion,
with a 5s25p ground configuration, has a simpler electronic structure than those that characterize
lower ionization stages of cerium atoms. Therefore, we can draw the conclusion that our work’s
oscillator strengths and transition probabilities using the HFR method agree better with the few
most trustworthy results that have been published in the past for cerium ions of interest.
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Figure 3.6: Comparison between HFR transition probabilities (gA) and previously published values for
experimentally observed lines in Ce V, Ce VI, Ce VII, Ce VIII and Ce X ions. For each ion, the ratio
gAHFR / gAPrevious is shown as a function of gAHFR. The dashed lines correspond to ratios equal to unity
while the dotted lines correspond to deviations of a factor of two.

In order to assess the precision of our HFR computations, we additionally compared them with
the radiative parameters that we obtained through our research by employing the MCDHF and
AMBiT approaches for Ce V, Ce VIII, and Ce X ions. For experimentally observed lines in these
ions, such comparisons are reported in Table B.6 in Appendix B. Figures 3.7 and 3.8, which
show our log(gf )-values computed with HFR as a function of the ones obtained with MCDHF
and emu CI (AMBiT), respectively, further illustrate these comparisons. Upon examining this
table and these two figures, it is interesting to note that there is a strong agreement between the
three theoretical approaches. In particular, when comparing the HFR gf -values for the entire set
of transitions listed in Table B.6 to the MCDHF and AMBiT results, we found that, they show
relative differences of roughly 40% and 35% on average respectively. If we limit our analysis to
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the most intense lines with log(gf ) ≥ -2, these deviations drop to 35% and 30%, respectively.
Based on all of these factors, we can conclude that the radiative parameters, computed with
HFR method, obtained in this work constitute a trustworthy data set that we can use to calculate
the opacity of interest when modeling kilonova spectra.

Figure 3.7: Comparison between oscillator strengths (log(gf )) computed in this work using HFR and
MCDHF methods for experimentally observed lines in Ce V, Ce VIII and Ce X ions.

Figure 3.8: Comparison between oscillator strengths (log(gf )) computed in this work using HFR and
emu CI (AMBiT) methods for experimentally observed lines in Ce V, Ce VIII and Ce X ions.
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3.1.3 Pr V–X ions
Concerning experimental considerations for moderately-charged Pr ions, spectral lines and

energy levels were only reported for Pr V and Pr X. More specifically, in the case of Pr V, 12
transitions were classified in the region 840 – 2 250 Å by Kaufman and Sugar (1967), which
enabled to identify the 8 levels belonging to the 5p64f, 5p65d, 5p66s, 5p66p and 5p67s config-
urations. Regarding Pr X, Bekker et al. (2019) measured optical inter-configuration lines using
the Heidelberg electron beam ion trap (HD-EBIT), identifying the 5p–4f orbital crossing and,
as a result, determining the frequency of 5p2 3P0 – 5p4f 3G0 clock transition with enough accu-
racy for ultra-high resolution quantum-logic spectroscopy. The experimental determination of
15 energy levels was made possible by the observation of 22 forbidden lines in the 5p2 and 5p4f
configurations in the latter work.

Theoretically, a few radiative parameter computations were released for a restricted set of elec-
tric dipole transitions. For Pr V, Karacoban and Dogan (2015) used the relativistic Hartree-Fock
(HFR) method to calculate the oscillator strengths and transition probabilities for the 12 lines
observed experimentally by Kaufman and Sugar (1967). The findings of this work were found
to be in general good agreement with the previous data computed for the same transitions by
Migdalek and Baylis (1979) using the relativistic single-configuration Hartree-Fock method,
by Migdalek and Wyrozumska (1987) by means of different versions of the relativistic model
potential approach, by Savukov et al. (2003) using the relativistic many-body perturbation the-
ory, and by Zilitis (2014) using the Dirac-Fock method. Other studies about oscillator strength
calculations were published on the one hand by Glushkov (1992) and Zilitis (2014) using the
relativistic model potential and the Dirac-Fock method, respectively, for some resonance tran-
sitions involving low-lying configurations along the Cs isoelectronic sequence, including Pr V
and on the other hand, by Cheng and Froese Fischer (1983) using term-dependent Hartree-Fock
technique for the 4d10 – 4d9nf 1P transitions in Xe-like ions, including Pr VI.

In order to compute the atomic structure of such ions, we used the same procedure as we did in
the two previous sections, namely for La and Ce ions. The first theoretical method used is the
HFR introduced by Cowan (1981). For each ion, the HFR physical model retained was based,
as for La and Ce ions, on a Pd-like ionic core with 46 electrons filling all the subshells up to 4d10

surrounded by k valence electrons, with k ranging from 4 to 9, depending on the total number
of electrons in the atomic system. As for the intravalence correlations, they were evaluated by
introducing explicitly a large number of interacting configurations listed in Table 3.8.

Among the six ions considered in this section, only Pr V has experimentally measured wave-
lengths for electric dipole transitions Kaufman and Sugar (1967). When comparing our HFR
values with these experimental data, we found a good overall agreement, the average differences
∆λ/λObs (with ∆λ = λHFR − λObs) being found to be equal to 0.011 ± 0.042.
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Table 3.8: Configurations included in HFR calculations for Pr V–X ions.

Pr V Pr VI Pr VII Pr VIII Pr IX Pr X
Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p64f 5s25p6 5s25p5 5s25p4 5s25p3 5s25p2

5s25p65f 5s25p56p 5s25p46p 5s25p36p 5s25p26p 5s25p6p
5s25p66f 5s25p57p 5s25p47p 5s25p37p 5s25p27p 5s25p7p
5s25p67f 5s25p58p 5s25p48p 5s25p38p 5s25p28p 5s25p8p
5s25p68f 5s25p54f 5s25p44f 5s25p34f 5s25p24f 5s25p4f
5s25p66p 5s25p55f 5s25p45f 5s25p35f 5s25p25f 5s25p5f
5s25p67p 5s25p56f 5s25p46f 5s25p36f 5s25p26f 5s25p6f
5s25p68p 5s25p57f 5s25p47f 5s25p37f 5s25p27f 5s25p7f
5s25p54f2 5s25p58f 5s25p48f 5s25p38f 5s25p28f 5s25p8f
5s25p55d2 5s25p44f2 5s25p34f2 5s25p24f2 5s25p4f2 5s24f2

5s25p56s2 5s25p45d2 5s25p35d2 5s25p25d2 5s25p5d2 5s25d2

5s25p55d6s 5s25p46s2 5s25p36s2 5s25p26s2 5s25p6s2 5s26s2

5s5p64f5d 5s25p45d6s 5s25p35d6s 5s25p25d6s 5s25p5d6s 5s25d6s
5s5p64f6d 5s5p65d 5s5p55d 5s5p45d 5s5p35d 5s5p25d
5s5p64f7d 5s5p66d 5s5p56d 5s5p46d 5s5p36d 5s5p26d
5s5p64f8d 5s5p67d 5s5p57d 5s5p47d 5s5p37d 5s5p27d
5s5p64f6s 5s5p68d 5s5p58d 5s5p48d 5s5p38d 5s5p28d
5s5p64f7s 5s5p66s 5s5p56s 5s5p46s 5s5p36s 5s5p26s
5s5p64f8s 5s5p67s 5s5p57s 5s5p47s 5s5p37s 5s5p27s
5p64f3 5s5p68s 5s5p58s 5s5p48s 5s5p38s 5s5p28s

5s5p54f5d 5s5p44f5d 5s5p34f5d 5s5p24f5d 5s5p4f5d
5s5p54f6d 5s5p44f6d 5s5p34f6d 5s5p24f6d 5s5p4f6d
5s5p54f7d 5s5p44f7d 5s5p34f7d 5s5p24f7d 5s5p4f7d
5s5p54f8d 5s5p44f8d 5s5p34f8d 5s5p24f8d 5s5p4f8d
5s5p54f6s 5s5p44f6s 5s5p34f6s 5s5p24f6s 5s5p4f6s
5s5p54f7s 5s5p44f7s 5s5p34f7s 5s5p24f7s 5s5p4f7s
5s5p54f8s 5s5p44f8s 5s5p34f8s 5s5p24f8s 5s5p4f8s
5p54f3 5p44f3 5p6 5p5 5p4

5p64f2 5p54f2 5p44f2 5p24f3 5p4f3

5p64f 5p54f 5p34f2 5p24f2

5p44f 5p34f
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p66s 5s25p56s 5s25p46s 5s25p36s 5s25p26s 5s25p6s
5s25p67s 5s25p57s 5s25p47s 5s25p37s 5s25p27s 5s25p7s
5s25p68s 5s25p58s 5s25p48s 5s25p38s 5s25p28s 5s25p8s
5s25p65d 5s25p55d 5s25p45d 5s25p35d 5s25p25d 5s25p5d
5s25p66d 5s25p56d 5s25p46d 5s25p36d 5s25p26d 5s25p6d
5s25p67d 5s25p57d 5s25p47d 5s25p37d 5s25p27d 5s25p7d
5s25p68d 5s25p58d 5s25p48d 5s25p38d 5s25p28d 5s25p8d
5s25p65g 5s25p55g 5s25p45g 5s25p35g 5s25p25g 5s25p5g
5s25p66g 5s25p56g 5s25p46g 5s25p36g 5s25p26g 5s25p6g
5s25p67g 5s25p57g 5s25p47g 5s25p37g 5s25p27g 5s25p7g
5s25p68g 5s25p58g 5s25p48g 5s25p38g 5s25p28g 5s25p8g
5s25p54f5d 5s25p44f5d 5s25p34f5d 5s25p24f5d 5s25p4f5d 5s24f5d
5s25p54f6s 5s25p44f6s 5s25p34f6s 5s25p24f6s 5s25p4f6s 5s24f6s
5s5p64f2 5s5p66p 5s5p6 5s5p5 5s5p4 5s5p3

5s5p64f6p 5s5p67p 5s5p56p 5s5p46p 5s5p36p 5s5p26p
5s5p64f7p 5s5p68p 5s5p57p 5s5p47p 5s5p37p 5s5p27p
5s5p64f8p 5s5p64f 5s5p58p 5s5p48p 5s5p38p 5s5p28p
5p64f25d 5s5p65f 5s5p54f 5s5p44f 5s5p34f 5s5p24f

5s5p66f 5s5p55f 5s5p45f 5s5p35f 5s5p25f
5s5p67f 5s5p56f 5s5p46f 5s5p36f 5s5p26f
5s5p68f 5s5p57f 5s5p47f 5s5p37f 5s5p27f
5s5p54f2 5s5p58f 5s5p48f 5s5p38f 5s5p28f
5s5p54f6p 5s5p44f2 5s5p34f2 5s5p24f2 5s5p4f2

5s5p54f7p 5s5p44f6p 5s5p34f6p 5s5p24f6p 5s5p4f6p
5s5p54f8p 5s5p44f7p 5s5p34f7p 5s5p24f7p 5s5p4f7p
5p54f25d 5s5p44f8p 5s5p34f8p 5s5p24f8p 5s5p4f8p
5p64f5d 5p65d 5p55d 5p45d 5p35d

5p44f25d 5p44f5d 5p24f25d 5p4f25d
5p54f5d 5p34f5d 5p24f5d
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In Table 3.9, we summarize the number of levels below the IP and transitions selected for
opacity calculations for each Pr ion obtained with HFR approach as well as IPs taken from the
NIST database (Kramida et al., 2024).

Table 3.9: Number of levels and lines obtained in HFR calculations for Pr V–X. The ionization potentials
are also given for each ion.

Ion Number of levelsa Number of linesb IP (cm−1)c

Pr V 735 14 534 464 000
Pr VI 3 447 203 360 663 000
Pr VII 7 826 1 017 797 784 000
Pr VIII 7 694 1 028 901 905 000
Pr IX 8 298 1 161 017 1 060 000
Pr X 3 974 865 860 1 195 000
a Total number of HFR levels considered in opacity calcula-

tions
b Total number of transitions involving energy levels below

the IP with HFR calculated log(gf )–values ≥ -5
c Ionization potential taken from NIST (Kramida et al., 2024)

The second method to determine the radiative parameters for those ions, is the MCDHF method
(Grant, 2007). In order to compute the atomic structures and radiative parameters in a particular
sample of Pr ions, namely Pr V and Pr X the same methodology as the one developed in the
previous sections is employed. A set of configurations is used to gradually incorporate valence-
valence (VV) and core-valence (CV) correlations for each of these ions. This process creates
the multireference (MR), from which all allowed transitions are computed, as shown in Table
3.10.

In the case of Pr V, the MR was chosen to include the 5p64f, 5p54f2, 5p55d2 odd- and 5p65d,
5p54f5d even-parity configurations. For this ion, the orbitals 1s to 4f were optimized on the
ground configuration (i.e. 5p64f) while 5d orbital was optimized using the MR configurations,
keeping all other orbitals fixed. For Pr X, the MR included the 5s25p2, 5s25p4f, 5s24f2 even-
and the 5s5p3, 5s5p24f, 5s25p5d odd-parity configurations. The orbitals 1s to 5p were opti-
mized on the 5s25p2 ground configuration while the 4f and 5d orbitals were optimized using
the MR configurations, keeping all other orbitals fixed. For both ions, VV1 and VV2 models
were built by adding single and double (SD) excitations from 5s, 5p, 5d, 4f to 5s, 5p, 5d, 5f, 5g
and to 6s, 6p, 6d, 6f, 5g active orbitals, respectively. Specifically for Pr X, a VV3 was built by
enabling the SD excitations to 7s, 7p, 7d, 6f and 5g. From VV2 and VV3 for Pr V and Pr X
respectively, a CV model was then built. Concerning Pr V, SD excitations were added from the
4d core orbital to the MR valence orbitals, namely 5s, 5p, 5d, and 4f, while for Pr X they were
added to VV1. This gave rise to a total of 667 030 and 767 797 configuration state functions
(CSFs), for the odd- and even-parities, for Pr V and 215 456 and 623 974 CSFs in the odd- and
even-parities of Pr X as it is summarized in Table 3.10.

For Pr V and Pr X, a comparison of our MCDHF energy level values obtained in CV models
showed a good agreement with the experimental data reported in the literature (Kaufman and
Sugar (1967) for Pr V and Bekker et al. (2019) for Pr X), the mean deviation ∆E/Eexp (with
∆E = EMCDHF−Eexp) being found to be equal to 0.018 ± 0.09 (Pr V) and 0.126 ± 0.09 (Pr X).



Atomic structures for moderately-charged lanthanides from Z = 57 to 71 73

Table 3.10: Computational strategies used in MCDHF calculations for Pr V and Pr X ions.

Calculation Pr V Pr X
MR Odd parity Even parity

5p64f 5s25p2

5p54f2 5s25p4f
5p55d2 5s24f2

Even parity Odd parity
5p65d 5s5p3

5p54f5d 5s5p24f
5s25p5d

VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
VV3 {7s,7p,7d,6f,5g}
CV {5s,5p,5d,4f} {5s,5p,5d,5f,5g}
CSFs 1 434 827 839 430

Lastly, in a third computational step, the level energies and radiative parameters of these two
lanthanide ions, i.e. Pr V and Pr X, were determined using the configuration interaction and
many-body perturbation-theory (CI+MBPT) method as implemented in the AMBiT atomic
structure code by Kahl and Berengut (2019). More particularly, the AMBiT program’s emu
CI approximation (Geddes et al., 2018) was used in Pr V in order to minimize the problem’s
size without sacrificing much accuracy.

The AMBiT calculations were focused on the properties of the experimental energy levels found
in the literature. As previously cited in the beginning of this section, there are 8 levels belong-
ing to the configurations 4f, 5d, 6s, 6p and 7s determined by Kaufman and Sugar (1967) for Pr
V and 15 levels of Pr X belonging to the even configurations 5s25p2 and 5s25p4f published by
Bekker et al. (2019). For all the AMBiT calculations, QED and Breit interactions were included.

In Pr V, the core spin-orbitals and the frozen core potential were generated by solving the Dirac–
Hartree–Fock (DHF) equations for the Xe-like ground configurations [Pd]5s25p6 consisting in
54 electrons. The valence orbitals were determined by diagonalizing a set of B-splines using
the DHF hamiltonian with the frozen core potential. The emu CI expansions with symmetries
as Jπ = 1/2even–5/2even, 1/2odd–7/2odd were obtained by considering, for the large side, the SD
electron and hole excitations from leading configurations 4f, 6p, 5d, 6s and 7s to the active set
of orbitals {15s, 15p, 15d, 15f, 15g, 15h} with all the core orbitals lower than 5s inactive, i.e. 5s
to 15s, 5p to 15p, 5d to 15d, 4f to 15f, 5g to 15g and 6h to 15h. For the small side, the active set
of orbitals was reduced to {8s, 8p, 8d, 8f, 8g, 8h} when considering double electron excitations
and only single hole excitations. The resulting emu CI matrix dimensions were N = 9 720 262
for the large side and Nsmall = 64 101 for the small side. One, two and three body MBPT di-
agrams (Berengut and Flambaum, 2006) involving the frozen core orbitals and virtual orbitals
up to {30s, 30p, 30d, 30f, 30g, 30h} were considered in the evaluation of the operator matrix
elements. The relative differences, ∆E = (Ecal − Eexp)/Eexp, with respect to the experimental



Atomic structures for moderately-charged lanthanides from Z = 57 to 71 74

energy levels published by Kaufman and Sugar (1967) ranged from more than 1% to 3% with
an average of 2.2% and a standard deviation of 0.6%.

Concerning Pr X, the DHF equations were solved in a first step for the ground configuration of
the Pd-like Pr XIV system, i.e. [Kr]4d10, with 46 electrons in order to obtain the core orbitals.
This enabled us to build in a second step the core electron potential and to solve the frozen core
DHF equations for the valence orbitals. In the CI step, the 50-electron wavefunction expansions
with symmetries as Jπ = 0even–12even, 0odd–11odd were generated by considering all the single
electron excitations from the 5s25p2, 5s24f2, 5s25p4f, 5s5p3, 5s5p24f, 5s5p4f2, 5s4f3, 5p4, 4f4,
5p34f, 5p4f3 and 5p24f2 leading configurations to the {6s, 6p, 6d, 5f} active set keeping all
the core orbitals lower than 5s inactive. The dimension of the CI matrix was N = 8 561. In
the MBPT step, one, two and three body diagrams were considered involving the frozen core
orbitals and virtual orbitals belonging to the set {30s, 30p, 30d, 30f, 30g, 30h}. The relative
differences, ∆E/Eexp, between our eigenvalues and the available experimental energy levels
(Bekker et al., 2019) ranged from −3.4% to 1.3% with an average of -1.3% and a standard
deviation of 1.2%.

As mentioned for La and Ce ions, HFR method gives the greatest number of transitions since
we can include much more spectroscopic configurations in this approach (see Table 3.9). There-
fore, the MCDHF and AMBiT results are important to benchmark the HFR results performed
in the selected ions. The HFR transition probabilities and oscillator strengths calculated in this
work are listed for all the experimentally observed lines published so far for the Pr ions of
interest in Table C.1 in Appendix C. The latter where experimentally lines are reported from
Kaufman and Sugar (1967) only concern Pr V.

For very few transitions, other oscillator strengths were also published for Pr V. They agree
well (usually within a few percent) with our values. For instance, we found average deviations
between our HFR gf -values and previous theoretical data of 9%, 8%, 8%, 14% and 6% when
comparing with the relativistic single-configuration Hartree-Fock calculations of Migdalek and
Baylis (1979), the relativistic model potential approach of Migdalek and Wyrozumska (1987),
the relativistic many-body perturbation calculations of Savukov et al. (2003), the Dirac-Fock
computations of Zilitis (2014), and the relativistic Hartree-Fock calculations of Karacoban and
Dogan (2015), respectively. The log(gf )-values deduced from all these previous works are
compared to those obtained in the present work in Table C.1.

More intriguing are the cross-tabulations that we performed for a few chosen ions between our
HFR, MCDHF, and AMBiT computations. Such comparisons are illustrated in Figures 3.9 and
3.10 where the HFR oscillator strengths are plotted as function of the results obtained with the
two other methods. More precisely, in Figure 3.9, the HFR log(gf )-values are compared with
those computed using the MCDHF method for transitions involving the ground levels in Pr V
and Pr X while in Figure 3.10, the same type of comparison is made with the data obtained using
emu CI and CI+MBPT approach (AMBiT) for Pr V and Pr X, respectively. In those cases, we
noted an overall good agreement, the average relative differences between HFR and MCDHF
oscillator strengths being found to be within 15% whereas the mean deviations between HFR
and AMBiT gf -values were found to be within 25%. But for some particular transitions, greater
differences between the three approaches were noted. These were primarily due to computed
line strengths that were strongly impacted by cancellation effects. Nevertheless, these compar-
isons indicate that we can suppose oscillator strengths determined in our work to be affected by
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uncertainties of the order of 30% for the strongest lines (log(gf ) ≥ −1) and a factor of two for
weaker lines.

Figure 3.9: Comparison between the oscillator strengths (log(gf )) computed in this work using HFR
and MCDHF methods for lines involving the ground level in Pr V and Pr X ions.

Figure 3.10: Comparison between the oscillator strengths (log(gf )) computed in this work using HFR
and emu CI (Pr V) and CI+MBPT (Pr X) (AMBiT) methods for lines involving the ground level for both
ions.
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3.1.4 Nd V–X ions
Among the studies published for Nd ions, Meftah et al. (2008) identified 160 lines of Nd

V using vacuum ultraviolet normal incidence spectroscopy of a sliding spark source between
710 – 2 240 Å. The analysis of this spectrum allowed to determine 48 energy levels belonging
to the 5p64f2, 5p64f5d, 5p64f6s and 5p64f6p configurations. Delghiche et al. (2015), then, ex-
tended the Nd V spectrum observation in the laboratory to a shorter wavelength region, down
to 370 Å . This investigation resulted in the determination of 104 energy levels of the 5p54f25d
core-excited configuration.

As for Pr ions, a few radiative parameter calculations were published theoretically for a re-
stricted set of electric dipole transitions. Concerning Nd V, the largest radiative data set was pub-
lished by Meftah et al. (2008) and Delghiche et al. (2015) who implemented the HFR method to
compute the transition probabilities for all the lines they observed in the laboratory. The present
study is a major extension of Stanek and Migdalek (2004) earlier work, which reported multi-
configuration Dirac-Fock oscillator strengths for only the Nd V 6s2 1S0 – 6s6p 1,3P1 transitions.
Such as for Pr ions, some other studies about oscillator strength calculations were published, on
the one hand, by Glushkov (1992) and Zilitis (2014) using the relativistic model potential and
the Dirac-Fock method, respectively, for some resonance transitions involving low-lying con-
figurations along the Cs isoelectronic sequence, including Nd VI, and on the other hand, those
carried out by Cheng and Froese Fischer (1983) using term-dependent Hartree-Fock technique
for the 4d10 – 4d9nf 1P transitions in Xe-like ions, including Nd VII.

The same methodology was employed, as in the three previous sections, to compute the atomic
structure. We first computed the electronic structure using HFR procedure (Cowan, 1981). For
each ion, the HFR physical model retained was based, as for La, Ce and Pr ions, on a Pd-like
ionic core with 46 electrons filling all the subshells up to 4d10 surrounded by k valence elec-
trons, with k ranging from 5 to 10, depending on the total number of electrons in the atomic
system. Table 3.11 summarizes the large number of interacting configurations introduced in
this method.

Among the six ions considered in this section, only one has experimentally measured wave-
lengths for electric dipole transitions, namely Nd V (Meftah et al., 2008; Delghiche et al., 2015),
as mentioned before. When comparing our HFR values with these experimental data, we found
an overall good agreement (smaller than 2% in most cases), the average differences ∆λ/λObs

(with ∆λ = λHFR − λObs) being found to be equal to -0.012 ± 0.049.

In Table 3.12, we give an overview of the number of levels calculated below the IP taken from
the NIST database (Kramida et al., 2024) and the number of transitions for these Nd ions.
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Table 3.11: Configurations included in HFR calculations for Nd V–X ions.

Nd V Nd VI Nd VII Nd VIII Nd IX Nd X
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p64f2 5s25p64f 5s25p6 5s25p5 5s25p34f 5s25p24f
5s25p64f5f 5s25p65f 5s25p56p 5s25p46p 5s25p35f 5s25p25f
5s25p64f6f 5s25p66f 5s25p57p 5s25p47p 5s25p36f 5s25p26f
5s25p64f7f 5s25p67f 5s25p58p 5s25p48p 5s25p37f 5s25p27f
5s25p64f8f 5s25p68f 5s25p54f 5s25p44f 5s25p38f 5s25p28f
5s25p64f6p 5s25p66p 5s25p55f 5s25p45f 5s25p4 5s25p3

5s25p64f7p 5s25p67p 5s25p56f 5s25p46f 5s25p36p 5s25p26p
5s25p64f8p 5s25p68p 5s25p57f 5s25p47f 5s25p37p 5s25p27p
5s25p65d2 5s25p54f2 5s25p58f 5s25p48f 5s25p38p 5s25p28p
5s25p65d6d 5s25p55d2 5s25p44f2 5s25p34f2 5s25p24f2 5s25p4f2

5s25p65d7d 5s25p56s2 5s25p45d2 5s25p35d2 5s25p25d2 5s25p5d2

5s25p65d8d 5s25p55d6s 5s25p46s2 5s25p36s2 5s25p26s2 5s25p6s2

5s25p66s2 5s5p64f5d 5s25p45d6s 5s25p35d6s 5s25p25d6s 5s25p5d6s
5s25p65d6s 5s5p64f6d 5s5p65d 5s5p55d 5s5p45d 5s5p35d
5s25p65d7s 5s5p64f7d 5s5p66d 5s5p56d 5s5p46d 5s5p36d
5s25p65d8s 5s5p64f8d 5s5p67d 5s5p57d 5s5p47d 5s5p37d
5s5p64f25d 5s5p64f6s 5s5p68d 5s5p58d 5s5p48d 5s5p38d
5s5p64f26d 5s5p64f7s 5s5p66s 5s5p56s 5s5p46s 5s5p36s
5s5p64f27d 5s5p64f8s 5s5p67s 5s5p57s 5s5p47s 5s5p37s
5s5p64f28d 5p64f3 5s5p68s 5s5p58s 5s5p48s 5s5p38s
5s5p64f26s 5s5p54f5d 5s5p44f5d 5s5p34f5d 5s5p24f5d
5s5p64f27s 5s5p54f6d 5s5p44f6d 5s5p34f6d 5s5p24f6d
5s5p64f28s 5s5p54f7d 5s5p44f7d 5s5p34f7d 5s5p24f7d
5s25p54f3 5s5p54f8d 5s5p44f8d 5s5p34f8d 5s5p24f8d

5s5p54f6s 5s5p44f6s 5s5p34f6s 5s5p24f6s
5s5p54f7s 5s5p44f7s 5s5p34f7s 5s5p24f7s
5s5p54f8s 5s5p44f8s 5s5p34f8s 5s5p24f8s
5p54f3 5p44f3 5p6 5p5

5p64f2 5p54f2 5p44f2 5p24f3

5p64f 5p54f 5p34f2

5p44f
Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p64f6s 5s25p66s 5s25p56s 5s25p46s 5s25p36s 5s25p26s
5s25p64f7s 5s25p67s 5s25p57s 5s25p47s 5s25p37s 5s25p27s
5s25p64f8s 5s25p68s 5s25p58s 5s25p48s 5s25p38s 5s25p28s
5s25p64f5d 5s25p65d 5s25p55d 5s25p45d 5s25p35d 5s25p25d
5s25p64f6d 5s25p66d 5s25p56d 5s25p46d 5s25p36d 5s25p26d
5s25p64f7d 5s25p67d 5s25p57d 5s25p47d 5s25p37d 5s25p27d
5s25p64f8d 5s25p68d 5s25p58d 5s25p48d 5s25p38d 5s25p28d
5s25p64f5g 5s25p65g 5s25p55g 5s25p45g 5s25p35g 5s25p25g
5s25p64f6g 5s25p66g 5s25p56g 5s25p46g 5s25p36g 5s25p26g
5s25p64f7g 5s25p67g 5s25p57g 5s25p47g 5s25p37g 5s25p27g
5s25p64f8g 5s25p68g 5s25p58g 5s25p48g 5s25p38g 5s25p28g
5s25p65d6p 5s25p54f5d 5s25p44f5d 5s25p34f5d 5s25p24f5d 5s25p4f5d
5s25p65d7p 5s25p54f6s 5s25p44f6s 5s25p34f6s 5s25p24f6s 5s25p4f6s
5s25p65d8p 5s5p64f2 5s5p66p 5s5p6 5s5p5 5s5p4

5s25p65d5f 5s5p64f6p 5s5p67p 5s5p56p 5s5p46p 5s5p36p
5s25p65d6f 5s5p64f7p 5s5p68p 5s5p57p 5s5p47p 5s5p37p
5s25p65d7f 5s5p64f8p 5s5p64f 5s5p58p 5s5p48p 5s5p38p
5s25p65d8f 5p64f25d 5s5p65f 5s5p54f 5s5p44f 5s5p34f
5s25p54f25d 5s5p66f 5s5p55f 5s5p45f 5s5p35f
5s25p54f26s 5s5p67f 5s5p56f 5s5p46f 5s5p36f
5s25p55d3 5s5p68f 5s5p57f 5s5p47f 5s5p37f
5s5p64f3 5s5p54f2 5s5p58f 5s5p48f 5s5p38f
5s5p64f26p 5s5p54f6p 5s5p44f2 5s5p34f2 5s5p24f2

5s5p64f27p 5s5p54f7p 5s5p44f6p 5s5p34f6p 5s5p24f6p
5s5p64f28p 5s5p54f8p 5s5p44f7p 5s5p34f7p 5s5p24f7p

5p54f25d 5s5p44f8p 5s5p34f8p 5s5p24f8p
5p64f5d 5p65d 5p55d 5p45d

5p44f25d 5p44f5d 5p24f25d
5p54f5d 5p34f5d
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Table 3.12: Number of levels and transitions obtained in HFR calculations for Nd V–X. The ionization
potentials are also given for each ion.

Ion Number of levelsa Number of linesb IP (cm−1)c

Nd V 2 164 211 796 483 900
Nd VI 735 22 151 676 000
Nd VII 3 447 497 534 799 000
Nd VIII 7 826 1 122 652 923 000
Nd IX 7 694 1 101 470 1 093 000
Nd X 8 298 1 159 387 1 224 000
a Total number of HFR levels considered in opacity calcula-

tions
b Total number of transitions involving energy levels below the

IP with HFR calculated log(gf )–values ≥ -5
c Ionization potential taken from NIST (Kramida et al., 2024)

As for the three lanthanides presented before, namely La, Ce and Pr, the MCDHF approach was
the second method used to obtain atomic data for Nd V and Nd VI. A summary of the config-
uration list that was included to gradually incorporate valence-valence (VV) and core-valence
(CV) correlations for each of these two ions is shown in Table 3.13.

For Nd V, the MR consisted of 5p64f2, 5p65d2 even- and 5p64f5d, 5p55d3 odd-parity configu-
rations. In the case of Nd VI, the MR was chosen to include the 5p64f, 5p54f2, 5p55d2 odd-
and 5p65d, 5p54f5d even-parity configurations. For these ions, orbitals 1s to 4f were optimized
on the respective ground configurations (i.e. 5p64f2 for Nd V and 5p64f for Nd VI) while 5d
orbital was optimized using the MR configurations, keeping all other orbitals fixed. VV1 and
VV2 models were built by adding SD excitations from 5s, 5p, 5d, 4f to 5s, 5p, 5d, 5f, 5g and
to 6s, 6p, 6d, 6f, 5g active orbitals, respectively. From the latter, a CV model was then built by
adding SD excitations from the 4d core orbital to the MR valence orbitals, namely 5s, 5p, 5d,
and 4f. For Nd VI, this gave rise to a total of 667 030 and 767 797 configuration state functions
(CSFs), for the odd- and even-parities, respectively and for Nd V to 142 859 and 842 073 CSFs,
for the even- and odd-parities, respectively.

For Nd V, a comparison of our MCDHF energy level values obtained in CV models showed
a good agreement with the experimental data reported in the literature (Meftah et al., 2008;
Delghiche et al., 2015), the mean deviation ∆E/Eexp (with ∆E = EMCDHF−Eexp) being found
to be equal to 0.006 ± 0.063.
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Table 3.13: Computational strategies used in MCDHF calculations for Nd V and Nd VI ions.

Calculation Nd V Nd VI
MR Even parity Odd parity

5p64f2 5p64f
5p65d2 5p54f2

5p55d2

Odd parity Even parity
5p64f5d 5p65d
5p55d3 5p54f5d

VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
CV {5s,5p,5d,4f} {5s,5p,5d,4f}
CSFs 984 932 1 434 827

Finally, the CI+MBPT method was the third method used to compute the level energies and ra-
diative parameters of Nd V using the AMBiT package (Kahl and Berengut, 2019). Those calcu-
lations were focused on the properties of the experimental energy levels found in the literature,
i.e. for Nd V, 152 levels reported by Meftah et al. (2008) and Delghiche et al. (2015) and be-
longing to the configurations 5s25p64f2, 5s25p64f5d, 5s25p64f6s, 5s25p64f6p and 5s25p54f25d.
For all the AMBiT calculations, QED and Breit interactions were included.

In Nd V, the frozen core potential and the corresponding orbitals were determined by solving the
DHF equations for the ground configuration of the Xe-like Nd VII, i.e. [Kr]4d105s25p6. These
were then applied to obtain the valence orbitals and solve the frozen-core DHF equations for the
56-electron Nd V atomic system. The CI matrix is then built by considering a set of interacting
configurations with symmetries Jπ = 0even–6even, 0odd–5odd generated by SD electron and hole
excitations to the {6s, 6p, 6d, 6f, 6g} active set of orbitals from the leading configurations 4f2

and 4f5d keeping inactive the orbitals of the Pd-like Nd XV frozen core, i.e. from 1s up to 4d.
The dimension of the CI matrix was N = 1 708 459. Finally, the one, two, and three body
diagrams involving the Pd-like frozen core orbitals and virtual orbitals up to {30s, 30p, 30d,
30f, 30g, 30h} were evaluated in order to add the MBPT corrections to the projected effective
multielectron Hamiltonian matrix. The relative differences with the experimental level energies
of Meftah et al. (2008); Delghiche et al. (2015) ranged from −2% to 11% with an average of
6.7% and a standard deviation of 3.5%.

Among the three theoretical methods, HFR gave the greatest number of transitions compared to
the CI+MBPT and MCDHF approaches, serving thus as benchmarking methods. Therefore, the
HFR transition probabilities and oscillator strengths obtained in the present work are listed for
all the experimentally observed lines published by Meftah et al. (2008); Delghiche et al. (2015)
for Nd V in Table D.1 in Appendix D. In the latter, gA-values obtained by Meftah et al. (2008);
Delghiche et al. (2015) who used HFR method but with much more limited bases of interacting
configurations than the one considered in our work are also given. The agreement between the
two sets of results reflects this, and although it is generally satisfactory, there are some notable
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deviations for several transitions.

We also compared, as for the previous elements, results between our HFR, MCDHF and
CI+MBPT calculations. Such comparisons (log(gf )-values) are illustrated in Figures 3.11 and
3.12 where the HFR oscillator strengths are plotted as a function of the results obtained with
the two other methods. More precisely, in Figure 3.11, the HFR log(gf )-values are compared
with those computed using the MCDHF method for transitions involving the ground level in
Nd V and Nd VI ions, while in Figure 3.12, the same type of comparison is made with the data
obtained using the CI+MBPT results (AMBiT) for the Nd V ion. In the overall, we observed
a good agreement in these cases: mean deviations between HFR and CI+MBPT (AMBiT) gf -
values were found to be within 35%, while the average relative differences between HFR and
MCDHF oscillator strengths were found to be within 10%. However, as for Pr ions, some
discrepancies between the three methods can be observed for some specific transitions mostly
characterized by computed line strengths affected by strong cancellation effects (CF < 0.05) or
by large disagreements between length (Babushkin) and velocity (Coulomb) gauge formalisms
(30%).

Figure 3.11: Comparison between the oscillator strengths (log(gf )) computed in this work using HFR
and MCDHF methods for lines involving the ground level in Nd V and Nd VI ions.
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Figure 3.12: Comparison between the oscillator strengths (log(gf )) computed in this work using HFR
and CI+MBPT (AMBiT) methods for lines involving the ground level in Nd V.

3.1.5 Pm V–X ions
Concerning Pm ions, there is no experimental data published to date to our knowledge. It is

thus challenging to determine the right potential to use in order to obtain orbitals representing
the ion in the CI+MBPT approach. Therefore, we only calculate atomic data with HFR and
MCDHF methods and compared those theoretical results between them. As previously done,
we started by calculating the atomic structure for the sample of Pm ions using HFR (Cowan,
1981). For each ion, the HFR physical model used was based, as for the aforementioned ions,
on a Pd-like ionic core with 46 electrons with all the subshells filled up to 4d10 surrounded by
k valence electrons, with k ranging from 6 to 11, depending on the total number of electrons
in the atomic system. Table 3.14 summarizes the large number of interacting configurations
introduced in this approach.
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Table 3.14: Configurations included in HFR calculations for Pm V–X ions.

Pm V Pm VI Pm VII Pm VIII Pm IX Pm X
Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p64f3 5s25p64f2 5s25p64f 5s25p44f2 5s25p34f2 5s25p24f2

5s25p64f25f 5s25p64f5f 5s25p65f 5s25p54f 5s25p35d2 5s25p25d2

5s25p64f26f 5s25p64f6f 5s25p66f 5s25p55f 5s25p36s2 5s25p26s2

5s25p64f27f 5s25p64f7f 5s25p67f 5s25p56f 5s25p5 5s25p34f
5s25p64f28f 5s25p64f8f 5s25p68f 5s25p57f 5s25p46p 5s25p35f
5s25p64f26p 5s25p64f6p 5s25p66p 5s25p58f 5s25p47p 5s25p36f
5s25p64f27p 5s25p64f7p 5s25p67p 5s25p6 5s25p48p 5s25p37f
5s25p64f28p 5s25p64f8p 5s25p68p 5s25p56p 5s25p44f 5s25p38f
5s5p64f35d 5s25p65d2 5s25p54f2 5s25p57p 5s25p45f 5s25p4

5s5p64f36d 5s25p65d6d 5s25p55d2 5s25p58p 5s25p46f 5s25p36p
5s5p64f37d 5s25p65d7d 5s25p56s2 5s25p45d2 5s25p47f 5s25p37p
5s5p64f38d 5s25p65d8d 5s25p55d6s 5s25p46s2 5s25p48f 5s25p38p
5s5p64f36s 5s25p66s2 5s5p64f5d 5s25p45d6s 5s25p35d6s 5s25p25d6s
5s5p64f37s 5s25p65d6s 5s5p64f6d 5s5p65d 5s5p55d 5s5p45d
5s5p64f38s 5s25p65d7s 5s5p64f7d 5s5p66d 5s5p56d 5s5p46d
5s25p65d26p 5s25p65d8s 5s5p64f8d 5s5p67d 5s5p57d 5s5p47d
5s25p65d27p 5s5p64f25d 5s5p64f6s 5s5p68d 5s5p58d 5s5p48d
5s25p65d28p 5s5p64f26d 5s5p64f7s 5s5p66s 5s5p56s 5s5p46s
5s25p65d25f 5s5p64f27d 5s5p64f8s 5s5p67s 5s5p57s 5s5p47s
5s25p65d26f 5s5p64f28d 5p64f3 5s5p68s 5s5p58s 5s5p48s
5s25p65d27f 5s5p64f26s 5s5p54f5d 5s5p44f5d 5s5p34f5d
5s25p65d28f 5s5p64f27s 5s5p54f6d 5s5p44f6d 5s5p34f6d

5s5p64f28s 5s5p54f7d 5s5p44f7d 5s5p34f7d
5s25p54f3 5s5p54f8d 5s5p44f8d 5s5p34f8d

5s5p54f6s 5s5p44f6s 5s5p34f6s
5s5p54f7s 5s5p44f7s 5s5p34f7s
5s5p54f8s 5s5p44f8s 5s5p34f8s
5p54f3 5p44f3 5p6

5p64f2 5p54f2 5p44f2

5p64f 5p54f
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p65d3 5s25p64f6s 5s25p66s 5s25p56s 5s25p46s 5s25p36s
5s25p65d26d 5s25p64f7s 5s25p67s 5s25p57s 5s25p47s 5s25p37s
5s25p65d27d 5s25p64f8s 5s25p68s 5s25p58s 5s25p48s 5s25p38s
5s25p65d28d 5s25p64f5d 5s25p65d 5s25p55d 5s25p45d 5s25p35d
5s25p65d26s 5s25p64f6d 5s25p66d 5s25p56d 5s25p46d 5s25p36d
5s25p65d27s 5s25p64f7d 5s25p67d 5s25p57d 5s25p47d 5s25p37d
5s25p65d28s 5s25p64f8d 5s25p68d 5s25p58d 5s25p48d 5s25p38d
5s25p64f26s 5s25p64f5g 5s25p65g 5s25p55g 5s25p45g 5s25p35g
5s25p64f27s 5s25p64f6g 5s25p66g 5s25p56g 5s25p46g 5s25p36g
5s25p64f28s 5s25p64f7g 5s25p67g 5s25p57g 5s25p47g 5s25p37g
5s25p64f25d 5s25p64f8g 5s25p68g 5s25p58g 5s25p48g 5s25p38g
5s25p64f26d 5s25p65d6p 5s25p54f5d 5s25p44f5d 5s25p34f5d 5s25p24f5d
5s25p64f27d 5s25p65d7p 5s25p54f6s 5s25p44f6s 5s25p34f6s 5s25p24f6s
5s25p64f28d 5s25p65d8p 5s5p64f2 5s5p66p 5s5p6 5s5p5

5s25p64f25g 5s25p65d5f 5s5p64f6p 5s5p67p 5s5p56p 5s5p46p
5s25p64f26g 5s25p65d6f 5s5p64f7p 5s5p68p 5s5p57p 5s5p47p
5s25p64f27g 5s25p65d7f 5s5p64f8p 5s5p64f 5s5p58p 5s5p48p
5s25p64f28g 5s25p65d8f 5p64f25d 5s5p65f 5s5p54f 5s5p44f
5s25p54f35d 5s25p54f25d 5s5p66f 5s5p55f 5s5p45f
5s25p54f36s 5s25p54f26s 5s5p67f 5s5p56f 5s5p46f
5s5p64f4 5s25p55d3 5s5p68f 5s5p57f 5s5p47f
5s5p64f36p 5s5p64f3 5s5p54f2 5s5p58f 5s5p48f
5s5p64f37p 5s5p64f26p 5s5p54f6p 5s5p44f2 5s5p34f2

5s5p64f38p 5s5p64f27p 5s5p54f7p 5s5p44f6p 5s5p34f6p
5s5p64f28p 5s5p54f8p 5s5p44f7p 5s5p34f7p

5p54f25d 5s5p44f8p 5s5p34f8p
5p64f5d 5p65d 5p55d

5p44f25d 5p44f5d
5p54f5d
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In Table 3.15, we give a summary concerning the number of levels and transitions for these ions
by the HFR method. IPs, from NIST database (Kramida et al., 2024) are also mentioned as the
levels calculated in HFR approach are below these IPs.

Table 3.15: Number of levels and transitions obtained in HFR calculations for Pm V–X. The ionization
potentials are also given for each ion.

Ion Number of levelsa Number of linesb IP (cm−1)c

Pm V 10 522 1 152 223 497 900
Pm VI 3 161 275 006 688 000
Pm VII 735 30 527 814 000
Pm VIII 3 447 619 269 939 000
Pm IX 7 826 1 130 215 1 116 000
Pm X 7 694 1 068 431 1 250 000
a Total number of HFR levels selected below the IP considered

in opacity calculations
b Total number of transitions with HFR calculated log(gf )–

values ≥ -5
c Ionization potential taken from NIST (Kramida et al., 2024)

The MCDHF method was then applied to determine the radiative parameters for a sample of
two representative Pm ions, namely Pm VI and Pm IX. The same methodology as the one
developed in the previous sections was used. A set of configurations was used to gradually in-
corporate valence-valence (VV) and core-valence (CV) correlations for each of these ions. This
strategy is shown in Table 3.16 where all allowed transitions were computed between the MR
configurations, i.e. all considered as spectroscopic.

For Pm VI, the MR consisted of 5p64f2, 5p65d2 even- and 5p64f5d, 5p55d3 odd-parity config-
urations. For this ion, orbitals 1s to 4f were optimized on the respective ground configurations
(i.e. 5p64f2) while 5d orbital was optimized using the MR configurations, keeping all other
orbitals fixed. Then, VV1 and VV2 models were built by adding SD excitations from 5s, 5p,
5d, 4f to 5s, 5p, 5d, 5f, 5g and to 6s, 6p, 6d, 6f, 5g active orbitals, respectively. From the latter,
a CV model was then built by adding SD excitations from the 4d core orbital to the MR valence
orbitals, namely 5s, 5p, 5d, and 4f. For Pm VI, it give rise to 142 859 and 842 073 CSFs, for
the even- and odd-parities, respectively.

In the case of Pm IX, the MR was composed of the 5s25p34f2, 5s25p5, 5s25p44f odd- and the
5s5p6, 5s5p54f, 5s25p45d even-parity configurations. The orbitals 1s to 4f were optimized on
the 5s25p34f2 ground configuration while the 5d orbital was optimized using the MR configura-
tions, keeping all other orbitals fixed. For this ion, a VV3 model in which the active set included
7s, 7p, 7d, 6f, and 5g orbitals was added to the VV1 and VV2 models detailed previously. From
VV3, CV calculations were then carried out by allowing SD excitations from the 4d core or-
bital to 5s, 5p, 5d, 4f, 5f, and 5g, giving rise to 3 767 300 and 622 057 CSFs in the odd- and
even-parities of Pm IX.
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Table 3.16: Computational strategies used in MCDHF calculations for Pm VI and Pm IX ions.

Calculation Pm VI Pm IX
MR Even parity Odd parity

5p64f2 5s25p34f2

5p65d2 5s25p5

5s25p44f

Odd parity Even parity
5p64f5d 5s5p6

5p55d3 5s5p54f
5s25p45d

VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
VV3 {7s,7p,7d,6f,5g} {7s,7p,7d,6f,5g}
CV {5s,5p,5d,4f} {5s,5p,5d,5f,5g}
CSFs 984 932 4 389 357

As mentioned in the beginning of this section, CI+MBPT method was not used for these ions
since there are no experimental data available to guide the computation in the selection of the
potential.

As for previous ions, we compared our HFR and MCDHF results. Such comparisons are il-
lustrated in Figure 3.13 where the HFR oscillator strengths (log(gf )-values) are plotted as a
function of results obtained using the MCDHF method for transitions involving the ground
level from Pm VI and Pm IX ions. In that cases, we noted an overall good agreement, the
average relative differences between HFR and MCDHF oscillator strengths being found to be
within 25%.
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Figure 3.13: Comparison between the oscillator strengths (log(gf )) computed in this work using HFR
and MCDHF methods for lines involving the ground level in Pm VI and Pm IX ions.

3.1.6 Sm V–X ions
For Sm V–X ions, from an experimental point of view, there are no data available for these

ions. It is therefore crucial to perform theoretical calculations to obtain radiative parameters for
these ions. In order to compute the atomic structure and to determine spectroscopic parameters
for Sm V–X ions, we used in a first step, the pseudo-relativistic Hartree-Fock (HFR) approach
described by Cowan (1981). Regarding the previous described lanthanide ions, for every ion
under consideration, configuration interactions were incorporated through multi-configurational
expansions, considering the electronic correlation outside of a Pd-like ionic core, where 46
electrons occupied every subshell ranging from 1s to 4d. Outside this ionic core, the remaining
k electrons (with k = 12, 11, 10, 9, 8, and 7 for Sm V, VI, VII, VIII, IX and X, respectively)
were assumed to occupy mainly the 4f, 5s and 5p subshells while allowing some SD excitations
towards more excited valence nl orbitals, with n ≤ 8 and l ≤ 4. No semi-empirical radial
parameter adjustment was possible because there is no experimental data available for these
ions. Nevertheless, as recommended by Cowan (1981), all Slater integrals (F k, Gk, and Rk)
were scaled down by a factor 0.90 to approximate the cumulative effect of the infinity of small
perturbations caused by configurations not explicitly included in the HFR models. A summary
of the list of configurations that were included in HFR calculations for Sm V–X ions is given in
Table 3.17.
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Table 3.17: Configurations included in HFR calculations for Sm V–X ions.

Sm V Sm VI Sm VII Sm VIII Sm IX Sm X
Even parity Odd parity Even parity Odd parity Even parity Odd parity
5s25p64f4 5s25p64f3 5s25p54f3 5s25p44f3 5s25p34f3 5s25p24f3

5s25p54f5 5s25p64f3 5s25p64f2 5s25p54f2 5s25p45d2 5s25p44f
5s25p64f25d2 5s25p54f4 5s25p64f5f 5s25p55d2 5s25p46s2 5s25p45f
5s25p64f26s2 5s25p54f36p 5s25p64f6f 5s25p56s2 5s25p44f2 5s25p46f
5s25p64f26p2 5s25p64f25f 5s25p64f7f 5s25p34f4 5s25p24f36p 5s25p47f
5s25p64f25d6s 5s25p64f26f 5s25p64f8f 5s25p34f36p 5s25p45d6s 5s25p48f
5s25p64f35f 5s25p64f27f 5s25p64f6p 5s25p55d6s 5s25p24f4 5s25p4f36p
5s25p64f36f 5s25p64f28f 5s25p64f7p 5s25p55d7s 5s25p35d24f 5s25p5

5s25p64f37f 5s25p64f26p 5s25p64f8p 5s25p55d8s 5s25p6 5s25p46p
5s25p64f38f 5s25p64f27p 5s25p44f36p 5s25p54f6p 5s25p56p 5s25p47p
5s25p64f36p 5s25p64f28p 5s25p65d2 5s25p54f7p 5s25p57p 5s25p48p
5s25p64f37p 5s5p64f35d 5s25p65d6d 5s25p54f8p 5s25p58p 5s25p34f2

5s25p64f38p 5s5p64f36d 5s25p65d7d 5s25p54f5f 5s25p54f 5s25p35d2

5s5p64f45d 5s5p64f37d 5s25p65d8d 5s25p54f6f 5s25p55f 5s25p36s2

5s5p64f46d 5s5p64f38d 5s25p66s2 5s25p54f7f 5s25p56f 5s25p35d6s
5s5p64f47d 5s5p64f36s 5s25p65d6s 5s25p54f8f 5s25p57f 5s5p55d
5s5p64f48d 5s5p64f37s 5s25p65d7s 5s25p66p 5s25p58f 5s5p56d
5s5p64f46s 5s5p64f38s 5s25p65d8s 5s25p67p 5s5p66s 5s5p57d
5s5p64f47s 5s25p65d26p 5s5p64f25d 5s25p68p 5s5p67s 5s5p58d
5s5p64f48s 5s25p65d27p 5s5p64f26d 5s25p64f 5s5p68s 5s5p56s
5s25p65d36d 5s25p65d28p 5s5p64f27d 5s25p65f 5s5p65d 5s5p57s
5s25p65d37d 5s25p65d25f 5s5p64f28d 5s25p66f 5s5p66d 5s5p58s
5s25p65d38d 5s25p65d26f 5s5p64f26s 5s25p67f 5s5p67d 5p44f3

5s25p65d36s 5s25p65d27f 5s5p64f27s 5s25p68f 5s5p68d 5p54f2

5s25p65d37s 5s25p65d28f 5s5p64f28s 5s5p64f5d 5s5p54f6s 5p64f
5s25p65d38s 5s5p64f6d 5s5p54f7s 5s5p44f5d

5s5p64f7d 5s5p54f8s 5s5p44f6d
5s5p64f8d 5s5p54f5d 5s5p44f7d
5s5p64f6s 5s5p54f6d 5s5p44f8d
5s5p64f7s 5s5p54f7d 5s5p44f6s
5s5p64f8s 5s5p54f8d 5s5p44f7s
5p64f3 5p54f3 5s5p44f8s

5p64f2

Odd parity Even parity Odd parity Even parity Odd parity Even parity
5s25p65d36p 5s25p65d3 5s25p44f35d 5s25p44f26s 5s25p24f35d 5s25p4f35d
5s25p65d37p 5s25p54f35d 5s25p44f36s 5s25p44f25d 5s25p24f36s 5s25p4f36d
5s25p65d38p 5s25p54f36s 5s25p44f37s 5s25p44f26d 5s25p24f37s 5s25p4f36s
5s25p65d35f 5s25p54f37s 5s25p64f6s 5s25p66s 5s25p34f26s 5s25p4f37s
5s25p65d36f 5s25p65d26d 5s25p64f7s 5s25p67s 5s25p34f25d 5s25p24f25d
5s25p65d37f 5s25p65d27d 5s25p64f8s 5s25p68s 5s25p56s 5s25p24f26d
5s25p65d38f 5s25p65d28d 5s25p64f5d 5s25p65d 5s25p57s 5s25p24f26s
5s25p64f36s 5s25p65d26s 5s25p64f6d 5s25p66d 5s25p58s 5s25p46s
5s25p64f37s 5s25p65d27s 5s25p64f7d 5s25p67d 5s25p55d 5s25p47s
5s25p64f38s 5s25p65d28s 5s25p64f8d 5s25p68d 5s25p56d 5s25p48s
5s25p64f35d 5s25p64f26s 5s25p64f5g 5s25p65g 5s25p57d 5s25p45d
5s25p64f36d 5s25p64f27s 5s25p64f6g 5s25p66g 5s25p58d 5s25p46d
5s25p64f37d 5s25p64f28s 5s25p64f7g 5s25p67g 5s25p55g 5s25p47d
5s25p64f38d 5s25p64f25d 5s25p64f8g 5s25p68g 5s25p56g 5s25p48d
5s25p64f35g 5s25p64f26s 5s25p65d6p 5s25p34f35d 5s25p57g 5s25p4$5g
5s25p64f36g 5s25p64f27d 5s25p65d7p 5s25p34f36s 5s25p58d 5s25p4$6g
5s25p64f37g 5s25p64f28s 5s25p65d8p 5s25p34f37s 5s25p44f5d 5s25p4$7g
5s25p64f38g 5s25p64f25g 5s25p65d5f 5s25p54f6s 5s25p44f6s 5s25p4$8g
5s25p54f45d 5s25p64f26g 5s25p65d6f 5s25p54f7s 5s25p35d3 5s25p34f5d
5s25p54f46s 5s25p64f27g 5s25p65d7f 5s25p54f8s 5s5p66p 5s25p34f6s
5s5p64f46p 5s25p64f28g 5s25p65d8f 5s25p54f5d 5s5p67p 5s25p25d3

5s5p64f47p 5s5p64f4 5s25p54f25d 5s25p54f6d 5s5p68p 5s5p6

5s5p64f48p 5s5p64f36p 5s25p54f26s 5s25p54f7d 5s5p64f 5s5p56p
5s25p64f25d6p 5s5p64f37p 5s25p55d3 5s25p54f8d 5s5p65f 5s5p57p

5s5p64f38p 5s5p64f3 5s5p64f6p 5s5p66f 5s5p58p
5s5p64f26p 5s5p64f7p 5s5p67f 5s5p54f
5s5p64f27p 5s5p64f8p 5s5p68f 5s5p55f
5s5p64f28p 5s5p64f5f 5s5p54f2 5s5p56f

5s5p64f6f 5s5p54f6p 5s5p57f
5s5p64f7f 5s5p54f7p 5s5p58f
5s5p64f8f 5s5p54f8p 5s5p44f2

5s5p64f2 5p54f25d 5s5p44f6p
5p64f25d 5p64f5d 5s5p44f87p

5s5p44f8p
5p65d
5p44f25d
5p54f5d
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In Table 3.18, we outlined the number of lines and levels below the IP taken from the NIST
database (Kramida et al., 2024). It can be noted that a little more than 100 million radiative
transitions were calculated when considering the six ions together.

Table 3.18: Number of lines, number of levels and ionization potentials used in opacity calculations of
Sm V–X ions.

Ion Number of levelsa Number of linesb IP (cm−1)c

Sm V 31 142 17 267 783 505400
Sm VI 13 006 5 426 148 700 000
Sm VII 14 495 10 245 968 830 000
Sm VIII 23 015 30 795 559 955 000
Sm IX 21 432 26 651 944 1 140 000
Sm X 18 852 12 813 888 1 276 000
a Number of levels included in HFR calculations below IP
b Number of lines with HFR calculated log(gf )–values ≥ -5
c IP taken from NIST database (Kramida et al., 2024)

To assess the precision of the HFR outcomes acquired in this study, we additionally con-
ducted atomic structure computations employing the Multi-Configuration Dirac-Hartree-Fock
(MCDHF) method (Grant, 2007). Two samarium ions were selected for this purpose, namely
Sm VI and Sm VII. The MR was chosen in each of these ions to take into account the config-
urations from which the radiative transitions were calculated. Then, by adding SD excitations
involving only valence electrons (i.e. outside the Pd-like 4d10 core) on the one hand, and be-
tween core and valence electrons on the other hand, valence-valence (VV) and core-valence
(CV) correlations were taken into account.

Concerning Sm VI, the MR was composed of the 5s25p64f3, 5s25p64f5d2 odd- and 5s25p64f25d,
5s25p65d3 even-configurations. The orbitals from 1s to 4f were optimized on the ground config-
uration (5s25p64f3) while 5d was optimized using all the MR configurations, keeping all other
orbitals fixed. Two VV models were built by adding SD excitations from 5s, 5p, 5d, 4f to {5s,
5p, 5d, 5f, 5g} (VV1) and to {6s, 6p, 6d, 6f, 5g} (VV2) active sets. From the latter, a CV model
was then built by adding SD excitations from the 4d core orbital to the MR valence orbitals,
namely 5s, 5p, 5d and 4f. This gave rise to a total of 1 675 493 configuration state functions
(CSFs) for both parities.

In the case of Sm VII, the 5s25p54f3, 5s25p64f2, 5s25p65d2 even- and the 5s25p64f5d, 5s25p55d3

odd-configurations were included in the MR in which 1s to 4f and 5d orbitals were optimized
on the ground configuration (5s25p54f3) and on all MR configurations, respectively. In VV1 and
VV2 models, SD excitations from MR orbitals to the {5s, 5p, 5d, 5f, 5g} and {6s, 6p, 6d, 6f, 5g}
active sets were considered. A CV model was then built from VV2 by adding single excitations
from 4d to 5s, 5p, 5d and 4f subshells (MR orbitals). This led to a calculation involving 1
581 536 CSFs for both parities together. Table 3.19 summarizes all the configurations and
dimensions concerning these two Sm ions for MCDHF calculations.
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Table 3.19: Computational strategies used in MCDHF calculations for Sm VI and Sm VII ions.

Calculation Sm VI Sm VII
MR Odd parity Even parity

5s25p64f3 5s25p54f3

5s25p64f5d2 5s25p64f2

5s25p65d2

Even parity Odd parity
5s25p64f25d 5s25p64f5d
5s25p65d3 5s25p55d3

VV1 {5s,5p,5d,5f,5g} {5s,5p,5d,5f,5g}
VV2 {6s,6p,6d,6f,5g} {6s,6p,6d,6f,5g}
CV {5s,5p,5d,4f} {5s,5p,5d,4f}
CSFs 1 675 493 1 581 536

As mentioned in Table 3.18, Sm ions produce a very large number of spectral lines when in-
cluding all the configurations listed in Table 3.17 in HFR method. Assessing the accuracy of
the radiative parameters obtained for such a large number of transitions is undoubtedly illu-
sory, but one can get a rough idea by contrasting our HFR data with those derived from the
MCDHF calculations carried out in this work for these two specific ions, Sm VI and Sm VII. In
order to do that, we perfomed a comparison for transitions involving the ground configurations
(5p64f3 for Sm VI and 5p54f3 for Sm VII). We found a satisfactory overall agreement between
the HFR gf -values and the MCDHF data obtained in the Babushkin gauge, the average ratios
gfHFR/gfMCDHF being equal to 0.88 and 0.99 for Sm VI and Sm VII, respectively, with a disper-
sion of the order of a factor of two in both cases. We also observed that, for the same transitions,
the average differences between the MCDHF oscillator strengths calculated within the Coulomb
and Babushkin gauges were approximately 30% (Sm VII) and 50% (Sm VI). Therefore, we will
roughly assume that, for the most intense lines at least, the HFR oscillator strengths calculated
in this work are accurate to within a factor of 2. For Sm VI and Sm VII, in this work, we
only compared transitions involving the ground level because these configurations were used
to optimize all orbitals, from 1s to 4f, in our MCDHF calculations. Additionally, it was really
challenging to establish a clear relationship between the MCDHF and HFR results for other
transitions.

An additional method of evaluating the reliability of our HFR gf -values is to take into account
the cancellation factor (CF) (Cowan, 1981) associated to every computed transition. A very
small value of this factor (usually less than 0.05) suggests that there may be more uncertainty
affecting the corresponding oscillator strength. Our calculations confirmed that the CF was
larger than 0.05 for the great majority of the strongest transitions (with log(gf ) ≥ -2), which
contributed the most to the opacity. Figure 3.14 provides an illustration of this, displaying the
CF-values for each transition computed in Sm VI as a function of log(gf ).
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Figure 3.14: Cancellation factor (CF) for each Sm VI transition taken into consideration in the present
work as a function of log(gf ). The average CF as a function of oscillator strength is represented by the
red curve, CF = 0.05 is represented by the green straight line, and the grey dots represent the CF-values
obtained by HFR calculations for each of the transitions.

3.1.7 Eu V–VII to Lu V–VII
In this section, we provide atomic results for Eu V–VII to Lu V–VII. We do not talk about

VIII to X charge state in this section since the atomic data with our computational methods
were not been calculated. Indeed, for these latter ions, the extremely complex configurations
(with open 5p and 4f subshells) lead, on the one hand, to very large Hamiltonian matrices which
can be very challenging to diagonalize and, on the other hand, to a huge number of radiative
transitions (up to several hundred millions) which are difficult to manipulate with the Cowan’s
code. This problem was overcome by the use of a statistical approach, described in the Chapter
5, making it possible to obtain the atomic data required to calculate the opacities.

For each ion considered in the present section, the configurations introduced in HFR compu-
tations are listed in Table 3.20. In the same table, we give the number of radiative transitions
involving energy levels below the ionization potential and for which log(gf )-values ≥ −5 in
our calculations. Using the ionization potentials from the NIST database (Kramida et al., 2024)
it produced a total of approximately 800 million transitions for the entire set of ions that were
taken into consideration in our work. The number of transitions for a single ion ranged from a
few tens of thousands to a few tens of millions. As reminded in Section 2.1.6, the Slater inte-
grals (F k, Gk, and Rk) were scaled down by a factor of typically 0.90 in our HFR calculations
in order to more accurately represent the experimental energy structure in the lanthanide ions
taken into consideration.

For these ions, there is unfortunately no experimental data or theoretical data published yet,
except for Yb V and Lu V, for which Meftah et al. (2013) (Yb V), Kaufman and Sugar (1978)
(Lu V), and Ryabtsev et al. (2015) (Lu V) published experimental and theoretical levels and
transitions. In this last section concerning atomic data, we propose a comparison between our
theoretical (HFR and MCDHF) results for these two ions and also with the experimental data
available in the literature.
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Table 3.20: Configurations introduced in HFR for Eu V–VII to Lu V–VII.

Ion Configurations Number of lines

Eu V 5s25p64f5, 5p54f6, 5p64f35d2,5p64f36s2, 5p64f4nf (n = 5 − 8),
5p64f4np (n = 6−8), 5p64f4ns (n = 6−8), 5p64f4nd (n = 5−8),
5p64f4ng (n = 5− 8), 5p54f55d

39 109 459

Eu VI 5s25p64f4, 5s25p54f5, 5s25p64f25d2, 5s25p64f26s2,5s25p64f26p2,
5s25p64f25d6s, 5s25p64f3nf (n = 5−8), 5s25p64f3np (n = 6−8),
5s5p64f4nd (n = 5 − 8), 5s5p64f4ns (n = 6 − 8), 5s25p65d3np
(n = 6− 8), 5s25p65d3nd (n = 5− 8), 5s25p65d3nf (n = 6− 8),
5s25p65d3ns (n = 6 − 8), 5s25p64f3ns (n = 6 − 8), 5s25p64f3nd
(n = 5 − 8), 5s25p64f3ng (n = 5 − 8), 5s25p54f45d, 5s25p54f4ns
(n = 6− 7), 5s5p64f4np (n = 6− 8), 5s25p64f25d6p

37 939 936

Eu VII 5s25p64f3, 5s25p64f2nf (n = 5 − 8)), 5s25p64f2np (n = 6 − 8),
5s5p64f3nd (n = 6 − 8), 5s5p64f3ns (n = 6 − 8), 5s25p65d2np
(n = 6 − 8), 5s25p65d2nf (n = 5 − 8), 5s25p54f4, 5s25p5,4f36p,
5s25p65d3, 5s25p54f35d, 5s25p54f3ns (n = 6 − 8), 5s25p65d2nd
(n = 6 − 8), 5s25p65d2ns (n = 6 − 8), 5s25p64f2nd (n = 5 − 8),
5s25p64f2ns (n = 6 − 8), 5s25p64f2ng (n = 5 − 8), 5s5p64f4,
5s5p64f3np (n = 6− 8)

5 885 552

Gd V 5s25p64f6, 5p54f7, 5p64f55f, 5p64f56p, 5p64f55g, 5p64f55d,
5p54f65d

17 429 441

Gd VI 5s25p64f5, 5p54f6, 5p64f35d2,5p64f36s2, 5p64f4nf (n = 5 − 8),
5p64f4np (n = 6−8), 5p64f4ns (n = 6−8), 5p64f4nd (n = 5−8),
5p64f4ng (n = 5− 8), 5p54f55d

43 285 559

Gd VII 5s25p64f4, 5s25p54f5, 5p54f46p, 5s25p64f25d2,
5s25p64f26s2,5s25p64f26p2, 5s25p64f25d6s, 5s25p64f3nf
(n = 5 − 8), 5s25p64f3np (n = 6 − 8), 5s5p64f4nd (n = 5 − 8),
5s5p64f4ns (n = 6 − 8), 5s25p65d3np (n = 6 − 8), 5s25p65d3nd
(n = 5 − 8), 5s25p65d3nf (n = 6 − 8), 5s25p65d3ns (n = 6 − 8),
5s25p64f3ns (n = 6 − 8), 5s25p64f3nd (n = 5 − 8), 5s25p64f3ng
(n = 5 − 8), 5s25p54f45d, 5s25p54f4ns (n = 6 − 7), 5s5p64f4np
(n = 6− 8), 5s25p64f25d6p

36 848 045

Tb V 5s25p64f7, 5s25p54f8, 5s25p64f65f, 5s25p64f66p, 5s25p64f65d,
5s25p54f75d

19 732 305

Tb VI 5s25p64f6, 5s25p54f7, 5s25p64f55f, 5s25p64f56p, 5s25p64f55g,
5s25p64f55d, 5s25p54f65d

22 760 992

Tb VII 5s25p64f5, 5s25p54f6, 5s25p64f35d2, 5s25p64f36s2, 5s25p64f4nf
(n = 5 − 8), 5s25p64f4np (n = 6 − 8), 5s25p64f4ns (n = 6 − 8),
5s25p64f4nd (n = 5− 8), 5s25p64f4ng (n = 5− 8), 5s25p54f55d

44 951 913

Dy V 5s25p64f8, 5s25p54f9, 5s25p64f75f, 5s25p64f76p, 5s25s25p64f75d,
5p54f85d

17 446 583

Dy VI 5s25p64f7, 5s25p54f8, 5s25p64f65f, 5s25p64f66p, 5s25p64f65d,
5s25p54f75d

28 090 364

Dy VII 5s25p54f7, 5s25p64f6, 5s25p64f55f, 5s25p64f56p, 5s25p64f55g,
5s25p64f55d, 5s25p54f65d

25 958 076

Ho V 5s25p64f9, 5s25p64f86p, 5s25p64f87p, 5s25p64f85f, 5s25p64f10,
5s25p64f86s, 5s25p64f87s, 5s25p64f85d, 5s25p64f86d,
5s25p54f95d

25 784 469

Ho VI 5s25p64f8, 5s25p54f9, 5s25p64f75f, 5s25p64f76p, 5s25p64f75d,
5s25p54f85d

25 463 893
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Table 3.20: Continued.

Ion Configurations Number of lines

Ho VII 5s25p64f7, 5s25p54f8, 5s25p64f65f, 5s25p64f66p, 5s25p64f65d,
5s25p54f75d

32 588 602

Er V 5s25p64f10, 5s25p64f96p, 5s25p64f97p, 5s25p64f95f, 5s25p64f96f,
5s25p54f11, 5s25p54f105d, 5s25p64f96s, 5s25p64f97s, 5s25p64f98s,
5s25p64f95d, 5s25p64f96d, 5s25p64f97d, 5s25p64f95g

22 183 496

Er VI 5s25p64f9, 5s25p64f86p, 5s25p64f87p, 5s25p64f85f, 5s25p64f10,
5s25p64f86s, 5s25p64f87s, 5s25p64f85d, 5s25p64f86d,
5s25p54f95d

27 351 536

Er VII 5s25p64f8, 5s25p54f9, 5s25p64f75f, 5s25p64f76p, 5s25p64f75d,
5s25p54f85d

30 066 536

Tm V 5s25p64f11, 5s25p64f10np (n = 6 − 8), 5s25p64f10nf (n = 5 − 8),
5s25p54f12, 5s25p54f115f, 5s25p54f116p, 5s25p64f10ns (n = 6−8),
5s25p64f10nd (n = 5−8), 5s25p64f10ng (n = 5−8), 5s25p54f11nd
(n = 5− 6), 5s25p54f116s

36 367 389

Tm VI 5s25p64f10, 5s25p64f96p, 5s25p64f97p, 5s25p64f95f, 5s25p64f96f,
5s25p54f11, 5s25p54f105d, 5s25p64f96s, 5s25p64f97s, 5s25p64f98s,
5s25p64f95d, 5s25p64f96d, 5s25p64f97d, 5s25p64f95g

23 160 749

Tm VII 5s25p64f9, 5s25p64f86p, 5s25p64f87p, 5s25p64f85f, 5s25p64f10,
5s25p64f86s, 5s25p64f87s, 5s25p64f85d, 5s25p64f86d,
5s25p54f95d

27 994 638

Yb V 5s25p64f12, 5s25p64f11np (n = 6 − 8), 5s25p64f105d2,
5s25p64f106s2, 5s25p64f105d6s, 5s25p64f11nf (n = 5 − 8),
5s25p54f13, 5s25p54f125f, 5s25p54f12np (n = 6− 8), 5s25p64f11ns
(n = 6 − 8), 5s25p64f11nd (n = 5 − 8), 5s25p64f11ng (n =
5−8), 5s25p64f105d6p, 5s25p64f106s6p, 5s25p54f12ns (n = 6−8),
5s25p54f12nd (n = 5− 8)

26 053 560

Yb VI 5p64f11, 5s25p64f10np (n = 6 − 8), 5s25p64f10nf (n = 5 − 8),
5s25p54f12, 5s25p54f115f, 5p54f116p, 5s25p64f10ns (n = 6 − 8),
5s25p64f10nd (n = 5−8), 5s25p64f10ng (n = 5−8), 5s25p54f11nd
(n = 5− 6), 5s25p54f116s

37 034 149

Yb VII 5s25p64f10, 5s25p64f96p, 5s25p64f97p, 5s25p64f95f, 5s25p64f96f,
5s25p54f11, 5s25p54f105d, 5s25p64f96s, 5s25p64f97s, 5s25p64f98s,
5s25p64f95d, 5s25p64f96d, 5s25p64f97d, 5s25p64f95g

15 209 723

Lu V 5s25p64f13, 5s25p64f12np (n = 6 − 8), 5s25p64f115d2,
5s25p64f116s2, 5s25p64f115d6s, 5s25p64f12nf (n = 5 − 8),
5s25p54f14, 5s25p54f135f, 5s25p54f13np (n = 6− 8), 5s25p64f12ns
(n = 6 − 8), 5s25p64f12nd (n = 5 − 8), 5s25p64f12ng (n =
5−8), 5s25p64f115d6p, 5s25p64f116s6p, 5s25p54f13ns (n = 6−8),
5s25p54f13nd (n = 5− 8)

3 310 355

Lu VI 5s25p64f12, 5s25p64f11np (n = 6 − 8), 5s25p64f105d2,
5s25p64f106s2,5p64f105d6s, 5s25p64f11nf (n = 5− 8), 5s25p54f13,
5s25p54f125f, 5s25p54f12np (n = 6 − 8), 5s25p64f11ns (n =
6 − 8), 5s25p64f11nd (n = 5 − 8), 5s25p64f11ng (n = 5 − 8),
5s25p64f105d6p, 5s25p64f106s6p, 5s25p54f12ns (n = 6 − 8),
5s25p54f12nd (n = 5− 8)

30 620 917

Lu VII 5s25p64f11, 5p64f10np (n = 6−8), 5p64f10nf (n = 5−8), 5p54f12,
5p54f115f, 5p54f116p, 5p64f10ns (n = 6 − 8), 5p64f10nd (n =
5− 8), 5p64f10ng (n = 5− 8), 5p54f11nd (n=5-6), 5p54f116s

33 862 758
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Concerning Yb V, Meftah et al. (2013) identified 1 080 lines using a sliding spark source,
namely the 10 m high resolution vacuum ultraviolet normal-incidence spectrograph of the
Meudon Observatory. The 13 energy levels concerning the ground configuration (4f12) were
determined by the spectrum analysis as well as the excited configurations (4f115d, 4f116s and
4f116p) which revealed 174, 12, and 43 levels, respectively.

We thus compared our HFR results with the Meftah et al. (2013) ones and found a very good
agreement between their experimental wavelengths and our wavelengths determined by HFR
calculations, i.e. the mean deviation ∆λ/λexp was found to be equal to 0.018 ± 0.044.

In addition to the HFR calculations, we performed MCDHF calculations for Yb V. The MR
set of configurations was chosen to include the 5p64f12, 5p64f116p even- and the 5p64f115d,
5p64f116s odd-parity configurations. Orbitals from 1s to 4f were optimized on all the levels
of the 5p64f12 ground configuration keeping all other orbitals fixed. A valence-valence (VV)
model was then built by adding SD excitations from 6s, 6p, 5d, 4f to all orbitals up to 6s, 6p,
5d, 5f, 5g. For the correlation orbitals 5f and 5g, they were optimized on all the levels of the
MR configurations. From the VV model, core-valence (CV) interactions were considered by
adding SD excitations from the 4d core orbital to the MR valence orbitals, namely 6s, 6p, 5d,
and 4f. This gave rise to a total of 1 924 269 configuration state functions when considering
both parities together.

The energy level values obtained in this CV model revealed a good agreement with the ex-
perimental data reported by Meftah et al. (2013), the mean deviation ∆E/Eexp (with ∆E =
EMCDHF − Eexp) being found to be equal to -0.002 ± 0.040.

The strongest Yb V lines (those with observed intensities greater than 100 × 106 s−1) were
taken from Meftah et al. (2013) and listed in Table E.1 in Appendix E. For those lines, we
also reported the values inferred from the transition probabilities (gA) computed by Meftah
et al. (2013) and the oscillator strengths (log gf ) obtained in the present work using HFR and
MCDHF methods. The mean deviation between the two calculations was found to be 24%.
Based on comparisons between these log(gf )-values, which are displayed in Figures 3.15 and
3.16, we can conclude that our HFR results are in good agreement with those obtained with the
MCDHF approach results.

The average discrepancy between the values derived from Meftah et al. (2013) and our HFR
oscillator strengths is around 5%. It is important to note that these comparisons were made
by excluding transitions affected by significant cancellation effects in HFR calculations, i.e.
for which the CF < 0.05. In Table E.1 in Appendix E, the transitions concerned are those lo-
cated at λ = 543.205 (first line), 564.458 (second line), 571.235, 583.541, 589.608, 594.713,
802.074 (second line) and 1 709.796 Å. The line at 1 577.883 Å was also excluded from the
HFR/MCDHF comparison because a very large discrepancy (more than a factor of two) was
found between the MCDHF gf -values obtained using the Babushkin and the Coulomb gauges.
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Figure 3.15: Comparison between the oscillator strengths (log(gf )) obtained in the current work using
HFR method and those deduced from the gA-values published by Meftah et al. (2013).

Figure 3.16: Comparison between the oscillator strengths (log(gf )) obtained in the current work using
HFR and MCDHF methods for Yb V.

As far as Lu V is concerned, Kaufman and Sugar (1978) classified 419 lines as transitions
among 136 energy levels belonging to the 4f13, 4f125d, 4f126s and 4f126p configurations on
the basis of observations made from a sliding spark discharge using a 10.7 m normal incidence
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spectrograph in the range of 500 – 2 100 Å. Additionally, the previous work reported, computed
energy levels obtained with a limited configuration interaction model by applying Racah alge-
bra techniques and semi-empirical adjustment of radial integrals (Racah, 1942). More recently,
Ryabtsev et al. (2015) performed parametric calculations in Lu V using HFR method. Ryabtsev
et al. (2015) identified 7 new levels using 20 experimental lines from 563 – 978 Å by comparing
their calculated transition probabilities with the line intensities taken from an unpublished line
list of wavelengths initially considered by Kaufman and Sugar (1978). Notably, these authors
only published the computed transition probabilities for these twenty transitions; no radiative
rate for the several hundred other lines that were experimentally measured in Lu V has been
published up to this point.

As for Yb V, we compared our HFR energy levels found using configurations listed in Table
3.20 for Lu V with the Kaufman and Sugar (1978) experimental ones. We found a good agree-
ment with an average relative deviation ∆E/Eexp equal to 0.004 ± 0.006. We also described
the atomic structure of Lu V using the MCDHF method with GRASP2018. The MR was de-
fined from the experimentally known configurations, i.e. 4f13, 4f125d, 4f126s and 4f126p, where
orbitals from 1s to 4f were optimized on the 4f13 ground configuration while 5d, 6s and 6p
were optimized on the 4f125d, 4f126s and 4f126p configurations and all the other orbitals being
frozen. After the MR computation, different valence-valence (VV) models, in which SD exci-
tations of valence electrons were considered in order to generate the CSF expansions. A first
VV model (VV1) was built by adding to the MR configurations, SD excitations from 4f, 5d,
6s, 6p to the {6s, 6p, 5d, 5f, 5g} active set. Only the new orbitals were optimized, the other
ones being kept to their values obtained before. The same strategy was used to build the more
elaborate valence-valence models, namely VV2 and VV3 in which the {6s, 6p, 6d, 6f, 5g} and
{7s, 7p, 7d, 6f, 5g} active sets were considered, respectively. These calculations gave rise to
415 613 (VV1), 1 327 923 (VV2) and 2 253 529 (VV3) CSFs when considering both parities
together. Finally, from the VV3 model, a CV model was built by adding SD excitations from
the 5s and 5p core orbitals to the unfilled subshells involved in the MR configurations, i.e., 4f,
5d, 6s and 6p, allowing calculations including a total of 2 301 648 CSFs. The MCDHF en-
ergy level values found in our various models were confirmed to be in a good agreement with
the available experimental data (Kaufman and Sugar, 1978; Ryabtsev et al., 2015). The mean
relative deviations ∆E/Eexp (where ∆E = EMCDHF − Eexp) are found to be equal to 0.072 ±
0.017, 0.062 ± 0.015, 0.031 ± 0.014, 0.031 ± 0.013 and 0.011 ± 0.015 when moving from the
simplest approximation (MR) to the most elaborate one (CV).

Table F.1 in Appendix F reports the oscillator strengths (log(gf )) and transition probabilities
(gA) calculated in this work with HFR and MCDHF methods for all the experimentally ob-
served lines of Lu V that were taken from Ryabtsev et al. (2015) and Kaufman and Sugar
(1978). Concerning HFR results listed in this Table, it was assessed that most of the HFR tran-
sition rates given in this Table were not affected by cancellation effects (transitions with a CF <
0.05 were indicated with ∗ symbol in that Table). The results listed in Table F.1 for the MCDHF
gA- and log(gf )-values were obtained with the CV model in the Babushkin gauge (which is
equivalent to the length formalism in the non-relativistic limit). By comparing the data com-
puted in the Coulomb gauge (velocity formalism) with the quantity dT defined by Ekman et al.
(2014) as follows, one can assess the accuracy of these radiative rates:

dT =
|AB − AC |

max(AB, AC)
, (3.1.2)
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where AB and AC are transition probabilities in Babushkin and Coulomb gauges, given that
for exact solutions of the Dirac equation, the electric dipole transition moment has the same
value in both of these gauges (Grant, 1974). The transition moment varies for approximate
solutions, and as a result, the dT parameter offers an indicator of the uncertainties surrounding
the MCDHF transition probabilities and oscillator strengths. The average dT value for the tran-
sitions shown in Table F.1 was found to be 0.101 ± 0.111, indicating that most of our MCDHF
radiative rates are not more than 20% uncertain. The table indicates the few exceptions, or tran-
sitions for which the dT value is greater than 20% (annotated by # symbol in the Table). They
only concern 38 lines among a total of 457.

The mean relative difference ∆A/max(AHFR,AMCDHF), where ∆A = AHFR−AMCDHF, was found
to be equal to -0.050 ± 0.498, indicating a reasonable overall agreement between our HFR
and MCDHF radiative rates for the entire set of transitions. Excluding the transitions for which
CF < 0.05 and dT > 0.20 in HFR and MCDHF computations respectively, was found to im-
prove the agreement between the two methods, as expected. The mean relative deviation was
lowered to -0.012 ± 0.424 in this case. Figure 3.17 plots the HFR log(gf )-values as a func-
tion of the MCDHF ones to illustrate these comparisons. We point out that recent HFR and
MCDHF calculations carried out in Lu IV showed a similar general agreement (Bokamba Mo-
toumba et al., 2020). Larger differences could be expected for lower lutetium ionization stages
given that it is more difficult to get a convergence of the results, especially when using the
MCDHF method, for neutral and weakly-ionized atoms (II–IV). Finally, we found an average
agreement of 31% and 56% for our HFR and MCDHF results, respectively, when comparing
the data obtained in the present work with the gA-value calculated by Ryabtsev et al. (2015) for
the 23 experimentally observed lines classified in their paper. Finally, it should be mentioned
that the average agreement between HFR and MCDHF transition probabilities was found to be
equal to 32%.
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Figure 3.17: Comparison between the oscillator strengths (log(gf )) calculated in the present work using
HFR and MCDHF methods for the experimentally identified spectral lines in Lu V. The top figure shows
all the transitions and the bottom one includes only transitions for which CF > 0.05 and dT < 0.20
in HFR and MCDHF calculations, respectively. The dashed line represents the strict equality and the
dotted lines correspond to an agreement of a factor two between both sets of results.
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3.2 Ground states for La V–X to Sm V–X and Eu V–VII to
Lu V–VII

From our HFR calculations described in the previous section, we have been able to deduce
the ground state energy level for each ion of interest in this work which remains unclear in the
literature. Some studies such as Kilbane and O’Sullivan (2010) and Banerjee et al. (2023) in-
dicate ground configurations for moderately-ionized lanthanide atoms without mentioning the
spectroscopic designation. Moreover, some ground configurations from those papers are not
matching with the ones that we calculated with HFR. In the last section of this chapter, we pro-
pose a detailed comparison between the results coming from these studies and those from our
work.

In Table 3.21, the ground state levels are listed for La V–X to Sm V–X ions. For lanthanum and
cerium ions, the ground configurations calculated with HFR method agree with the ones listed
in the NIST database and the ones from Kilbane and O’Sullivan (2010) as well as Banerjee et al.
(2023) papers. It can be noticed, for Pm VII, Pm VIII, Sm VII and Sm VIII, ground configu-
rations from the Kilbane and O’Sullivan (2010) paper are not in a good agreement with those
listed in Banerjee et al. (2023) paper and ours. The former paper is based on HFR calculations.
In this paper, in order to determine the ground level, they consider the lowest average energy of
a configuration among all of the configurations introduced. Nevertheless, the ground state can
have a lower energy than this average energy (i.e. the lowest average energy of a configuration
among all of the ones introduced in the model) considered leading thus to an inadequate con-
sideration of the ground configuration. Finally, although for Pr VII–X, Nd VI–X, Pm VI–X and
Sm VII–X, the ground configurations found with the HFR method are not the same as the ones
found in the NIST database, we confirm the recent results from the Banerjee et al. (2023) paper
for most ions, the only exception occurring for Pm VII.

The difficulty of determining the ground configuration of such ions, namely Pr V–X, Nd V–X,
Pm V–X and Sm V–X is related to the collapse of the 4f orbital. Indeed, for some lanthanide
ions, configurations of the type 5s25pk, 5s25pk−14f, 5s25pk−24f2, 5s25pk−34f3 are often strongly
mixed and cross each other in the energy spectrum, leading even to modifications of the ground
configurations along isoelectronic sequences. This is illustrated in Figure 3.18 where the HFR
average energies are shown for Cs-like, Xe-like, I-like and Te-like ions.
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Table 3.21: Ground configurations and ground levels of La V–X to Sm V–X ions.

Z Ion Ground configuration Ground level
NISTa Kilbaneb Banerjeec This work This work

57 La V 5p5 5p5 5p5 5p5 2P3/2

La VI 5p4 5p4 5p4 5p4 3P2

La VII 5p3 5p3 5p3 5p3 4S3/2

La VIII 5p2 5p2 5p2 5p2 3P0

La IX 5p 5p 5p 5p 2P1/2

La X 5s2 5s2 5s2 5s2 1S0

58 Ce V 5p6 5p6 5p6 5p6 1S0

Ce VI 5p5 5p5 5p5 5p5 2P3/2

Ce VII 5p4 5p4 5p4 5p4 3P2

Ce VIII 5p3 5p3 5p3 5p3 4S3/2

Ce IX 5p2 5p2 5p2 5p2 3P0

Ce X 5p 5p 5p 5p 2P1/2

59 Pr V 5p64f 5p64f 5p64f 5p64f 2F5/2

Pr VI 5p6 5p6 5p6 5p6 1S0

Pr VII 5p44f 5p5 5p5 5p5 2P3/2

Pr VIII 5p34f 5p4 5p4 5p4 3P2

Pr IX 5p24f 5p3 5p3 5p3 4S3/2

Pr X 4f2 5p2 5p2 5p2 3P0

60 Nd V 5p64f2 5p64f2 5p64f2 5p64f2 3H4

Nd VI 5p54f2 5p64f 5p64f 5p64f 2F5/2

Nd VII 5p44f2 5p6 5p6 5p6 1S0

Nd VIII 5p34f2 5p5 5p5 5p5 2P3/2

Nd IX 5p24f2 5p34f 5p3 4f 5p34f 5F3

Nd X 5p4f2 5p24f 5p24f 5p24f 4G5/2

61 Pm V 5p64f3 5p64f3 5p64f3 5p64f3 4I9/2
Pm VI 5p54f3 5p64f2 5p64f2 5p64f2 3H4

Pm VII 5p44f3 5p64f 5p54f2 5p64f 2F5/2

Pm VIII 5p34f3 5p54f 5p44f2 5p44f2 5H4

Pm IX 5p24f3 5p34f2 5p34f2 5p34f2 6H9/2

Pm X 5p4f3 5p24f2 5p24f2 5p24f2 5I4
62 Sm V 5p64f4 5p64f4 5p64f4 5p64f4 5I4

Sm VI 5p64f3 5p64f3 5p64f3 5p64f3 4I9/2
Sm VII 5p44f4 5p64f2 5p54f3 5p54f3 5H3

Sm VIII 5p34f4 5p54f2 5p44f3 5p44f3 6H5/2

Sm IX 5p24f4 5p34f3 5p34f3 5p34f3 7I4
Sm X 5p4f4 5p24f3 5p24f3 5p24f3 6K9/2

a Kramida et al. (2024)
b Kilbane and O’Sullivan (2010)
c Banerjee et al. (2023)
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Figure 3.18: Calculated average energies for low-lying configurations in Cs-like, Xe-like, I-like and Te-
like Pr, Nd, and Pm ions.

As for La V–X to Sm V–X, we also have been able to deduce the ground level for Eu V–VII
to Lu V–VII ions. In Table 3.22, we compared the ground configurations obtained from our
HFR models with those published previously by Kilbane and O’Sullivan (2010), Banerjee et al.
(2023) and by the NIST database Kramida et al. (2024). For determining the ground states,
they were systematically obtained with the whole set of configurations included in the physical
models in HFR method, thus allowing all these configurations to influence the determination
of the ground level. Banerjee et al. (2023) followed a different strategy using HULLAC code
(Hebrew University Lawrence Livermore Atomic Code) developed by Bar-Shalom et al. (2001)
to deduce the ground configurations in lanthanide ions. This study is based on the use of differ-
ent central potentials in their HULLAC models calculated by changing the electron distribution
in 4f and 5p orbitals and optimizing for energy levels belonging to different sets of configura-
tions. It is worth mentioning that the 5s, 5p and 4f orbitals, which are very close to each other
in the considered lanthanide ions, play a key role in determining the ground configuration. In
our HFR calculations, these orbitals are different for each configuration. This gives confidence
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in the designation of the ground state established on the basis of orbitals which are specific to
the configuration to which they belongs. For most of the ions listed in this Table, we obtain
the same results as the ones published by Banerjee et al. (2023). The only exception are for
Pm VII (as mentioned earlier), Eu VII, Gd VII, Tb VII for which our calculations give ground
configurations of the type 5p64fk, instead of 5p54fk+1 for Banerjee et al. (2023), with k = 1, 3,
4, 5, respectively. It is important to note that the ground configurations for two of these ions
(Pm VII and Tb VII) that we calculated (5p64f and 5p64f5) were not included in the theoretical
models of Banerjee et al. (2023), whereas the ground configurations obtained by these authors
were all included in the physical models that we took into consideration for all of the ions listed
in Table 3.22. We also compared our results with the ones published by Kilbane and O’Sullivan
(2010). Our results are in good agreement except for Dy VII.

We also compared our results with the ones available in the NIST database (Kramida et al.,
2024) and noticed that the latter disagree with our results as well as with those of Kilbane and
O’Sullivan (2010) and Banerjee et al. (2023) for many ions. This was to be expected given
the relatively simple theoretical calculations (the majority of which date back to the 1970s),
performed in various approximations (Carlson et al., 1970; Martin et al., 1978; Sugar and Kauf-
man, 1970; Rodrigues et al., 2004) and used to designate the ground levels for moderately- and
highly-ionized lanthanides in the NIST compilation.

Table 3.22: Ground configurations and ground levels of Eu V–VII to Lu V–VII ions.

Z Ion Ground configuration Ground level
NISTa Kilbaneb Banerjeec This work This work

63 Eu V 5p64f5 5p64f5 5p64f5 5p64f5 6H5/2

Eu VI 5p54f5 5p64f4 5p64f4 5p64f4 5I4
Eu VII 5p44f5 5p64f3 5p54f4 5p64f3 4I9/2

64 Gd V 5p64f6 5p64f6 5p64f6 5p64f6 7F0

Gd VI 5p54f6 5p64f5 5p64f5 5p64f5 6H5/2

Gd VII 5p44f6 5p64f4 5p54f5 5p64f4 5I4
65 Tb V 5p64f7 5p64f7 5p64f7 5p64f7 8S7/2

Tb VI 5p54f7 5p64f6 5p64f6 5p64f6 7F0

Tb VII 5p34f8 5p64f5 5p54f6 5p64f5 6H5/2

66 Dy V 5p64f8 5p64f8 5p64f8 5p64f8 7F6

Dy VI 5p54f8 5p64f7 5p64f7 5p64f7 8S7/2

Dy VII 5p44f8 5p64f6 5p54f7 5p54f7 9P5

67 Ho V 5p64f9 5p64f9 5p64f9 5p64f9 6H15/2

Ho VI 5p54f9 5p64f8 5p64f8 5p64f8 7F6

Ho VII 5p44f9 5p64f7 5p64f7 5p64f7 8S7/2

68 Er V 5p64f10 5p64f10 5p64f10 5p64f10 5I8
Er VI 5p54f10 5p64f9 5p64f9 5p64f9 6H15/2

Er VII 5p44f10 5p64f8 5p64f8 5p64f8 7F6

69 Tm V 5p64f11 5p64f11 5p64f11 5p64f11 4I15/2
Tm VI 5p54f11 5p64f10 5p64f10 5p64f10 8I8
Tm VII 5p44f11 5p64f9 5p64f9 5p64f9 6H15/2

70 Yb V 5p64f12 5p64f12 5p64f12 5p64f12 3H6

Yb VI 5p54f12 5p64f11 5p64f11 5p64f11 4I15/2
Yb VII 5p44f12 5p64f10 5p64f10 5p64f10 5I8

71 Lu V 5p64f13 5p64f13 5p64f13 5p64f13 2F7/2

Lu VI 5p64f12 5p64f12 5p64f12 5p64f12 3H6

Lu VII 5p44f13 5p64f11 5p64f11 5p64f11 4I15/2
a Kramida et al. (2024)
b Kilbane and O’Sullivan (2010)
c Banerjee et al. (2023)



Chapter 4

Astrophysical opacity calculations using
pseudo- and fully-relativistic atomic data

In this chapter, we first explain the expansion formalism used to compute opacities. Then,
astrophysical conditions necessary to compute opacities for lanthanide ions of interest in this
work are detailed. After that, the influence of some important parameters such as cancellation
factor (CF), scaling factor (SF), cut-off on oscillator strengths and the use of realistic partition
functions instead of approximating the latter by only considering the statistical weight of the
ground level on the computed opacity is also studied. Then, radiative parameters calculated and
presented in Chapter 3 were used to compute opacities via the expansion formalism for all the
lanthanide ions from the V to the VII charge state. The line-binned formalism is also explained
and compared with the latter for a few ions of a specific lanthanide, namely Sm ions. Finally,
Planck mean opacities are given for all the moderately-charged lanthanide ions, to find out the
opacities of which elements are dominant depending on the temperature.

4.1 Expansion formalism
Kilonova light curves are highly dependent on the bound-bound opacity of the r-process

element within the ejecta (Just et al., 2022). The matter is ejected at a high velocity and expands
quickly in neutron star mergers. As a result, the photons gradually interact with spectral lines
and undergo continuous redshift in a comoving frame. It is important to note that these lines are
not exactly straight but rather widened by a number of processes, primarily thermal motion in
the neutron star merger ejecta. The opacity is the average contribution from several lines within
a particular wavelength range if the lines do not overlap, indicating that photons interacting
with different lines are independent. Therefore, these bound-bound opacities can be evaluated
using the expansion formalism (Karp et al., 1977; Eastman and Pinto, 1993; Kasen et al., 2006)
according to which the contributions of a large number of lines to the monochromatic opacity
are approximated by a discretization involving the summation of lines falling within a spectral
width, while the radiative transfer is considered in the Sobolev (1960) approximation. More
precisely, in this approach, the bound-bound opacity is calculated using the expression

κbb(λ) =
1

ρct

∑
l

λl
∆λ

(1− e−τl), (4.1.1)

where ρ (in g cm−3) is the density of the ejecta, c (in cm s−1) is the speed of light, t (in s) is the
elapsed time since ejection, λ (in Å) is the central wavelength within the region of width ∆λ,
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λl are the wavelengths of the lines appearing in this range and τl are the corresponding optical
depths. The latter are expressed using the following expression (Sobolev, 1960):

τl =
πe2

mec
flnltλl, (4.1.2)

where e (in C) is the elementary charge, me (in g) is the electron mass, fl (dimensionless) is the
oscillator strength, and nl (in cm−3) is the density of the lower level of the transition. Since the
local thermodynamic equilibrium (LTE) is assumed in this formalism (Pognan et al., 2022), nl

can be expressed using the Boltzmann distribution according to the statistical weight g0 and the
density n0 of the ground state as

nl = n0
gl
g0
e−El/kBT , (4.1.3)

where kB is the Boltzmann constant (in cm−1K−1), T (in K) is the temperature and gl and El

(in cm−1) are respectively the statistical weight (defined as gl = 2Jl +1, Jl being the total elec-
tronic angular momentum of the atom in the level l) and the energy (as measured with respect
to the ground level) or the excitation potential of the lower level of the transition.

Summing Eq. (4.1.3) over all the levels of the considered ion, we obtain:

n =
∞∑
l=0

nl =
n0

g0

∞∑
l=0

gl e
−El/kBT , (4.1.4)

where n is the ion density, defined according to Banerjee et al. (2020) by the formula

n =
ρ

Amp

Xj, (4.1.5)

in which A is the mass number, mp is the proton mass (in g) and Xj is the relative ionic fraction
of the j th ionization state. Introducing the partition function U(T ) defined as

U(T ) =
∞∑
l=0

gl e
−El/kBT , (4.1.6)

Eq. (4.1.4) becomes
n0

g0
=

n

U(T )
. (4.1.7)

As a consequence, the Boltzmann distribution given by Eq. (4.1.3) can be written as

nl =
n

U(T )
gl e

−El/kBT , (4.1.8)

and therefore Eq. (4.1.2) can read as:

τl =
πe2

mec

nλlt

U(T )
glfle

−El/kBT . (4.1.9)

All the opacities presented in this work have been computed using a python code that we de-
veloped, enabling the consideration of the huge number of lines possible for each lanthanide
ion.



Astrophysical conditions 103

4.2 Astrophysical conditions
In Eq. (4.1.1), some parameters are important to highlight, namely the density of the ejecta,

ρ, the time post-merger, t, and the temperature, T , hidden in the Sobolev optical depth Eq. (4.1.2).
Moderately-charged lanthanides (from V to X charge state) are expected to be present in early-
phase kilonovae according to radiative transfer simulations (Banerjee et al., 2023). Typical
early-phase kilonova ejecta conditions for t = 0.1 day post-merger are a density around ρ =
10−10 g cm−3 and temperatures T > 20 000 K. Within the LTE assumption, the ionic frac-
tion abundance for each species for a given temeperature can be determined by using the Saha
equation defined as:

nj

nj−1

=
Uj(T )Ue(T )

Uj−1(T )ne

e−χj−1/kBT , (4.2.1)

where nj−1 is the density of the ion in the j − 1 charge state, ne is the electron density, χj−1 is
the ionization potential of the ion in the j − 1 charge state, Uj(T ) and Uj−1(T ) are the partition
functions of the ion in the j and j − 1 charge states, respectively.

By executing a python code that we developed, we have been able to evaluate the partition
functions corresponding to La V–X to Sm V–X by using our complete set of HFR levels in the
Saha equation. These new partition functions, completed by those obtained for La I–IV to Sm
I–IV by using the corresponding energy levels taken from the NIST database (Kramida et al.,
2024) were incorporated into the Saha equation to determine the relative number of lanthanide
atoms in different ionization stages, assuming a pure gas of the relevant lanthanide. In these
calculations, we also included the relevant ionization potentials tabulated at NIST, mentioned
in Table 3.2, 3.6, 3.9, 3.12, 3.15, 3.18, and electron densities estimated from the mass density
of the kilonova ejecta, i.e. from ρ = 10−13 g cm−3 to ρ = 10−10 g cm−3 when going from
the first ionization degrees (I–IV) to higher ones (V–X), as suggested by Gaigalas et al. (2019)
and Banerjee et al. (2020), respectively. It allowed us to precisely know the temperatures corre-
sponding to the maximum ionic abundance for each lanthanide considered in the present study.
This is represented in Figures 4.1 to 4.6 showing the relative ionic fractions as a function of
temperature. It can be seen from these Figures that the maximum abundance for a specific ion-
ization degree are located around the same temperature regardless of the lanthanide considered,
e.g. the maximum for the VII charge state is always around T = 40 000 K. In Table 4.1 all
the temperatures for each maximum of abundances for moderately-charged lanthanide ions are
given.
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Figure 4.1: Relative ionic abundances for La I–X species as a function of temperature.

Figure 4.2: Relative ionic abundances for Ce I–X species as a function of temperature.

Figure 4.3: Relative ionic abundances for Pr I–X species as a function of temperature.
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Figure 4.4: Relative ionic abundances for Nd I–X species as a function of temperature.

Figure 4.5: Relative ionic abundances for Pm I–X species as a function of temperature.

Figure 4.6: Relative ionic abundances for Sm I–X species as a function of temperature.
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Table 4.1: Temperatures (in K) corresponding to the maximum abundance for each of the moderately-
charged lanthanide ions.

Spectra La Ce Pr Nd Pm Sm
V 25 000 24 600 25 000 24 000 24 000 24 700
VI 31 000 32 000 33 000 33 000 39 000 34 000
VII 38 000 39 000 40 000 40 000 42 000 42 000
VIII 45 000 45 000 45 000 47 000 49 000 49 000
IX 53 000 53 000 55 000 56 000 58 000 59 000
X 62 000 66 000 68 000 65 000 67 000 68 000

4.3 Impact of using realistic partition functions in Sobolev
optical depth

In some papers from other groups (Gaigalas et al., 2019; Tanaka et al., 2020; Banerjee et al.,
2020, 2022, 2023), the statistical weight of the ground level (g0) is used instead of using the
partition function in the evaluation of the Sobolev optical depths, namely in Eq. (4.1.9). That
implies a major impact on the opacities as the partition function depends on the temperature
while g0 is independent from the latter. This can be illustrated in Figure 4.7 where the partition
function U(T ) is plotted as a function of the temperature T (K) for a typical lanthanide, namely
Sm VII. For T larger than 20 000 K, i.e. typically conditions for early-phase kilonova ejecta
where moderately-charged lanthanides are expected to be present, we can notice that there
is almost two orders of magnitude of difference between g0 and U(T ). This largely impacts
the opacity as it can be seen in Figure 4.8 where the blue curve corresponds to the opacity
of Sm VII calculated by approximating the partition function U(T ) by g0, and the green one
represents the opacity of Sm VII obtained when using the partition function estimated taking all
the energy levels deduced from our HFR calculations. The opacity obtained using U(T ) = g0 is
overestimated, i.e. there is almost two orders of magnitude of difference. Consequently, using
g0 is inadequate for calculating opacities for these ions encountered in the ejecta of early-phase
kilonovae.

Figure 4.7: Partition function U(T ) of Sm VII as a function of the temperature using HFR data (orange)
and the statistical weight of the ground state (g0 = 7) of Sm VII (green)
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Figure 4.8: Expansion opacities for Sm VII calculated with ρ = 10−10 g cm−3, t = 0.1 d, T = 42 000 K
using, respectively, the statistical weight of the ground state (g0 = 7) (blue) and the partition function
U(T) taking into account all the levels introduced in our HFR calculations (green).

4.4 Impact of atomic computations on the opacities
Before showing expansion opacities for moderately-charged (V–VII) lanthanides, it is im-

portant to show the influence of some parameters related to the atomic calculations on the
opacities. In a first step, we studied the influence of oscillator strengths on opacities. Indeed,
we show for a specific ion, Ce VI, the impact of taking transitions obtained with HFR method
characterized by a log(gf ) ≥ -2 (blue curve), log(gf ) ≥ -5 (orange curve) and log(gf ) ≥ -6
(green curve) in Figure 4.9. As it can be noticed from this Figure, the opacity reaches a con-
vergence when all the transitions with log(gf ) ≥ -5 are taken into account. There is, therefore,
no need to calculate transitions with log(gf ) ≤ -6 (which increase the computational time as
well as the memory size) since it induces marginal changes to the opacity. Because of this, all
the transitions obtained by HFR method listed in the Tables mentioned in the Section 3.1, are
transitions with log(gf ) ≥ -5 involving energy levels below the ionization potentials. This con-
vergence of expansion opacities is also highlighted in Fontes et al. (2020) who demonstrated in
Figure 11 of their paper that, in the case of neutral neodymium, the opacities no longer varied
when including transitions with log(gf ) < -5.

Figure 4.9: Expansion opacities of Ce VI for conditions such as ρ = 10−10 g cm−3, t = 0.1 d and
T = 32 000 K with transitions characterized by a log(gf ) ≥ -2 (blue), log(gf ) ≥ -5 (orange) and
log(gf ) ≥ -6 (green).
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We also studied the impact of the cancellation factor (CF) on opacities. Indeed, according to
Cowan (1981), very small values of this factor (namely CF< 0.05) suggest that the correspond-
ing transition rates should be taken with caution. Although these effects are limited to weak
transitions (cf. Figure 3.14) we have examined their impact on the entire spectral range under
consideration in this work. In order to do this, we compared in Figure 4.10 the opacities ob-
tained using all the transitions (with log(gf ) ≥ -5) calculated using HFR method with those
deduced from transitions for which CF ≥ 0.05. This Figure illustrates how the cancellation
effects are spread fairly uniformly across the spectrum, suggesting that they are wavelength-
independent. Consequently, the opacity calculations of the corresponding transitions does not
significantly affect any particular spectral region, allowing the uncertainties on the computed
atomic transition rates resulting from strong cancellation effects to be distributed uniformly
across the opacities in the entire spectrum.

Figure 4.10: Expansion opacities of Nd IX for conditions such as ρ = 10−10 g cm−3, t = 0.1 d and
T = 56 000 K considering all the transitions (orange) and only transitions characterized by CF ≥ 0.05
(blue).

The sensitivity of the opacities to the arbitrary scaling factor (SF) in HFR computations was also
examined. In accordance with Cowan (1981)’s recommendation, which is discussed in Section
2.1.6, we multiplied all of the Slater electrostatic interaction integrals (F k, Gk, and Rk) by a
scaling factor of 0.90. We calculated the opacities with atomic data from HFR calculations,
using scaling factors of 0.80, 0.85, and 0.95 to investigate the impact of this decision. We
discovered that the choice of scaling factors (SF) in the atomic calculations did not significantly
affect the overall properties of opacities, as shown in Figure 4.11, which compares the Nd IX
opacities obtained using HFR atomic data with SF = 0.80, 0.85, 0.90, and 0.95.
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Figure 4.11: Expansion opacities of Nd IX for conditions such as ρ = 10−10 g cm−3, t = 0.1 d and
T = 56 000 K using different scaling factors (0.80 in green, 0.85 in black, 0.90 in orange and 0.95 in
blue).

Finally, since this work involved several MCDHF calculations for selected ions, namely La
V, La VIII, La X, Ce V, Ce VIII, Ce X, Pr V, Pr X, Nd V, Nd VI, Pm VI, Pm IX, Sm VI,
Sm VII, Yb V and Lu V, it was intriguing to look at the impact of the Babushkin (length)
or Coulomb (velocity) gauges used in the oscillator strength calculations for a specific ion,
namely Nd IX. The opacity of the latter obtained in both formalisms using the MCDHF radiative
rates are compared in Figure 4.12. With the relative difference between the two calculations
only exceeding a few percents in some specific cases corresponding to very low opacities at
wavelengths larger than 7 000 Å, it is evident that the choice of gauge has no significant impact
on the deduced opacities.
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Figure 4.12: Expansion opacities of Nd IX for conditions such as ρ = 10−10 g cm−3, t = 0.1 d and
T = 56 000 K using MCDHF results (upper panel). Relative difference between both gauges (bottom
panel).
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4.5 Expansion opacities for La V–VII to Lu V–VII
After having discussed the influence of such parameters on the opacity, we calculated ex-

pansion opacities using HFR data for all lanthanides from V to VII charge states. We computed
such opacities for different temperatures, namely T = 25 000 K (Figure 4.13), 30 000 K (Figure
4.14), 35 000 K (Figure 4.15) and 40 000 K (Figure 4.16) using a density of kilonova ρ= 10−10

g cm−3 and a time post-merger t = 0.1 day. We chose these specific temperatures since the V
spectrum of all lanthanide ions starts at T = 25 000 K and the VII spectra ends around 40 000 K
approximately as it is highlighted in Figures 4.1 to 4.6. The wavelength width ∆λ in Eq. (4.1.1)
is chosen to be 1% of the wavelength at wavelengths greater than 1 000 Å and ∆λ = 10 Å for
λ < 1 000 Å.

In Figures 4.13 to 4.16, we can therefore see the opacity trend for each element depending on
the temperature. At 25 000 K, Tb and Dy ions have the highest opacity at UV ranges reaching
102 cm2 g−1 while Pr, Sm and Eu have the larger opacity in IR ranges reaching 10−2 cm2 g−1. At
40 000 K, Tb and Dy are always predominant in UV ranges reaching an opacity of 103 cm2 g−1

while their opacity decrease sharply in visible/IR to reach 10−4 cm2 g−1. La and Ce ions have
the highest opacity from visible to IR reaching 10−1 cm2 g−1.

Figure 4.13: Expansion opacities for lanthanide elements at T = 25 000 K with ρ = 10−10 g cm−3 and
a time post-merger t = 0.1 day using ∆λ = 1% of the wavelength at wavelengths greater than 1 000 Å
and ∆λ = 10 Å for λ < 1000 Å.
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Figure 4.14: Expansion opacities for lanthanide elements at T = 30 000 K with ρ = 10−10 g cm−3 and
a time post-merger t = 0.1 day using ∆λ = 1% of the wavelength at wavelengths greater than 1 000 Å
and ∆λ = 10 Å for λ < 1000 Å.

Figure 4.15: Expansion opacities of all lanthanides for T = 35 000 K with ρ = 10−10 g cm−3 and a
time post-merger t = 0.1 day using ∆λ = 1% of the wavelength at wavelengths greater than 1 000 Å
and ∆λ = 10 Å for λ < 1000 Å.



Line-binned opacities 112

Figure 4.16: Expansion opacities for lanthanide elements at T = 40 000 K with ρ = 10−10 g cm−3 and
a time post-merger t = 0.1 day using ∆λ = 1% of the wavelength at wavelengths greater than 1 000 Å
and ∆λ = 10 Å for λ < 1000 Å.

4.6 Line-binned opacities
An alternative method for computing opacities is based on the line-binned formalism (Fontes

et al., 2020). Within the latter, the opacity is calculated as:

κbbbin(ν) =
πe2

ρmec

∑
l

nlflLl(ν), (4.6.1)

where ν is the photon frequency, ρ is the mass density and Ll(ν) is the corresponding line profile
function. From the continuous expression, a discrete formula of the opacity can be obtained by
substituting 1/∆ν for the line profile:

κbbbin(ν) =
1

∆ν

πe2

ρmec

∑
l∈∆ν

nlfl, (4.6.2)

where ∆ν represents the frequency width of a bin.

Eq. (4.6.2) is independent of the expansion time, which is an advantage over methods that
assume a homologous flow, such as the expansion opacity approach. In conclusion, the two
methods, namely the expansion opacity explained in Section 4.2 and the line-binned formalism
provide the following relationship in terms of wavelength when the optical depth determined
by Eq. (4.1.2) is taken into account:

κbb =
1

∆λ

1

ρct

∑
l∈∆λ

{
λl(1− e−τl) for expansion opacity
λlτl for line-binned opacity.

(4.6.3)

The expansion and line-binned opacities for Sm V–X ions were computed using the entire set of
HFR atomic data obtained in this work in Section 3.1.6. In order to compare samarium expan-
sion opacity with the one calculated at a temperature T = 70 000 K in Banerjee et al. (2022), it
is important to consider Sm IX, such as Banerjee et al. (2022) did. Indeed, when looking at this



Line-binned opacities 113

specific temperature (T = 70 000 K) in Figure 4.17, Sm IX, Sm X and Sm XI has to be taken
into account to compute opacities. The latter were thus calculated considering a density ρ =
10−10 g cm−3 and a time after merger t = 0.1 day, as suggested by Banerjee et al. (2020) for the
early phases of kilonovae in which Sm V–XI are expected to be present. The wavelength width
appearing in Eq. (4.6.3) is chosen to be ∆λ= 10 Å. In Figure 4.18, we show the results obtained
for four specific temperatures, namely T = 25 000 K, 42 000 K, 50 000 K, and 70 000 K, the
latter considered for comparison purposes with opacities published in Banerjee et al. (2022) at
this specific temperature as mentioned before.

Over the whole wavelength range above 1 000 Å, there is good agreement between our expan-
sion and line-binned opacities in all four cases. Below this threshold, the line-binned opacities
are systematically higher by several orders of magnitude than the expansion opacities. At the
lowest temperature considered (T = 25 000 K), the differences are more noticeable than at the
highest one (T = 70 000 K). Fontes et al. (2020) and Banerjee et al. (2022) have already brought
attention to these disparities. The latter work showed that, at far UV wavelengths, usually for
λ < 2 000 Å, the use of expansion opacities for lanthanides at 0.1 day post-merger should be
considered cautiously. However, the same paper also stated that this limit was actually below
the detection range of the existing UV instruments like Swift telescope (Roming et al., 2005).

We compared our opacity results with the ones published in the Banerjee et al. (2022) paper
who performed expansion opacity calculations for three selected lanthanides, including samar-
ium, up to the XI charge state, using new atomic data obtained from the HULLAC approach
(Bar-Shalom et al., 2001). When comparing Banerjee et al. (2022) and our opacities, they show
a maximum of κexp ∼ 3×102 cm2 g−1 and κexp ∼ 1.5 ×102 cm2 g−1 at λ ∼ 500 Å respec-
tively. A bump of the order of 10 cm2 g−1 and 2 cm2 g−1 at λ ∼ 1 500 Å is also observed for
Banerjee et al. (2022) and our opacities, respectively. The opacity slowly decrease for longer
wavelengths to reach, at λ= 10 000 Å, values of about 10−3 and 10−2 cm2 g−1, in this work and
in the Banerjee et al. (2022)’s paper, respectively. These differences are most likely explained
by the fact that Banerjee et al. (2022) opacity computed with statistical weights of the ground
levels, g0, are overestimated compared to ours which included more realistic partition functions
(meaning our calculations are more accurate).

Lastly, estimating how sensitive the opacities found in this work are to the calculated radiative
data is an interesting task. As mentioned in Section 3.1.6, we made the assumption that our
HFR oscillator strengths were generally accurate to within a factor of two. It is clear from the
Eq. (4.6.3) that this uncertainty has different effects on the expansion and line-binned opacities.
In fact, an uncertainty of a factor 2 on the latter implies the same uncertainty on the opacity be-
cause the line-binned opacity is proportional to the sum of the oscillator strengths. Conversely,
the uncertainty influencing the expansion opacity depends on the various f -values associated
with the optical depth. More specifically, the uncertainty on the expansion opacity was esti-
mated to vary between 35% (for gf = 1) and a factor of 2 (for gf = 10−5) for an accuracy of a
factor of 2 on the oscillator strengths.
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Figure 4.17: Relative ionic abundances for Sm I–XI species as a function of temperature.
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Figure 4.18: Expansion and line-binned opacities of Sm ions for T = 25 000, 42 000, 50 000 and
70 000 K with a density ρ = 10−10 g cm−3 and a time after merger t = 0.1 day and using ∆λ = 1% of
the wavelength at wavelengths greater than 1 000 Å and ∆λ = 10 Å for λ < 1 000 Å.
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4.7 Planck mean opacities
As defined in Section 1.4, the Planck mean opacity is written as

κPlanck =

∫∞
0
B(λ, T )κλdλ∫∞

0
B(λ, T )dλ

, (4.7.1)

where T is the temperature (K) and B(λ, T ) is the Planck (or black-body) function defined as

Bλ,T =
2hc2

λ5
1

exp( hc
λkT

)− 1
. (4.7.2)

When calculating the Planck mean opacities with the expansion opacities obtained in Section
4.5, we computed the relative contributions of the different lanthanide elements to the kilonova
opacity between 25 000 and 40 000 K. This is reported in Figure 4.19 where the Planck mean
opacity is plotted as a function of temperature for each of the lanthanides. In this Figure, we
can notice that the opacity is dominated by Eu, Gd, Tb, Sm and Dy at 25 000 K while Tb, Dy,
Gd, Ho and Eu are predominant at 40 000 K. On the other hand, the Planck mean opacity values
for some lanthanide elements, like Ce, La, Pr, Lu, Pm, and Nd, are one order of magnitude (for
T = 40 000 K) to 2-3 orders of magnitude (for T = 25 000 K) lower than those corresponding
to the predominant elements mentioned above. These elements contribute very little to the
mean opacity over the whole temperature range. The latter statement can be seen on Figure
4.20 where we computed the Planck mean opacity as a function of the atomic number Z for
all lanthanides elements at T = 25 000 K and T = 40 000 K. We also compared our results
with the ones presented by Banerjee et al. (2023). While the maximum value of the Planck
mean opacity calculated in our work at 25 000 K agrees well with that inferred from Figure 5 of
Banerjee et al. (2023), it is important to note that the maximum opacity obtained by these latter
authors at 40 000 K is roughly three times greater than the result calculated in our work. Such
a difference could be due to the differences in the physical models considered in the respective
atomic calculations but also to the differences in the partition function calculations used for the
estimation of expansion opacities as explained in Section 4.3.
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Figure 4.19: Planck mean opacity for lanthanide elements between T = 25 000 K and T = 40 000 K.

Figure 4.20: Planck mean opacity for lanthanide elements between T = 25 000 K and T = 40 000 K as
a function of Z.



Chapter 5

Atomic data and astrophysical opacities
obtained from the Statistical Resolved
Transition Array (RTA) method

This chapter introduces a statistical method originally developed by Bauche et al. (1991,
2015) to simulate atomic data for a given ion. This chapter is a crucial part of this work since
the computational methods aforementioned show limitations for some specific lanthanide ions.
To obtain atomic data computationally, it is necessary to solve the eigenvalue equation by diag-
onalizing the Hamiltonian matrix. However, for some lanthanides ions, namely for those whose
degree of ionization is between the VIII–X, the matrix size exceeds the computational limits of
our Cowan’s code making the diagonalization impractical. It is thus extremely challenging to
solve the eigenvalue equation. To overcome this issue, we investigated a statistical approach,
the so-called Resolved Transition Arrays method (RTAs), which is based on a random-number
method and uses the properties of the array to simulate the energies and intensities of the ra-
diative lines in a realistic way. With this method, all the radial integrals appearing in compact
formulae can be found by solving the atomic structure’s radial parts, without the need of di-
agonalizing a big Hamiltonian matrix. The statistical approach can be used when the ion of
interest is a chaotic system. Indeed, in such atoms composed by subshells within a huge num-
ber of electron with sufficient basis-state mixing, i.e. quantum-chaotic systems, the probability
distribution of the line strength can be well approximated as uniform (Fujii and Berengut, 2020).

In the present chapter, we provide an extensive summary of the compact formulae (ab initio
method) that are used to determine oscillator strengths, transition wavelengths, and energy lev-
els required for the computation of expansion opacities. This method is applied to Sm VIII and
Eu VI, two ions whose atomic data were already calculated with Cowan’s code. The ab initio
statistical RTA atomic parameters is validated through comparisons with HFR calculations and
a posteriori statistical RTA calculations for such ions. Concerning the a posteriori approach, all
parameters useful to simulate the energy levels, transition wavelengths and oscillator strengths
are deduced from a full HFR calculation (i.e. the Hamiltonian is built and diagonalized). A
comparison between the opacities obtained by the full HFR method and the RTA approach (ab
initio and a posteriori methods) is also presented for the latter ions to finally apply the ab initio
statistical method to Dy VIII, a complex ion challenging to treat with the Cowan’s code.

117
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5.1 Ab initio method
In order to calculate opacities using the expansion formalism explained in Section 4.1, we

need to have access to energy levels, transitions wavelengths and oscillator strengths. These
values can be drawn randomly in Gaussian distribution. Indeed, in Figure 5.1 (top panel) which
is an example took from Bauche-Arnoult et al. (1985), all the lines from the spectra representing
Kr9+ can be approximated by a Gaussian distribution. This array (3d84s – 3d84p) is called an
Unresolved Transition Array (UTA). When highly-charged ions, such as Mo15+ or Pr32+ (mid-
dle and last panel) are considered, their lines can be represented by two different Gaussian dis-
tributions. The 3d84s – 3d84p array is then splitted into subarrays called Split-Orbit-Spin-Array
(SOSA). Actually, this appears when the spin-orbit interaction becomes larger than Coulombian
interactions, namely for moderately- or highly-charged ions. It is important to note that when
the UTA is splitted into several peaks (SOSA), the same simulation has to be performed for
each SOSA separately (Bauche et al., 2015) in order to determine the radiative parameters.

Figure 5.1: Samples of computed spectra in the 3d84s-3d84p isoelectronic series (from Bauche-Arnoult
et al. (1985)). With the exception of those whose strengths are less than 3% of the highest, all 401 lines
are represented by heights that are proportionate to their strengths. These lines have all traditionally
been increased to that 3% limit. The line spectra envelopes, for a given linewidth that is adequate for
line coalescence, are represented by the dashed curves.
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5.1.1 Energy levels
First, to compute energy levels, we need to calculate the total number of levels NC of a

configuration C. In order to do that, we have to compute the variance of the distribution of
magnetic quantum number M of a configuration C. For an lN configuration (Bauche et al.,
2015):

v(lN) = N
4l −N + 2

4l + 1

1

12
(4l2 + 4l + 3), (5.1.1)

where l is the azimuthal quantum number and N the number of electron for a given subshell.
For more complex configurations, the general formula is:

vM(C) = v(lN1lN2lN3) = v(lN1) + v(lN2) + v(lN3) + ... (5.1.2)

Once we have calculated the variance, the following compact formula Bauche et al. (2015) is
used (using the approximation of a Gaussian distribution of magnetic quantum numbers M of a
configuration C) depending on whether the configuration possesses an odd or an even number
of electrons:

NC =
2g(C)

[8πvM(C)]1/2


[
1− 1

6vM(C)
+
α4 − 3

8

]
odd[

1− 1

24vM(C)
+
α4 − 3

8

]
even

, (5.1.3)

where α4 is the kurtosis (flattening) coefficient (dimensionless) defined as µc
4/µ

c
2, the 4th cen-

tered moment over the 2nd centered moment, namely the variance. The α4 is equal to 3 for
Gaussian distributions, therefore, the last term in Eq. (5.1.3) vanishes. In Eq. (5.1.3), g(C) is
the configuration degeneracy of C (Cowan, 1981) and is calculated as (Bauche et al., 2015):

g(C) =
∏

i=1,nC

(
4li + 2

Ni

)
, (5.1.4)

where nC is the total number of open subshells in C and Ni is the number of electrons in sub-
shell i.

Using the corresponding statistical distribution (Gaussian distribution),NC energy levels,E, are
randomly selected for every electronic configuration C taken into consideration in our model.
This Gaussian distribution i.e. for a configuration C can be written:

DC(E) =
NC

2π
√
vC

exp

[
−(E − Eav)

2

2vC

]
, (5.1.5)

where Eav is the average energy of the configuration C, a radial parameter (a linear combina-
tion of radial integrals) as defined in Eq. (8.9) in Cowan (1981), which can be determined by
solving the set of radial wave equations for the electronic configuration C, here the pseudo-
relativistic Hartree–Fock equations (Cowan, 1981) and vC is the variance of the distribution
which is computed from compact formulae tabulated in Table (3.2) in Bauche et al. (2015). The
latter depends upon products of Slater and spin-orbit radial integrals obtained with the same
method as for the radial parameter Eav.
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The distribution of levels can also be calculated as a function of their total momentum quantum
number J , NC(J). This is given by Bauche and Bauche-Arnoult (1987):

NC(J) =
g(C)

vM(C)(8πvM(C))1/2
(2J + 1) exp

[
− (2J + 1)2

8vM(C)
+

α4 − 3

24

(
15(2J + 1)− 5

(2J + 1)3

2v
+

(2J + 1)5

16v2

)]
,

(5.1.6)

where the term involving α4 coefficient vanishes since α4 = 3 for Gaussian distributions. Since
NC =

∑
J NC(J), therefore, the random draw of NC(J) energy levels can be done using the

distribution DC(E) presented in Eq. (5.1.5) for each value of J .

5.1.2 Transition wavelengths
Secondly, to compute theL(Cu−Cl) transition wavelengths, λlu for each electric dipole (E1)

line of a transition array Cl − Cu between a lower configuration Cl and an upper configuration
Cu of opposite parities, we use:

λlu =
1

σlu
=

hc

(Eu − El)
, (5.1.7)

where σlu is the wavenumber calculated with the difference between El and Eu which are re-
spectively the level energy of the lower configuration Cl and the upper configuration Cu drawn
randomly (as mentioned in Section 5.1.1) that obey to the E1 selection rules.

The total number of E1 lines of a Cl − Cu array, L(Cl − Cu), is calculated by (Bauche et al.,
2015):

L(Cl − Cu) =
3√
8π
g(Cl)g(Cu) [vM(Cl) + vM(Cu)]

−3/2

×
[
1− 1

vM(Cl) + vM(Cu)

]
.

(5.1.8)

Eq. (5.1.3), Eq. (5.1.6) and Eq. (5.1.8) are an approximation explicitly written in Bauche et al.
(2015) since there is no formulae existing for the total number of the levels of a configuration
and for the total number of lines for a given E1 array, except in very simple cases such as the
nl2 configurations, where it is equal to (4l + 1), due to Pauli’s principle (Bauche et al., 2015).
These equations, written above, are therefore crucial to estimate both the number of levels and
the number of lines when using the ab initio method.

5.1.3 Oscillator strengths
Finally, the weighted oscillator strength, glflu, of each E1 line belonging to a Cl −Cu array

are determined by Cowan (1981) such as:

glflu = (3.0376 × 10−6) σlu Slu, (5.1.9)

where gl is the statistical weight of the lowest levelEl of the transition, σlu = Eu−El (in cm−1)
is obtained randomly following the procedure described in Section 5.1.1, and the line strength
Slu (in a.u.) is calculated by Slu = η(Cl −Cu)a

2
lu through a random value of the line amplitude
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alu Bauche et al. (1991) and a normalization factor η(Cl − Cu) = S(Cl − Cu)/
∑

i a
2
lu,i where

the total strength S(Cl − Cu) of the Cl − Cu array Bauche et al. (2015) is estimated as:

S(Cl − Cu) = S
(
n1l

N1+1
1 n2l

N2
2 n3l

N3
3 − n1l

N1
1 n2l

N2+1
2 n3l

N3
3

)
= 2l>

(
4l1 + 1

N1

)(
4l2 + 1

N2

)(
4l3 + 2

N3

)
[P (n1l1, n2l2)]

2,
(5.1.10)

where nili are open subshells, l> is the greater value between l1 and l2 and P (n1l1, n2l2) is the
E1 radial integral of r between the central-field monoelectronic radial function Rn1l1(r)/r and
Rn2l2(r)/r as determined by solving the radial equation.

To simulate the transition amplitudes alu, they are drawn randomly in a Gaussian distribution
centered at zero (in a.u) with a variance, va, correlated with the line wavenumber, σlu, from the
following equation (Bauche et al., 1991):

ln(va) = α + β |σ − σav|, (5.1.11)

where σ is the average of the range boundaries σ = (σ1+σ2)/2 where the values of σlu are dis-
tributed into consecutive ranges of equal widths in both sides of σav, the average wavenumber
of the Cl − Cu array.

The correlation parameters α and β appearing in Eq. (5.1.11) are determined using the following
equations (Bauche et al., 1991). To calculate the value of β, one has to find the solution of the
following implicit equation:(

X2 + 1− vw
vun

)
exp

(
X2

2

)
erfc

(
X√
2

)
= X

√
2

π
, (5.1.12)

where X = −β√vun, while the value of α is deduced from X and from the average strength of
the Cl − Cu array, Sav(Cl − Cu), as follows:

α = ln [Sav(Cl − Cu)] + ln

(
X2 + 1− vw

vun

)
− ln(X) +

1

2
ln
(π
2

)
, (5.1.13)

where Sav(Cl−Cu) = S(Cl−Cu)/L(Cl−Cu), the former term of the fraction being expressed
in Eq. (5.1.10) and the number of lines determined in Eq. (5.1.8).

In Eq. (5.1.12) and Eq. (5.1.13), vun and vw are respectively the unweighted and weighted vari-
ance of the line wavenumber σlu by the corresponding line strength Slu. They can be evaluated
by compact formulae for a Cl − Cu UTA (Moszkowski, 1962; Bauche-Arnoult et al., 1979,
1982; Karazija and Rudzikaitė, 1988; Karazija, 1991).

5.2 A posteriori method
The ab initio statistical RTA atomic parameters and opacities were tested through compar-

isons with HFR calculations and a posteriori statistical RTA calculations. The latter method
differs from the ab initio method in the sense that all parameters of the different distributions
(energy levels and amplitudes) are directly determined from the atomic data obtained after di-
agonalization of the Hamiltonian matrix using the following formulae for the mean, Qav, and
the variance, v(Q), of a quantity Q obtained through diagonalization:
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Qav =

∑
iQiwi∑
iwi

, (5.2.1)

v(Q) =

∑
i(Qi −Qav)

2wi∑
iwi

, (5.2.2)

where Qi can be the energy level Ei belonging to a configuration C or the wavenumber σlu of a
transition belonging to a Cl − Cu array and wi is the weight that can be equal to 1 (unweighted
moments) or equal to the corresponding level degeneracy gi of a level Ei belonging to a config-
uration C or equal to the corresponding line strength Slu of a transition belonging to a Cl − Cu

array (weighted moments). In this method, the correlation parameters α and β mentioned in the
previous Eq. (5.1.11) are determined through a fitting procedure.

5.3 Sm VIII and Eu VI
For both lanthanide ions presented in this section, namely Sm VIII and Eu VI, opacities

were computed using the expansion formalism as explained in Section 4.1.

Concerning Sm VIII, six configurations were included in our full HFR calculation: 5p44f3,
5p34f36p, 5p54f2 for the odd- and 5p34f35d, 5p34f36s, 5p34f37s for the even-parity. There
are six E1 transition arrays since the electric dipole transition operator is monoelectronic. The
5p54f2 configuration was only included for configuration interaction (CI) purposes; it was not a
part of any E1 transition array. Consequently, this configuration was not taken into account in
our a posteriori and ab initio statistical RTA simulations.

For Eu VI, we have chosen to consider six configurations, namely 5p64f4, 5p54f46p, 5p54f5 for
the even- and 5p54f45d, 5p54f46s, 5p54f47s for the odd-parity, in our full HFR calculation, in
our a posteriori and ab initio statistical RTA simulations. There are seven E1 transition arrays.

In the a posteriori statistical RTA simulations, we performed a statistical random draw con-
sidering both UTA and SOSA arrays since UTAs are splitted into SOSAs when the spin-orbit
becomes larger. SOSAs can be seen as a model that provides a higher resolution of the atomic
spectrum or a better wavelength distribution of the oscillator strengths. Consequently, we would
expect that the opacity simulated by SOSAs would better reproduce the one obtained using HFR
atomic radiative data. However, this is not always the case as it can be seen in Figure 5.2 where
we compared opacity for a specific array in Sm VIII i.e. 5p44f3 - 5p34f35d using atomic data
simulated using UTA and SOSA. It can be noticed that the UTA simulation matches better the
HFR opacity than the one using SOSA arrays. A converse example is illustrated in Figure 5.3
where the SOSA simulation matches better the HFR opacity rather than considering UTA for
the 5p34f36s - 5p34f36p array in Sm VIII. Because of this, we have decided to employ UTAs in
all of our ab initio statistical RTA simulations since they require fewer statistical distributions
(Bauche et al., 2015).
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Figure 5.2: Expansion opacities computed in Sm VIII with ρ = 10−10 g cm−3, t = 0.1 day and
T = 50 000 K for the 5p44f3 - 5p34f35d array using the atomic data computed with the HFR method
(blue curve), simulated with the a posteriori statistical RTA method considering SOSAs (orange curve)
and considering a UTA (red curve).

Figure 5.3: Expansion opacities computed in Sm VIII with ρ = 10−10 g cm−3, t = 0.1 day and
T = 50 000 K for the 5p34f36s - 5p34f36p array using the atomic data computed with the HFR
method (blue curve), simulated with the a posteriori statistical RTA method considering SOSAs (orange
curve) and considering a UTA (red curve).

In Tables 5.1 and 5.2, we summarize for both ions, Sm VIII and Eu VI, the energy level distri-
bution parameters, i.e. the average energy, Eav, the standard deviation,

√
vC , and the number of

levels, NC , for each configuration in the a posteriori and in the ab initio RTA simulations. The
latter have been obtained in collaboration with Dr. J-C. Pain.
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Table 5.1: The average energy, Eav, standard deviation,
√
vC and total number of levels, NC , are given

for each configuration in Sm VIII as considered in the a posteriori and the ab initio statistical RTA
calculations.

Configuration Ea
av (cm−1)

√
vC (cm−1) NC

A posteriorib Ab initioc A posteriorid Ab initioe

5p44f3 78 888 38 958 40 705 589 620
5p34f35d 357 248 50 678 53 416 7 264 7 494
5p34f36s 484 513 42 286 44 007 1 549 1 603
5p34f37s 704 571 42 446 44 125 1 549 1 603
5p34f36p 556 742 43 581 45 289 4 547 4 711
a HFR radial parameter (Section 5.1.1)
b Calculated using Eq. (5.2.2).
c Computed using HFR radial integrals and the compact formulae tabulated in Bauche

et al. (2015) (5.1.1).
d Determined by HFR calculations.
e Computed using Eq. (5.1.3) in Section 5.1.1.

Table 5.2: Parameters of the statistical distribution of energy levels: the average energy, Eav, standard
deviation,

√
vC , and total number of levels, NC , for each configuration in Eu VI as considered in both

statistical RTA calculations, namely a posteriori and ab initio.

Configuration Ea
av (cm−1)

√
vC (cm−1) NC

A posteriorib Ab initioc A posteriorid Ab initioe

5p64f4 54 196 33 144 31 815 107 109
5p54f45d 311 979 43 820 45 703 5 756 5 930
5p54f46s 394 701 39 558 40 133 1 222 1 266
5p54f47s 559 456 39 664 40 214 1 222 1 266
5p54f5 148 108 40 991 42 095 1 168 1 199
5p54f46p 454 489 39 904 40 792 3 592 3 681
a HFR radial parameter (Section 5.1.1).
b Calculated using Eq. (5.2.2).
c Computed using HFR radial integrals and the compact formulae tabulated in Bauche

et al. (2015) (Section 5.1.1).
d Determined by HFR calculations
e Computed using Eq. (5.1.3) (Section 5.1.1).

Regarding the standard deviation and the number of levels in both statistical methods, we no-
ticed a very good agreement between them. The total number of levels for all the configurations
considered in the E1 transition arrays for Sm VIII and Eu VI calculated a posteriori are respec-
tively 15498 and 13065 whereas the ab initio values are 16031 and 13451. There is systemati-
cally more levels in the ab initio method than in a posteriori method since the latter is based on
the HFR calculations in which only the levels below the ionization potential (IP) are considered
while in the ab initio statistical RTA simulation all the levels from all the configurations consid-
ered are taken into account.

Moreover, for Sm VIII, when the 5p54f2 configuration is considered in the full HFR calculation
(with CI), the total number of levels is 15567. This configuration adds 69 levels contributing for
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the configuration interaction (CI). Since this configuration was not considered in the E1 transi-
tion arrays in the a posteriori statistical RTA simulation, we therefore, did not include it in the
Table 5.1.

Then, in Tables 5.3 and 5.4, a comparison between a posteriori and ab initio statistical RTA
values is given for the number of lines, L(Cl − Cu) and for the total strength, S(Cl − Cu) for
eachCl−Cu array in Sm VIII and Eu VI, respectively. The ab initio values of the corresponding
unweighted,

√
vun, and weighted,

√
vw, standard deviations of the wavenumber distribution,

calculated by compact formulae, are also reported.

Table 5.3: Comparison between a posteriori and ab initio statistical RTA values for the number of lines,
L(Cl −Cu) and the total strength, S(Cl −Cu)), for each Cl −Cu array in Sm VIII. The ab initio values
of the corresponding unweighted,

√
vun, and weighted,

√
vw, standard deviations of the wavenumber

distribution are also reported.

Cl − Cu array L(Cl − Cu) S(Cl − Cu) (a.u.)
√
vun

d (cm−1)
√
vw

d (cm−1)
A posterioria Ab initiob A posterioria Ab initioc

5p44f3 – 5p34f35d 1 317 060 1 639 731 31 296 62 388 57 898 24 224
5p44f3 – 5p34f36s 228 243 367 067 2 820 2 807 52 599 25 493
5p44f3 – 5p34f37s 253 897 367 067 333 332 52 723 26 714
5p34f36p – 5p34f35d 8 405 714 12 371 727 30 229 60 311 58 552 21 807
5p34f36p – 5p34f36s 1 656 733 2 757 175 92 920 92 679 32 533 9 054
5p34f36p – 5p34f37s 1 610 655 2 757 175 23 032 22 970 52 134 9 161
a Determined after diagonalization of the Hamiltonian (HFR calculations).
b Calculated using Eq. (5.1.8) (Section 5.1.2).
c Calculated using Eq. (5.1.10) (Section 5.1.3).
d Evaluated using the compact formulae of Bauche-Arnoult et al. (1979, 1982) (Section 5.1.3).

Table 5.4: Comparison between a posteriori and ab initio statistical RTA values for the number of lines,
L(Cl − Cu) and the total strength, S(Cl − Cu)), for each Cl − Cu array in Eu VI. The ab initio values
of the corresponding unweighted,

√
vun, and weighted,

√
vw, standard deviations of the wavenumber

distribution are also reported.

Cl − Cu array L(Cl − Cu) S(Cl − Cu) (a.u.)
√
vun

d (cm−1)
√
vw

d (cm−1)
A posterioria Ab initiob A posterioria Ab initioc

5p64f4 – 5p54f45d 171 563 218 988 9 041 18 030 53 628 19 657
5p64f4 – 5p54f46s 38 098 48 569 851 849 51 726 23 181
5p64f4 – 5p54f47s 34 017 48 569 106 106 51 808 23 473
5p54f5 – 5p54f45d 1 640 627 2 324 253 7 783 23 291 51 714 18 690
5p54f46p – 5p54f45d 4735887 7 210 500 33 620 33 537 45 001 14 872
5p54f46p – 5p54f46s 900 390 1 589 407 91 797 91 553 31 610 6 248
5p54f46p – 5p54f47s 857 607 1 589 407 25 853 25 791 29 170 6 392
a Determined after diagonalization of the Hamiltonian (HFR calculations).
b Calculated using Eq. (5.1.8) (Section 5.1.2).
c Calculated using Eq. (5.1.10) (Section 5.1.3).
d Evaluated using the compact formulae of Bauche-Arnoult et al. (1979, 1982) (Section 5.1.3).

In the previous Tables, it is easy to notice that the number of lines calculated ab initio using
Eq. (5.1.8) are systematically higher because there is no oscillator strength threshold, while in
the a posteriori calculations based on the HFR atomic data calculations, we only considered
transitions with a log(gf ) ≥ −5. The total number of lines are respectively 13 536 304 for the
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a posteriori statistical RTA simulation (without 5p54f2), 14 287 901 for the full HFR calcula-
tion with CI (including 5p54f2) and 20 259 942 for the ab initio statistical RTA simulation in
Sm VIII. The number of lines for Eu VI are 8 378 185 (a posteriori simulation), 9 122 429
(HFR) and 13 029 693 (ab initio simulation). Regarding the total line strengths, results are in a
good agreement except for the first (5p44f3 – 5p34f35d) and the fourth (5p34f36p – 5p34f35d) ar-
ray in Sm VIII and for the first array (5p64f4 – 5p54f45d) and the fifth one (5p54f46p – 5p54f45d)
in the case of Eu VI, where they differ by a factor two. These differences result from the weak
lines that are missing from our a posteriori RTA simulations because of the threshold that was
applied to the oscillator strengths.

Finally, the correlation parameters α and β and the average wavenumber σav values have to be
calculated to randomly draw the amplitudes as described in Section 5.1.3. In Tables 5.5 and
5.6, we present a comparison between our a posteriori and ab initio statistical RTA values.
Concerning the a posteriori RTA simulations, as we used SOSAs, except for the first array of
Sm VIII and the fourth one of Eu VI, where UTAs were used instead, there are two or three
α and β values per E1 transition array considered, depending if there are two or three SOSA
peaks, while for the ab initio method, these parameters are calculated using UTAs (i.e. with a
single value per E1 array). There are some differences in the α and β parameter values, but they
are still in same order of magnitude. These are due to the fact that these parameters are least-
square fitted in the a posteriori simulations while they are calculated exactly by Eq. (5.1.12)
and Eq. (5.1.13) in the ab initio simulations.

Table 5.5: Comparison between a posteriori and ab initio statistical RTA values of the average wavenum-
ber, σav, and the correlation parameters α and β for each Cl − Cu array in Sm VIII.

Cl − Cu array σav (cm−1) α β (cm)
A posterioria Ab initiob A posterioric Ab initiod A posterioric Ab initioe

5p44f3 – 5p34f35d 324 611 329 727 -4.60 -1.94 -8.00E-5 -4.65E-5
5p44f3 – 5p34f36s 390 379 410 223 -1.92 -3.73 -5.00E-5 -4.06E-5

437 841 -2.37 -4.00E-5
5p44f3 – 5p34f37s 608 898 628 642 -5.85 -5.92 -8.00E-5 -3.75E-5

658 567 -5.95 -1.00E-4
5p34f36p – 5p34f35d 162 556 205 030 -7.10 -3.86 -8.80E-5 -5.41E-5

209 851 -5.80 -1.00E-4
5p34f36p – 5p34f36s 62 513 70 252 -2.10 -1.60 -1.50E-4 -1.41E-4

77 209 -1.70 -1.80E-4
5p34f36p – 5p34f37s 142 597 149 861 -1.89 -2.49 -3.00E-4 -1.48E-4

157 545 -3.00 -2.50E-4
a Determined for UTA or each SOSA through diagonalization of the Hamiltonian (Section 5.2).
b Determined for each UTA through compact formulae of Bauche et al. (2015) (Section 5.1.3).
c Evaluated through a least-square fit procedure for each SOSA or UTA (Section 5.2).
d Evaluated using Eq. (5.1.13) for each UTA (Section 5.1.3).
e Evaluated using Eq. (5.1.12) for each UTA (Section 5.1.3).
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Table 5.6: Comparison between a posteriori and ab initio statistical RTA values of the average wavenum-
ber, σav, and the correlation parameters α and β for each Cl − Cu array in Eu VI.

Cl − Cu array σav (cm−1) α β (cm)
A posterioria Ab initiob A posterioric Ab initiod A posterioric Ab initioe

5p64f4 – 5p54f45d 270 561 332 308 -6.10 -1.01 -3.50E-5 -6.21E-5
335 224 -3.45 -3.00E-4

5p64f4 – 5p54f46s 327 444 344 245 -2.70 -2.81 -9.00E-5 -4.68E-5
371 089 -2.3 -1.14E-4

5p64f4 – 5p54f47s 490 702 506 205 -4.15 -4.90 -1.10E-4 -4.60E-5
535 615 -4.20 -1.15E-4

5p54f5 – 5p54f45d 168 695 173 574 -6.55 -3.09 -5.00E-5 -6.44E-5
5p54f46p – 5p54f45d 59 261 144 941 -6.70 -3.76 -3.50E-5 -8.28E-5

99 735 -6.15 -1.30E-4
146 319 -5.00 -1.30E-4

5p54f46p – 5p54f46s 52 553 59 041 -0.40 -0.69 -3.00E-4 -2.15E-4
63 230 -0.75 -1.99E-4

5p54f46p – 5p54f47s 101 251 105 499 -0.90 -2.07 -2.70E-4 -2.08E-4
111 950 -4.20 -2.45E-4

a Determined for UTA or each SOSA through diagonalization of the Hamiltonian (Section 5.2).
b Determined for each UTA through compact formulae of Bauche et al. (2015) (Section 5.1.3).
c Evaluated through a least-square fit procedure for each SOSA or UTA (Section 5.2).
d Evaluated using Eq. (5.1.13) for each UTA (Section 5.1.3).
e Evaluated using Eq. (5.1.12) for each UTA (Section 5.1.3).

After having calculated all these statistical parameters given in the previous Tables, we were
able to simulate atomic data and use them to compute opacities for Sm VIII and Eu VI as
shown in Figures 5.4 and 5.5. In these Figures, we compare the expansion opacities computed
using the atomic data generated by the full HFR method (blue curve with CI and orange curve
without CI) and by our a posteriori (red curve) and ab initio (green curve) RTA simulations for
early-phase kilonova ejecta conditions 0.1 day after the merger, namely a density ρ = 10−10 g
cm−3 and a temperature T = 50 000 K and T = 38 000 K corresponding to the maximum ionic
fraction of Sm VIII and Eu VI, respectively (as determined in Section 4.2). These conditions
correspond to partition functions which were equal to 951 (a posteriori simulation), 1176 (ab
initio simulation) and 1073 (HFR) in Sm VIII. Concerning Eu VI, the corresponding values
were 307 (a posteriori simulation), 476 (ab initio simulation) and 316 (HFR). In addition to the
opacity computations using HFR results with CI, we also computed opacities using atomic data
generated by the full HFR method without CI (orange curve) in order to see the CI effect on
our HFR opacities, which cannot be taken into account in the statistical RTA simulations. To
do that, we intentionally set to zero all the Slater CI integrals Rk in Cowan’s code in order to
turn off the CI. As we can notice in these Figures, the orange curves (all Rk = 0), are in very
good agreement with the ones obtained with the HFR atomic data including CI. Therefore, the
latter, which are not taken into account in the statistical RTA simulations, can be neglected in
the expansion opacity computations. Moreover, both statistical RTA simulations (a posteriori
and ab initio) generate similar opacities as the ones computed with the HFR atomic data (with
and without CI). Therefore, when standard computational atomic structure methods like HFR
in Cowan’s code are challenging to use, the ab initio statistical RTA method is an excellent way
to calculate atomic data in order to compute expansion opacities for these complex ions in such
conditions.
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Figure 5.4: Expansion opacities in Sm VIII with ρ = 10−10 g cm−3, t = 0.1 day and T = 50 000 K
using the atomic data computed with the HFR method with configuration interaction (CI) (blue curve),
without CI (orange curve), simulated with the a posteriori statistical RTA method (red curve) and with
the ab initio statistical RTA method (green curve).

Figure 5.5: Expansion opacities in Eu VI with ρ = 10−10 g cm−3, t = 0.1 day and T = 38 000 K using
the atomic data computed with the HFR method with configuration interaction (CI) (blue curve), without
CI (orange curve), simulated with the a posteriori statistical RTA method (red curve) and with the ab
initio statistical RTA method (green curve).

5.4 Dy VIII
Dy VIII is a highly complex lanthanide ion, characterized by a ground state 5p44f7, with

a half-filled 4f subshell. We chose to introduce six configurations in our model to represent
the atomic structure of Dy VIII in our statistical RTA simulation, namely 5p44f7, 5p34f8 and
5p34f76p in the odd- and 5p34f75d, 5p34f76s and 5p34f77s in the even-parity. The matrix of
the Hamiltonian, even limited to two configurations (including the ground state and an excited
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configuration e.g. 5p34f75d) has an enormous size since the excited configuration has 60 840
levels. Consequently, using our Cowan’s code makes the diagonalization of the Hamiltonian
unfeasible. As we have shown in the previous section that (ab initio) statistical RTA simula-
tions can well reproduced the expansion opacities using the atomic data from HFR calculations,
we can, thus, use this statistical method for this complex ion with confidence.

Table 5.7 and Table 5.8 contain all of the statistical parameters for the configurations and for
the E1 transition arrays, respectively, useful to simulate atomic data. Considering all the con-
figurations listed, the total number of levels is equal to 135 135. The issue of matrix size can be
easily understood while looking at the huge number of levels per configurations, e.g. about 60
840 levels for 5p34f75d. The total number of lines generated in Dy VIII reached the enormous
number of 1 222 362 566. The α and β correlation parameter values and the average wavenum-
bers are given in Table 5.9 for each E1 transition array.

Table 5.7: Parameters of the statistical distribution of energy levels, DC(E), i.e. average energy, Eav,
standard deviation,

√
vC , and total number of levels, NC , for each configuration in Dy VIII as considered

in our ab initio statistical RTA calculation.

Configuration Ea
av (cm−1)

√
vC

b (cm−1) N c
C

5p44f7 177 349 60 217 4 900
5p34f75d 487 912 86 490 60 840
5p34f76s 615 653 75 932 12 817
5p34f77s 850 623 76 133 12 817
5p34f8 244 778 59 859 5 740
5p34f76p 695 474 77 097 38 021
a HFR radial integral (Section 5.1.1).
b Computed using HFR radial integrals and the com-

pact formulae tabulated in Bauche et al. (2015) (see
Section 2.1).

c Computed using Eq. (5.1.3) Section 5.1.1).

Table 5.8: Ab initio statistical RTA values for the number of lines, L(Cl − Cu), the total strength,
S(Cl − Cu)), and the unweighted,

√
vun, and weighted,

√
vw, standard deviations of the wavenumber

distribution for each Cl − Cu array in Dy VIII.

Cl − Cu array L(Cl − Cu)
a S(Cl − Cu)

b (a.u.)
√
vun

c (cm−1)
√
vw

c (cm−1)
5p44f7 – 5p34f75d 89 978 658 520 824 40 198 16 451
5p44f7 – 5p34f76s 19 512 763 24 136 33 265 16 841
5p44f7 – 5p34f77s 19 512 763 2 855 33 128 17 110
5p34f8 – 5p34f75d 105 556 407 140 225 49 213 16 549
5p34f76p – 5p34f35d 689 477 967 533 565 37 459 15 388
5p34f76p – 5p34f36s 149 162 004 783 839 44 470 9 977
5p34f76p – 5p34f37s 149 162 004 207 009 27 986 10 202
a Calculated using Eq. (5.1.8) (Section 5.1.2).
b Calculated using Eq. (5.1.10) (Section 5.1.3).
c Evaluated using the compact formulae of Bauche-Arnoult et al. (1979, 1982) (Section

5.1.3).
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Table 5.9: Ab initio statistical RTA values of the average wavenumber, σav, and the correlation parame-
ters α and β for each Cl − Cu array in Dy VIII.

Cl − Cu array σa
av (cm−1) αb βc (cm)

5p44f7 – 5p34f75d 364 652 -3.80 -6.93E-5
5p44f7 – 5p34f76s 436 759 -5.96 -5.96E-5
5p44f7 – 5p34f77s 660 745 -7.77 -5.76E-5
5p34f8 – 5p34f75d 272 138 -5.04 -7.39E-5
5p34f76p – 5p34f75d 201 321 -5.81 -7.39E-5
5p34f76p – 5p34f76s 78 480 -3.20 -1.33E-4
5p34f76p – 5p34f77s 144 861 -5.09 -1.16E-4
a Determined for each UTA through compact formu-

lae of Bauche et al. (2015) (Section 5.1.3).
b Evaluated using Eq. (5.1.13) for each UTA (Section

5.1.3).
c Evaluated using Eq. (5.1.12) for each UTA (Section

5.1.3).

In Figure 5.6, the simulated expansion opacity of Dy VIII is illustrated using the same condi-
tions than for Sm VIII, namely T = 50 000 K, ρ = 10−10 g cm−3, t = 0.1 day. We can notice
that the general trend is very similar to the one we observed in Figure 5.4 and Figure 5.5 for Sm
VIII and Eu VI, respectively, with an opacity for the Dy VIII reaching a maximum of 4.85×103

cm2 g−1 around 285 Å.

Figure 5.6: Expansion opacities in Dy VIII with ρ = 10−10 g cm−3, t = 0.1 day and T = 50 000 K
using the atomic data simulated with the ab initio statistical RTA method.

The ab initio method, based on the RTA statistical approach, is thus an excellent method to
simulate atomic data in order to compute expansion opacities for ions difficult to treat with
traditional computational methods.





Conclusions and prospects

In this thesis, we have presented a new study of the atomic properties characterizing
moderately-charged lanthanide ions, from 4+ to 9+ ionization degrees, in order to determine
the opacities affecting the spectra emitted by early-phase kilonovae following neutron star
mergers, i.e. for typical conditions 0.1 day after the merger, a density ρ = 10−10 g cm−3 and a
temperature T > 20 000 K.

To do this, the atomic structures and radiative data were obtained using large-scale calcula-
tions based on a multiplatform approach involving three different and independent theoreti-
cal methods, such as the pseudo-relativistic Hartree-Fock (HFR), the fully-relativistic Multi-
Configuration Dirac-Hartree-Fock (MCDHF) and the Configuration Interaction and Many-Body
Perturbation Theory (CI+MBPT) methods. Such a multiplatform approach is the only way to
estimate the precision of the results obtained through cross-comparisons between different com-
putational procedures, especially when very little (if any) experimental data are available in the
literature.

First of all, we calculated the atomic structures of La V–X to Sm V–X ions. For some of them,
there are few experimental data available, namely for La V–X, Ce V–VIII, Ce X, Pr V, Pr X and
Nd V. We computed atomic data for La V–X to Sm V–X by using the HFR method implemented
in Cowan’s code. In order to model the atomic structures, we explicitly introduced a large num-
ber of interacting configurations for each ion. When comparing the theoretical wavelengths
with available experimental values, an overall good agreement was found for all the ions con-
sidered (< 6% for La and Ce ions and < 1% for Pr and Nd ions). Moreover, we compared our
radiative data, such as oscillator strengths and transition probabilities, with experimental and
theoretical data previously published in the literature for La IX, La X, Ce V, Ce VI, Ce VII, Ce
VIII, Ce X, Pr V and Nd V. We noted a fairly satisfactory agreement for La IX, La X, Ce V, Ce
VI and Nd V, the few significant discrepancies being attributed to the limited number of inter-
acting configurations introduced in previous investigations. For the remaining ions, we noticed
a good overall agreement (< 25% for Ce VII, Ce VIII and Ce X and < 15% for Pr V) since the
theoretical data, from which we compared our results, are coming from more comprehensive
theoretical frameworks.

The HFR results freshly obtained in the present work were then benchmarked with other com-
putational methods to assess their reliability. More precisely, we computed the atomic structures
and radiative parameters using the MCDHF method implemented in the GRASP2018 code and
the CI+MBPT approach implemented in the AMBiT program for a sample of ions. In particu-
lar, MCDHF calculations were performed for La V, La VIII, La X, Ce V, Ce VIII, Ce X, Pr V,
Pr X, Nd V, Nd VI, Pm VI, Pm IX, Sm VI and Sm VII ions. For each of those ions, we started
by choosing a set of multi-reference (MR) configurations and gradually incorporated valence-
valence (VV) and core-valence (CV) correlations. In a first step, we analyzed theoretical energy
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levels with the available experimental data and could find an overall good agreement (< 2% for
La ions, < 5% for Ce V, < 1% for Ce VIII and Ce X, < 1% for Pr V and Nd V and < 12% Pr
X). As regards the CI+MBPT method, the calculations were performed for La V, La VIII, La X,
Ce V, Ce VIII, Ce X, Pr V, Pr X and Nd V. Nevertheless, since the CI convergence was found
to be very slow for those ions, which makes it difficult to obtain atomic data, we rather used
emu CI approach (except for Pr X and Nd V where CI+MBPT was used), implemented in AM-
BiT package in order to reduce the size of the matrices without losing accuracy by considering
only a few of the lowest-lying energy levels. We also compared our theoretical energy levels
with the available data in the literature and noticed a good overall agreement (< 1% for La ions
and Pr X, < 7% for Nd V, < 2% for Ce V and Ce VIII, < 5% for Ce X and < 3% for Pr V).

For both methods, MCDHF and emu CI (as well as CI+MBPT), we also cross-checked the ac-
curacy of the oscillator strengths with the HFR results. We found some discrepancies due to
the cancellation effects affecting the line strength calculations in HFR method and sometimes
due to large disagreements between the length (Babushkin) and velocity (Coulomb) gauges in
the MCDHF computations. However, these deviations were not found to be numerous enough
to affect the global accuracy of the atomic data. Concerning Pm V–X and Sm V–X, since there
are no experimental data available, it was therefore not possible to make a comparison. Despite
this, we calculated their atomic structures by using MCDHF method in order to verify the ac-
curacy of HFR oscillator strengths for transitions involving the ground levels. While we found
a good agreement for Pm ions, we noticed slightly larger discrepancies in the case of Sm VI
and Sm VII ions. This is mainly due to the differences in the Coulomb and Babushkin gauges
in MCDHF method, namely 30% (Sm VII) and 50% (Sm VI). Finally, large-scale HFR atomic
structure calculations were carried out in Eu V–VII to Lu V–VII ions. In this sample of ions,
experimental and theoretical levels and transition rates were only published for Yb V and Lu V.
Concerning the latter, we found a very good agreement when comparing our calculated wave-
lengths with the experimental data (within < 1% on average). For Yb V, the HFR oscillator
strengths were also compared with experimental ones, showing a deviation of 5% for the most
intense lines. We also cross-checked our HFR and MCDHF results and found a mean deviation
of 24%.

Among the numerous results obtained in our calculations, a first interesting piece of information
was the establishment of the ground configurations and the ground levels corresponding to all
the lanthanide ions considered. It is indeed important to remember that this information was far
from being known with certainty until now, the various predictions published previously often
being in disagreement with each other, since they are based on other methods, often based on
fairly limited theoretical models.

Thanks to the very large number of new atomic data obtained by means of the HFR method,
the reliability of which was validated by the numerous comparisons mentioned above, these
data were used to determine the astrophysical opacities corresponding to moderately-charged
lanthanide ions, namely La V–VII to Lu V–VII. These ionization stages correspond to early-
phase kilonova ejecta conditions expected a few hours (≃ 0.1 day) after a neutron star merger
when the density and temperature of the ejected matter are typically ρ ≃ 10−10 g cm−3 and
T > 20 000 K, respectively. Thus, the expansion opacities and the Planck mean opacities were
determined using several hundred million radiative transitions in all the lanthanide ions of in-
terest.
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During these calculations, we highlighted the importance of including realistic partition func-
tions (i.e. based on the consideration of the largest possible number of energy levels) for reliable
estimation of opacities, instead of simply using the statistical weight of the ground level, as it
was done in several opacity calculations previously published in the literature. In addition,
we noticed that the relative contributions of lanthanide ions are wavelength- and temperature
dependent. For example, at T = 40 000 K, Tb and Dy are predominant at UV ranges while
they decrease sharply at larger wavelengths to let Ce and La predominate. We also computed
Planck mean opacities as a function of the temperature and noticed that Eu and Gd dominate at
25 000 K while Tb and Dy are predominant at 40 000 K. In the specific case of Sm ions, we also
compared the expansion opacities with the ones obtained from the so-called line-binned formal-
ism, sometimes used by other authors. Such a comparison only showed some differences in the
UV range (typically below 2000 Å) for each temperature considered but it is worth mentioning
that this wavelength region is located below the detection range of the existing UV instruments
like Swift.

For some atomic systems, major difficulties may arise in carrying out theoretical calculations.
This was the case for Eu VIII–X to Lu VIII–X lanthanide ions. In fact, the latter are char-
acterized by very complex configurations with unfilled 4f and 5p subshells, resulting to very
large Hamiltonian matrices which are often extremely difficult to diagonalize. For such ions,
we developed a computational strategy based on a statistical approach, that is the so-called Re-
solved Transition Array (RTA), making it possible to obtain the atomic data required to estimate
the corresponding opacities. In order to do that, we chose to apply this statistical approach to
Sm VIII and Eu VI, two ions for which we have already computed the opacities using the atomic
data obtained using the full HFR method (i.e. with diagonalization of the Hamiltonian). In light
of the good agreement between opacities calculated with HFR results (actual HFR atomic data)
and the ones calculated with the simulated data (statistical a posteriori and ab initio approach),
we decided to apply the RTA method to Dy VIII, a complex ion challenging to treat with the
HFR computational procedure. By using compact formulae (ab initio RTA method), we were
able to simulate the atomic data to compute the expansion opacity for Dy VIII. We have there-
fore shown that the RTA statistical method could be useful to overcome the difficulties encoun-
tered to obtain atomic data for very complex ions with usual atomic structure computational
methods in order to estimate astrophysical opacities with a good level of reliability.

The results reported in the present work represent a significant contribution to one of the most
important current hot topics in astrophysics, namely the analysis of the matter enriched with
heavy elements ejected from neutron star mergers. The atomic data obtained in our study for
moderately-charged lanthanide ions are certainly the most comprehensive and the most reliable
available for assessing the opacities characterizing the early-phase kilonova spectra. Therefore,
they constist in an important source of information for future astrophysical observations that
will be made in this field of research. Indeed, with the upcoming new interferometers such as
LIGO-India (LIGO-India collaboration, 2024) and Einstein telescope (Bureau de projet Einstein
Telescope, 2024), very numerous atomic data as accurate as possible will be required to model
kilonova spectra emitted after neutron star mergers which should be more and more commonly
detected in the next few years, thereby providing a better understanding of how heavy trans-iron
elements are produced in the Universe.
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Radžiūtė, L., Gaigalas, G., Kato, D., Rynkun, P., and Tanaka, M. (2020). Astrophys. J. Suppl.
Ser., 248:17.

Rauscher, T. (2020). Essentials of nucleosynthesis and theoretical nuclear astrophysics. Institute
of Physics Publishing.

Rodrigues, G. C., Indelicato, P., Santos, J. P., Patté, P., and Parente, F. (2004). ADNDT, 86:117.

Roming, P. W. A., Kennedy, T. E., Mason, K. O., and et al. (2005). Space Sci. Rev., 120:95.

Rosswog, S. (1999). Astron. Astrophys., 341:499.

Rosswog, S., Davies, M., Thielemann, F., and Piran, T. (2000). Astron. Astrophys., 360:171.

Ryabtsev, A., Kononov, E., Kildiyarova, R., Tchang-Brillet, W.-U., Wyart, J.-F., Champion, R.,
and Blaess, C. (2015). Atoms, 3:273.

Ryabtsev, A. N., Churilov, S. S., and Joshi, Y. N. (2002). Phys. Scr., 65:227.

Ryan, S. and Norton, A. (2010). Stellar evolution and nucleosynthesis. Cambridge Univ. Press.

Savchenko, V., Ferrigno, C., Kuulkers, E., and et al. (2017). Astrophys. J. Lett., 848:L15.

Savukov, I. M., Johnson, W. R., Safronova, U. I., and Safronova, M. S. (2003). Phys. Rev. A,
67:042504.

Schramm, D. and Symbalisty, E. (1982). Astrophys. J. Lett., 2.

Shaviv, G. (2012). The synthesis of the elements. Springer.

Smartt, S.J. Chen, T., Jerkstrand, A., and et al. (2017). Nature, 551:75-79.

Sobolev, V. (1960). Moving envelopes of stars. Harvard University Press, Cambridge.

Stanek, M. and Migdalek, J. (2004). J. Phys. B: At. Mol. Opt. Phys., 37:2707.

Sugar, J. and Kaufman, V. (1970). Phys. Rev. A, 12:994.

Tanaka, M. and Hotokezaka, K. (2013). Astrophys. J. Lett., 775:113.

Tanaka, M., Kato, D., Gaigalas, G., and Kawaguchi, K. (2020). MNRAS, 496:1369–1392.



APPENDICES 141

Tanvir, N., Levan, A., Gonzalez-Fernandez, C., and et al. (2017). Astrophys. J. Lett., 848:27.

Tauheed, A. and Joshi, Y. N. (2008). Can. J. Phys., 86:714.

Tauheed, A., Joshi, Y. N., and Marshall, A. (2008). Phys. Scr., 77:045301.

Thielmann, F., Eichler, M., Panov, I., and Wehmeyer, B. (2017). Annual Review of nuclear and
Particle Science, 67:254–274.

Troja, E., Piro, L., Van Eerten, H., and et al. (2017). Nature, 551:71.

Valenti, S., Sand, D., Yang, S., and et al. (2017). Astrophys. J. Lett., 848.

Wajid, A. and Jabeen, S. (2019a). J. At. Mol. Condens. Nano Phys.,, 6:123.

Wajid, A. and Jabeen, S. (2019b). J. At. Mol. Condens. Nano Phys.,, 6:53.

Wajid, A., Tauheed, A., and Jabeen, S. (2021). J. Quant. Spectrosc. Rad. Transf, 258:107387.

Weber, J. (1960). Phys. Rev. D, 117:306–313.

Weinsberg, J. and Huang, Y. (2016). Astrophys. J., 829:55.

Yakovlev, D. G., Haensel, P., Baym, G., and Pethick, C. (2013). Lev landau and the concept of
neutron stars. Physics-Uspekhi, 56(3):289–295.

Yang, S., Valenti, S., Cappellaro, E., and et al. (2017). Astrophys. J. Lett., 851:L48.

Zilitis, V. A. (2014). Opt. Spectrosc, 117:513.



Appendix A

Comparison of the radiative parameters
for La V–X ions

142



APPENDIX A. COMPARISON OF THE RADIATIVE PARAMETERS FOR
LA V–X IONS 143

Table A.1: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La V.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
389.034 5s25p5 2Po

3/2 5s25p46s(1D2,1/2)3/2 3.25E+10 -0.14
390.722 5s25p5 2Po

3/2 5s25p46s(1D2,1/2)5/2 4.38E+10 -0.05
398.531 5s25p5 2Po

3/2 5s25p4(3P)5d 2D3/2 1.94E+09 -1.40
399.343 5s25p5 2Po

3/2 5s25p46s(3P1,1/2)1/2 1.23E+09 -1.55
405.097 5s25p5 2Po

3/2 5s25p46s(3P1,1/2)3/2 3.95E+10 -0.01
416.132 5s25p5 2Po

3/2 5s25p46s(3P0,1/2)1/2 1.23E+09 -1.55
421.547 5s25p5 2Po

3/2 5s25p4(3P)5d 2P1/2 1.23E+09 -1.55
423.074 5s25p5 2Po

3/2 5s25p4(1S)5d 2D5/2 3.03E+10 -0.13
424.784 5s25p5 2Po

1/2 5s25p46s(1D2,1/2)3/2 2.71E+08 -2.15
432.108 5s25p5 2Po

3/2 5s25p4(3P)5d 2P3/2 2.38E+11 0.76
435.275 5s25p5 2Po

3/2 5s25p4(3P)5d 2D5/2 4.42E+11 1.02
436.135 5s25p5 2Po

1/2 5s25p4(3P)5d 2D3/2 3.07E+11 0.87
436.843 5s25p5 2Po

3/2 5s25p4(1D)5d 2S1/2 1.39E+11 0.51
437.107 5s25p5 2Po

1/2 5s25p46s(3P1,1/2)1/2 1.16E+10 -0.50
437.551 5s25p5 2Po

3/2 5s25p46s(3P2,1/2)3/2 2.00E+10 -0.27
444.010 5s25p5 2Po

1/2 5s25p46s(3P1,1/2)3/2 5.57E+08 -1.78
444.067 5s25p5 2Po

3/2 5s25p46s(3P2,1/2)5/2 6.87E+09 -0.75
450.405 5s25p5 2Po

3/2 5s25p4(1S)5d 2D3/2 2.00E+10 -0.27
457.303 5s25p5 2Po

1/2 5s25p46s(3P0,1/2)1/2 6.73E+08 -1.71
463.848 5s25p5 2Po

1/2 5s25p4(3P)5d 2P1/2 1.16E+10 -0.50
476.667 5s25p5 2Po

1/2 5s25p4(3P)5d 2P3/2 5.57E+08 -1.71
482.164 5s25p5 2Po

3/2 5s25p4(1D)5d 2F5/2 3.74E+09 -0.94
482.434 5s25p5 2Po

1/2 5s25p4(1D)5d 2S1/2 6.75E+09 -0.72
483.298 5s25p5 2Po

1/2 5s25p46s(3P2,1/2)3/2 1.02E+10 -0.48
498.081 5s25p5 2Po

3/2 5s25p4(3P)5d 2F5/2 1.85E+09 -1.22
499.028 5s25p5 2Po

1/2 5s25p4(1S)5d 2D3/2 1.02E+10 -0.48
503.583 5s25p5 2Po

3/2 5s25p4(1D)5d 2D5/2 1.42E+09 -1.32
508.147 5s25p5 2Po

3/2 5s25p4(1D)5d 2P3/2 1.05E+07 -3.30
525.712 5s25p5 2Po

3/2 5s25p4(1D)5d 2D3/2 5.50E+08 -1.70
526.755 5s25p5 2Po

3/2 5s25p4(3P)5d 4P5/2 1.79E+09 -1.18
531.069 5s25p5 2Po

3/2 5s25p4(3P)5d 4F3/2 3.44E+09 -0.89
533.233 5s25p5 2Po

3/2 5s25p4(3P)5d 4F5/2 3.37E+09 -0.89
540.203 5s25p5 2Po

3/2 5s25p4(1D)5d 2P1/2 1.68E+09 -1.19
544.805 5s25p5 2Po

3/2 5s25p4(3P)5d 4P1/2 4.14E+08 -1.79
547.437 5s25p5 2Po

3/2 5s25p4(3P)5d 4P3/2 8.48E+08 -1.47
570.903 5s25p5 2Po

1/2 5s25p4(1D)5d 2P3/2 1.06E+08 -2.35
593.181 5s25p5 2Po

1/2 5s25p4(1D)5d 2D3/2 2.87E+08 -1.88
597.698 5s25p5 2Po

3/2 5s25p4(3P)5d 4D3/2 3.75E+07 -2.75
600.009 5s25p5 2Po

1/2 5s25p4(3P)5d 4F3/2 1.67E+08 -2.11
600.237 5s25p5 2Po

3/2 5s25p4(3P)5d 4D5/2 1.15E+08 -2.26
611.695 5s25p5 2Po

1/2 5s25p4(1D)5d 2P1/2 4.52E+07 -2.66
617.600 5s25p5 2Po

1/2 5s25p4(3P)5d 4P1/2 1.05E+07 -3.29
620.981 5s25p5 2Po

1/2 5s25p4(3P)5d 4P3/2 3.28E+07 -2.79
675.154 5s25p5 2Po

1/2 5s25p4(3P)5d 4D1/2 1.76E+05 -5.00
686.469 5s25p5 2Po

1/2 5s25p4(3P)5d 4D3/2 2.56E+05 -4.70
699.449 5s25p5 2Po

3/2 5s5p6 2S1/2 5.70E+08 -1.44
824.156 5s25p5 2Po

1/2 5s5p6 2S1/2 3.53E+08 -1.52

a Epstein and Reader (1976)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.2: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La VI.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
335.648 5s25p4 3P1 5s25p36s 318315.7o

2 2.30E+10 -0.45
342.992 5s25p4 1D2 5s25p36s 320508.5o

1 2.69E+10 -0.36
343.921 5s25p4 3P2 5s25p36s 290764.4o

2 1.05E+10 -0.77
345.202 5s25p4 3P0 5s25p36s 302474.6o

1 2.54E+10 -0.39
345.589 5s25p4 1D2 5s25p36s 318315.7o

2 3.02E+10 -0.31
347.338 5s25p4 3P2 5s25p36s 287903.8o

3 7.08E+10 0.07
354.488 5s25p4 3P1 5s25p36s 302474.6o

1 2.81E+09 -1.33
355.617 5s25p4 3P2 5s25p36s 281198.0o

2 3.84E+10 -0.18
365.605 5s25p4 1D2 5s25p36s 302474.6o

1 8.30E+09 -0.83
369.847 5s25p4 3P1 5s25p36s 290764.4o

2 1.02E+10 -0.72
370.037 5s25p4 3P0 5s25p36s 283029.4o

1 1.46E+09 -1.56
375.632 5s25p4 3P2 5s25p36s 266218.0o

1 5.56E+10 0.03
380.739 5s25p4 3P1 5s25p36s 283029.4o

1 4.67E+10 -0.04
381.960 5s25p4 1D2 5s25p36s 290764.4o

2 1.06E+11 0.32
383.423 5s25p4 3P1 5s25p36s 281198.0o

2 1.15E+10 -0.64
383.688 5s25p4 1S0 5s25p36s 320508.5o

1 4.31E+10 -0.07
384.427 5s25p4 3P2 5s25p36s 260127.8o

2 4.23E+09 -1.07
386.191 5s25p4 1D2 5s25p36s 287903.8o

3 9.93E+09 -0.70
387.591 5s25p4 3P2 5s25p35d 258004.7o

1 1.63E+09 -1.47
393.588 5s25p4 1D2 5s25p36s 283029.4o

1 3.81E+09 -1.10
394.585 5s25p4 3P0 5s25p36s 266218.0o

1 2.07E+10 -0.36
396.453 5s25p4 1D2 5s25p36s 281198.0o

2 6.57E+09 -0.86
399.283 5s25p4 3P2 5s25p35d 250443.6o

2 2.39E+09 -1.30
406.781 5s25p4 3P1 5s25p36s 266218.0o

1 2.07E+10 -0.34
407.208 5s25p4 3P2 5s25p35d 245575.7o

2 4.27E+09 -0.96
407.799 5s25p4 3P0 5s25p35d 258004.7o

1 1.29E+11 0.47
410.350 5s25p4 3P1 5s25p35d 264077.8o

2 2.15E+11 0.17
412.210 5s25p4 3P2 5s25p35d 242595.3o

1 6.62E+09 -0.89
412.210 5s25p4 1S0 5s25p36s 302474.6o

1 8.84E+09 -0.71
414.875 5s25p4 3P2 5s25p35d 241036.5o

3 4.38E+11 0.99
419.153 5s25p4 3P0 5s25p35d 251363.6o

1 4.66E+10 0.05
419.226 5s25p4 3P2 5s25p35d 238534.7o

1 8.98E+10 0.32
419.557 5s25p4 1D2 5s25p35d 267303.0o

3 1.42E+09 -1.47
420.836 5s25p4 3P1 5s25p35d 258004.7o

1 5.24E+10 0.07
422.414 5s25p4 3P2 5s25p35d 236734.2o

2 7.40E+10 0.24
425.311 5s25p4 1D2 5s25p35d 264077.8o

2 5.59E+10 0.16
425.562 5s25p4 3P1 5s25p35d 255365.8o

0 5.57E+10 0.10
428.291 5s25p4 3P2 5s25p35d 233486.4o

3 2.46E+10 -0.21
430.356 5s25p4 3P2 5s25p35d 232365.7o

3 8.58E+09 -0.66
430.761 5s25p4 3P2 5s25p35d 232147.9o

2 7.50E+08 -1.70
432.940 5s25p4 3P1 5s25p35d 251363.3o

1 5.24E+10 0.07
434.667 5s25p4 3P1 5s25p35d 250443.6o

2 2.15E+11 0.72
435.141 5s25p4 3P0 5s25p35d 242595.3o

1 4.66E+10 0.05
436.587 5s25p4 1D2 5s25p35d 258004.7o

1 6.58E+10 0.20
438.011 5s25p4 3P2 5s25p35d 228302.7o

2 2.10E+09 -1.18
444.060 5s25p4 3P1 5s25p35d 245575.7o

2 1.06E+10 -0.50
444.839 5s25p4 3P2 5s25p35d 224798.4o

1 1.06E+10 -0.55
448.136 5s25p4 1S0 5s25p36s 283029.4o

1 3.79E+08 -2.00
449.627 5s25p4 1D2 5s25p35d 251363.3o

1 2.46E+10 -0.20
450.020 5s25p4 3P1 5s25p35d 242595.3o

1 3.83E+10 -0.02
451.337 5s25p4 3P2 5s25p35d 221564.0o

2 3.38E+09 -1.02
451.494 5s25p4 1D2 5s25p35d 250443.6o

2 5.59E+10 0.16
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Table A.2: Continued.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
461.640 5s25p4 1D2 5s25p35d 245575.7o

2 4.75E+09 -0.81
462.215 5s25p4 3P1 5s25p35d 236734.2o

2 2.45E+06 -4.00
465.210 5s25p4 3P2 5s25p35d 214956.5o

1 2.29E+08 -2.17
468.080 5s25p4 1D2 5s25p35d 242595.3o

1 3.33E+10 -0.04
471.517 5s25p4 1D2 5s25p35d 241036.5o

3 3.10E+08 -2.05
472.220 5s25p4 3P1 5s25p35d 232147.9o

2 2.10E+09 -1.18
477.146 5s25p4 1D2 5s25p35d 238534.7o

1 1.05E+10 -0.51
480.956 5s25p4 3P1 5s25p35d 228302.7o

2 2.10E+09 -1.18
481.283 5s25p4 1D2 5s25p35d 236734.2o

2 5.40E+09 -0.79
484.902 5s25p4 3P2 5s25p35d 206227.2o

3 5.74E+09 -0.74
486.399 5s25p4 3P1 5s25p35d 225975.1o

0 1.32E+09 -1.38
488.925 5s25p4 1D2 5s25p35d 233486.4o

3 5.70E+09 -0.74
489.204 5s25p4 3P1 5s25p35d 224798.4o

1 4.69E+09 -0.83
489.281 5s25p4 3P2 5s25p35d 204381.5o

3 2.44E+09 -1.10
491.620 5s25p4 1D2 5s25p35d 232365.7o

3 5.91E+09 -0.71
492.146 5s25p4 1D2 5s25p35d 232147.9o

2 4.56E+07 -2.81
494.638 5s25p4 3P0 5s25p35d 214956.5o

1 6.02E+09 -0.71
495.491 5s25p4 3P2 5s25p35d 201819.9o

2 1.54E+09 -1.29
497.065 5s25p4 3P1 5s25p35d 221564.0o

2 6.06E+08 -1.70
500.106 5s25p4 3P2 5s25p35d 199957.4o

1 4.63E+08 -1.81
503.396 5s25p4 3P2 5s25p35d 198650.7o

3 1.76E+09 -1.22
504.738 5s25p4 1S0 5s25p35d 258004.7o

1 8.09E+08 -1.57
510.616 5s25p4 1D2 5s25p35d 224798.4o

1 1.26E+09 -1.36
519.189 5s25p4 1D2 5s25p35d 221564.0o

2 8.96E+08 -1.49
522.231 5s25p4 1S0 5s25p35d 251363.3o

1 3.17E+08 -1.95
526.578 5s25p4 3P2 5s25p35d 189905.4o

2 2.35E+09 -1.05
534.275 5s25p4 3P0 5s25p35d 199957.4o

1 4.38E+08 -1.77
537.632 5s25p4 1D2 5s25p35d 214956.5o

1 8.15E+08 -1.51
539.480 5s25p4 3P2 5s5p5 185363.7o

1 1.07E+09 -1.37
545.351 5s25p4 3P2 5s25p35d 183366.3o

1 3.83E+08 -1.81
548.515 5s25p4 3P2 5s25p35d 182310.1o

3 9.65E+08 -1.40
549.237 5s25p4 3P2 5s25p35d 182070.9o

2 9.63E+08 -1.40
564.108 5s25p4 1D2 5s25p35d 206227.2o

3 4.58E+08 -1.71
570.044 5s25p4 1D2 5s25p35d 204381.5o

3 1.29E+08 -2.25
586.239 5s25p4 3P0 5s25p35d 183366.3o

1 1.22E+08 -2.24
613.559 5s25p4 3P1 5s25p35d 183366.3o

1 2.93E+08 -1.83
615.372 5s25p4 3P1 5s25p35d 182885.9o

0 2.40E+08 -1.92
621.313 5s25p4 1D2 5s25p35d 189905.4o

2 6.15E+07 -2.50
637.640 5s25p4 3P2 5s5p5 156828.3o

1 1.49E+09 -1.08
639.357 5s25p4 1D2 5s5p5 185363.7o

1 3.06E+09 -0.78
647.629 5s25p4 1D2 5s25p35d 183366.3o

1 6.48E+08 -1.44
652.092 5s25p4 1D2 5s25p35d 182310.1o

3 1.04E+07 -3.23
675.903 5s25p4 3P1 5s5p5 168332.8o

0 6.69E+08 -1.38
681.484 5s25p4 3P2 5s5p5 146738.0o

2 2.35E+09 -0.83
694.244 5s25p4 3P0 5s5p5 156828.3o

1 6.28E+08 -1.39
732.891 5s25p4 3P1 5s5p5 156828.3o

1 4.65E+08 -1.48
782.041 5s25p4 1D2 5s5p5 156828.3o

1 1.91E+08 -1.81
791.422 5s25p4 3P1 5s5p5 146738.0o

2 8.87E+08 -1.14
796.915 5s25p4 1S0 5s5p5 185363.7o

1 2.34E+08 -1.72
849.028 5s25p4 1D2 5s5p5 146738.0o

2 3.79E+08 -1.45
1031.476 5s25p4 1S0 5s5p5 156828.3o

1 3.43E+07 -2.34

a Gayasov et al. (1997)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.3: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La VII.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
307.150 5s25p3 2Do

3/2 5s25p26s 345450.05/2 3.23E+10 -0.37
308.473 5s25p3 4So

3/2 5s25p26s 324181.03/2 7.91E+09 -0.98
310.991 5s25p3 2Do

5/2 5s25p26s 348538.03/2 1.92E+10 -0.59
311.627 5s25p3 4So

3/2 5s25p26s 320896.35/2 6.53E+10 -0.05
313.553 5s25p3 4So

3/2 5s25p26s 318923.01/2 5.56E+09 -1.12
314.007 5s25p3 2Do

5/2 5s25p26s 345450.05/2 5.98E+10 -0.08
318.237 5s25p3 4So

3/2 5s25p26s 314222.03/2 2.45E+10 -0.46
328.609 5s25p3 2Do

3/2 5s25p26s 324181.03/2 1.77E+10 -0.58
334.395 5s25p3 2Do

3/2 5s25p26s 318923.01/2 4.77E+10 -0.13
336.491 5s25p3 2Do

5/2 5s25p26s 324181.05/2 7.32E+10 0.06
337.143 5s25p3 4So

3/2 5s25p26s 296609.81/2 2.08E+10 -0.48
339.738 5s25p3 2Do

3/2 5s25p26s 314222.03/2 3.75E+09 -1.22
340.255 5s25p3 2Do

5/2 5s25p26s 320896.35/2 2.45E+10 -0.40
343.848 5s25p3 2Po

3/2 5s25p26s 348538.03/2 7.20E+10 0.07
347.540 5s25p3 2Po

3/2 5s25p26s 345450.05/2 1.87E+10 -0.51
348.164 5s25p3 2Do

5/2 5s25p26s 314222.03/2 7.11E+09 -0.92
352.745 5s25p3 2Po

1/2 5s25p26s 324181.03/2 3.66E+10 -0.20
359.410 5s25p3 2Po

1/2 5s25p26s 318923.01/2 1.88E+10 -0.47
378.933 5s25p3 2Do

5/2 5s25p25d 290890.75/2 6.98E+08 -1.86
379.949 5s25p3 2Po

3/2 5s25p26s 320896.35/2 1.61E+09 -1.50
390.528 5s25p3 4So

3/2 5s25p25d 256064.45/2 3.82E+10 -0.11
397.462 5s25p3 4So

3/2 5s25p25d 251595.73/2 5.37E+10 0.07
401.619 5s25p3 2Po

1/2 5s25p25d 289686.63/2 7.59E+10 0.22
403.228 5s25p3 2Do

5/2 5s25p25d 274989.85/2 1.68E+10 -0.40
407.895 5s25p3 2Do

5/2 5s25p25d 272152.37/2 2.71E+11 0.77
408.263 5s25p3 4So

3/2 5s25p25d 244939.91/2 9.46E+10 0.32
410.550 5s25p3 4So

3/2 5s25p25d 243575.93/2 1.08E+11 0.39
411.113 5s25p3 2Do

3/2 5s25p25d 263111.55/2 4.66E+10 0.01
412.045 5s25p3 2Do

3/2 5s25p25d 262560.63/2 1.01E+10 -0.68
412.389 5s25p3 2Do

3/2 5s25p25d 262358.01/2 5.98E+08 -1.86
414.949 5s25p3 4So

3/2 5s25p25d 240993.55/2 2.33E+11 0.73
420.550 5s25p3 4So

3/2 5s5p4 237784.93/2 4.88E+09 -0.86
421.545 5s25p3 2Do

3/2 5s5p4 257090.81/2 5.69E+10 0.13
423.376 5s25p3 2Do

3/2 5s25p25d 256064.45/2 6.73E+10 0.20
423.511 5s25p3 2Do

5/2 5s25p25d 263111.55/2 6.98E+10 0.20
424.503 5s25p3 2Do

5/2 5s25p25d 262560.63/2 9.38E+07 -2.69
428.858 5s25p3 2Po

3/2 5s25p25d 290890.75/2 1.22E+11 0.48
431.082 5s25p3 2Po

3/2 5s25p25d 289686.63/2 2.08E+10 -0.28
436.537 5s25p3 2Do

5/2 5s25p25d 256064.45/2 9.41E+10 0.38
438.915 5s25p3 4So

3/2 5s25p25d 227834.45/2 1.11E+10 -0.52
445.236 5s25p3 2Do

5/2 5s25p25d 251595.73/2 1.35E+10 -0.44
447.006 5s25p3 2Do

3/2 5s25p25d 243575.93/2 1.61E+10 -0.37
450.479 5s25p3 4So

3/2 5s25p25d 221987.93/2 4.88E+09 -0.86
450.727 5s25p3 2Po

1/2 5s25p25d 262560.63/2 3.92E+10 -0.03
451.140 5s25p3 2Po

1/2 5s25p25d 262358.01/2 5.06E+10 0.14
452.233 5s25p3 2Do

3/2 5s25p25d 240993.55/2 1.71E+10 -0.33
454.503 5s25p3 2Do

5/2 5s25p25d 247011.87/2 6.23E+09 -0.74
458.894 5s25p3 2Do

3/2 5s5p4 237784.93/2 4.41E+10 0.09
461.712 5s25p3 2Do

5/2 5s25p25d 243575.93/2 2.91E+10 -0.08
462.119 5s25p3 2Po

1/2 5s5p4 257090.81/2 8.04E+09 -0.65
464.837 5s25p3 4So

3/2 5s25p25d 215130.05/2 2.87E+09 -1.06
467.283 5s25p3 2Do

5/2 5s25p25d 240993.55/2 1.54E+10 -0.35
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Table A.3: Continued.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
469.949 5s25p3 2Do

5/2 5s25p25d 239780.27/2 1.12E+10 -0.46
474.158 5s25p3 2Po

1/2 5s25p25d 251595.73/2 5.40E+09 -0.79
474.395 5s25p3 2Do

5/2 5s5p4 237784.93/2 5.10E+09 -0.62
480.843 5s25p3 2Do

3/2 5s25p25d 227834.45/2 3.83E+09 -0.91
483.627 5s25p3 2Do

3/2 5s25p25d 226638.41/2 2.27E+09 -1.12
485.238 5s25p3 4So

3/2 5s25p25d 206084.95/2 6.98E+09 -0.64
494.638 5s25p3 4So

3/2 5s25p25d 202171.93/2 2.18E+09 -1.13
494.751 5s25p3 2Do

3/2 5s25p25d 221987.93/2 9.14E+08 -1.51
497.901 5s25p3 2Do

5/2 5s25p25d 227834.45/2 3.88E+09 -0.87
500.106 5s25p3 4So

3/2 5s5p4 199957.01/2 1.09E+09 -1.42
501.559 5s25p3 2Po

3/2 5s5p4 257090.81/2 7.52E+09 -0.61
504.210 5s25p3 2Do

3/2 5s25p25d 218195.01/2 6.91E+08 -1.61
505.704 5s25p3 4So

3/2 5s25p25d 197741.43/2 2.41E+08 -2.06
512.826 5s25p3 2Do

5/2 5s25p25d 221987.93/2 5.15E+09 -0.72
531.518 5s25p3 2Do

5/2 5s25p25d 215130.05/2 1.22E+08 -2.32
537.007 5s25p3 2Do

3/2 5s25p25d 206084.95/2 2.78E+08 -1.95
545.705 5s25p3 4So

3/2 5s5p4 183252.25/2 7.62E+07 -2.49
548.514 5s25p3 2Do

3/2 5s25p25d 202171.93/2 1.51E+09 -1.20
551.608 5s25p3 2Po

1/2 5s25p25d 221987.93/2 2.37E+08 -2.00
555.264 5s25p3 2Do

3/2 5s5p4 199957.01/2 4.90E+09 -0.68
558.366 5s25p3 2Do

5/2 5s25p25d 206084.95/2 4.42E+08 -1.72
562.201 5s25p3 2Do

3/2 5s25p25d 197741.43/2 1.50E+08 -2.18
563.387 5s25p3 2Po

1/2 5s25p25d 218195.01/2 6.45E+08 -1.54
565.820 5s25p3 4So

3/2 5s5p4 176734.13/2 5.54E+08 -1.60
570.840 5s25p3 2Do

5/2 5s25p25d 202171.93/2 4.59E+09 -0.68
585.655 5s25p3 2Do

5/2 5s25p25d 197741.43/2 5.10E+09 -0.62
591.969 5s25p3 2Po

3/2 5s25p25d 226638.41/2 3.54E+09 -0.77
608.732 5s25p3 2Po

3/2 5s25p25d 221987.93/2 2.29E+08 -1.94
612.043 5s25p3 2Do

3/2 5s5p4 183252.25/2 1.34E+07 -3.15
619.281 5s25p3 2Po

1/2 5s25p25d 202171.93/2 5.20E+07 -2.56
623.136 5s25p3 2Po

3/2 5s25p25d 218195.01/2 6.20E+08 -1.49
623.935 5s25p3 4So

3/2 5s5p4 160273.21/2 1.68E+09 -1.03
627.906 5s25p3 2Po

1/2 5s5p4 199957.01/2 2.26E+09 -0.92
636.341 5s25p3 4So

3/2 5s5p4 157148.53/2 3.32E+09 -0.71
636.763 5s25p3 2Po

1/2 5s25p25d 197741.43/2 8.73E+08 -1.31
637.490 5s25p3 2Do

3/2 5s5p4 176734.13/2 5.57E+09 -0.50
639.956 5s25p3 2Do

5/2 5s5p4 183252.25/2 5.63E+09 -0.48
667.813 5s25p3 2Do

5/2 5s5p4 176734.13/2 2.41E+08 -1.82
692.227 5s25p3 2Po

3/2 5s25p25d 202171.93/2 3.01E+08 -1.71
697.596 5s25p3 4So

3/2 5s5p4 143349.55/2 2.77E+09 -0.72
703.005 5s25p3 2Po

3/2 5s5p4 199957.01/2 1.26E+08 -2.08
712.219 5s25p3 2Do

3/2 5s5p4 160273.21/2 7.97E+07 -2.24
728.439 5s25p3 2Do

3/2 5s5p4 157148.53/2 1.16E+06 -4.05
735.096 5s25p3 2Po

1/2 5s5p4 176734.13/2 2.31E+08 -1.76
768.302 5s25p3 2Do

5/2 5s5p4 157148.53/2 1.79E+08 -1.83
796.540 5s25p3 2Po

3/2 5s5p4 183252.25/2 1.55E+09 -0.87
809.841 5s25p3 2Do

3/2 5s5p4 143349.55/2 7.04E+08 -1.19
836.288 5s25p3 2Po

1/2 5s5p4 160273.21/2 1.28E+08 -1.90
859.416 5s25p3 2Do

5/2 5s5p4 143349.55/2 3.47E+08 -1.44
975.027 5s25p3 2Po

3/2 5s5p4 160273.21/2 1.32E+07 -2.77
1005.649 5s25p3 2Po

3/2 5s5p4 157148.53/2 7.44E+07 -1.99

a Gayasov et al. (1998)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.4: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La VIII.

λobs (Å)a Transitiona gA (s−1)b log(gf )b

Lower level Upper level
280.260 5s25p2 3P1 5s25p6s 3Po

2 2.80E+10 -0.50
284.336 5s25p2 3P0 5s25p6s 3Po

1 3.28E+10 -0.41
285.384 5s25p2 3P2 5s25p6s 3Po

2 4.72E+10 -0.26
302.277 5s25p2 3P1 5s25p6s 3Po

0 2.55E+10 -0.47
303.414 5s25p2 1D2 5s25p6s 1Po

1 7.85E+10 0.01
306.767 5s25p2 3P2 5s25p6s 3Po

1 5.57E+10 -0.12
307.321 5s25p2 1D2 5s25p6s 3Po

2 3.07E+10 -0.39
322.811 5s25p2 1S0 5s25p6s 1Po

1 1.48E+10 -0.66
370.024 5s25p2 3P0 5s25p5d 270253o

1 4.21E+08 -2.10
379.061 5s25p2 3P2 5s25p5d 289537o

3 2.00E+10 -0.41
391.082 5s25p2 3P1 5s25p5d 275025o

1 4.34E+09 -1.11
395.969 5s25p2 3P1 5s25p5d 271866o

0 2.89E+10 -0.20
398.509 5s25p2 3P1 5s25p5d 270253o

1 5.09E+10 0.04
400.709 5s25p2 3P1 5s25p5d 268878o

2 1.66E+10 -0.44
401.128 5s25p2 3P2 5s25p5d 275025o

1 1.71E+10 -0.41
401.290 5s25p2 3P0 5s25p5d 249196o

1 3.75E+10 -0.07
401.373 5s25p2 3P2 5s25p5d 274872o

2 4.19E+10 -0.02
407.895 5s25p2 3P2 5s25p5d 270890o

3 1.81E+11 0.62
408.095 5s25p2 3P0 5s25p5d 245042o

1 7.93E+09 -0.73
408.959 5s25p2 3P2 5s25p5d 270253o

1 3.37E+09 -1.08
411.267 5s25p2 3P2 5s25p5d 268878o

2 5.11E+07 -2.82
418.762 5s25p2 1D2 5s25p5d 289537o

3 4.92E+10 0.05
435.017 5s25p2 3P1 5s25p5d 249196o

1 1.46E+10 -0.42
438.465 5s25p2 3P1 5s25p5d 247389o

2 5.52E+10 0.17
443.030 5s25p2 3P1 5s5p3 245042o

1 1.02E+10 -0.56
445.851 5s25p2 1D2 5s25p5d 275025o

1 1.41E+10 -0.41
446.161 5s25p2 1D2 5s25p5d 274872o

2 2.64E+10 -0.14
451.140 5s25p2 3P2 5s25p5d 247389o

2 1.67E+10 -0.33
454.230 5s25p2 1D2 5s25p5d 270890o

3 2.31E+10 -0.19
455.551 5s25p2 1D2 5s25p5d 270253o

1 1.88E+09 -1.38
455.956 5s25p2 3P2 5s5p3 245042o

1 5.18E+08 -1.83
458.423 5s25p2 1D2 5s25p5d 268878o

2 3.17E+10 -0.04
459.727 5s25p2 3P0 5s5p3 217519o

1 1.12E+10 -0.49
466.767 5s25p2 3P2 5s25p5d 239969o

3 2.94E+09 -1.00
477.454 5s25p2 3P1 5s25p5d 228766o

2 2.02E+09 -1.18
479.129 5s25p2 3P2 5s5p24f 234437o

3 1.35E+10 -0.37
489.046 5s25p2 1S0 5s25p5d 275025o

1 6.04E+07 -2.70
492.517 5s25p2 3P2 5s25p5d 228766o

2 3.99E+09 -0.86
503.887 5s25p2 1D2 5s25p5d 249196o

1 7.25E+09 -0.60
504.545 5s25p2 3P1 5s25p5d 217519o

1 1.93E+10 -0.18
507.156 5s25p2 3P1 5s5p3 216497o

2 4.24E+08 -1.79
508.511 5s25p2 1D2 5s25p5d 247389o

2 3.40E+09 -0.92
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Table A.4: Continued.

λobs (Å)a Transitiona gA (s−1)b log (gf )b

Lower level Upper level
511.630 5s25p2 3P0 5s5p3 195453o

1 1.95E+09 -1.12
514.659 5s25p2 1D2 5s5p3 245042o

1 2.68E+10 -0.02
521.397 5s25p2 3P2 5s5p3 217519o

1 4.70E+10 0.24
528.453 5s25p2 1D2 5s25p5d 239969o

3 1.05E+08 -2.38
544.375 5s25p2 1D2 5s5p24f 234437o

3 1.05E+08 -2.38
559.753 5s25p2 1S0 5s25p5d 249196o

1 2.03E+08 -2.07
561.708 5s25p2 1D2 5s25p5d 228766o

2 2.03E+09 -1.04
567.753 5s25p2 3P1 5s5p3 195453o

1 6.55E+09 -0.51
573.071 5s25p2 1S0 5s5p3 245042o

1 4.18E+09 -0.73
575.852 5s25p2 3P1 5s5p3 192976o

0 2.29E+09 -0.96
584.760 5s25p2 3P2 5s5p3 196738o

2 1.22E+10 -0.21
589.188 5s25p2 3P2 5s5p3 195453o

1 2.58E+08 -1.88
599.598 5s25p2 1D2 5s5p3 217519o

1 7.18E+08 -1.47
603.291 5s25p2 1D2 5s5p3 216497o

2 1.04E+10 -0.26
603.881 5s25p2 3P0 5s5p3 165594o

1 4.17E+09 -0.64
664.918 5s25p2 3P2 5s5p3 176121o

3 3.31E+09 -0.66
669.155 5s25p2 3P1 5s5p3 168764o

2 4.42E+09 -0.53
680.391 5s25p2 1S0 5s5p3 217519o

1 7.22E+08 -1.36
684.932 5s25p2 1D2 5s5p3 196738o

2 4.00E+08 -1.57
699.114 5s25p2 3P2 5s5p3 168764o

2 5.05E+07 -2.43
714.960 5s25p2 3P2 5s5p3 165594o

1 3.36E+08 -1.60
797.561 5s25p2 1D2 5s5p3 176121o

3 1.84E+09 -0.76
800.581 5s25p2 1S0 5s5p3 195453o

1 1.79E+08 -1.78
842.378 5s25p2 3P1 5s5p3 138032o

2 2.34E+08 -1.60
847.275 5s25p2 1D2 5s5p3 168764o

2 7.66E+07 -2.10
870.654 5s25p2 1D2 5s5p3 165594o

1 1.21E+08 -1.88
890.432 5s25p2 3P2 5s5p3 138032o

2 1.77E+08 -1.67
1052.091 5s25p2 1S0 5s5p3 165594o

1 1.53E+07 -2.62
1145.559 5s25p2 1D2 5s5p3 138032o

2 1.45E+07 -2.55

a Tauheed et al. (2008)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.5: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La IX.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousb This workc This workc

202.393 5s24f 2Fo
5/2 5s25g 5938597/2 2.63E+11 0.19

202.824 5s24f 2Fo
7/2 5s25g 5946999/2 3.19E+11 0.28

262.285 5s25p 2Po
1/2 5s26s 381269.31/2 4.05E+10 -0.39

283.280 5s25p 2Po
3/2 5s26s 381269.31/2 6.60E+10 -0.12

340.368 5s25p 2Po
1/2 5s5p4f 293802.33/2 2.24E+10 -0.43

363.478 5s5p2 127670.41/2 4f5p2 402790o
3/2 1.20E+10 2.31E+09 -1.32

368.754 5s25p 2Po
1/2 5s5p4f 271182.13/2 4.59E+10 -0.03

372.062 5s25p 2Po
3/2 5s5p4f 297037.65/2 3.77E+10 -0.13

372.247 5s5p2 153628.15/2 5s5p5d 422273o
7/2 2.60E+10 1.60E+10 -0.50

373.572 5s5p2 174459.33/2 5s5p5d 442148o
5/2 2.60E+11 1.66E+11 0.52

374.074 5s5p2 174459.33/2 5s26p 441779o
1/2 7.00E+09 4.75E+09 -1.03

375.118 5s5p2 191315.31/2 5s5p5d 457898o
1/2 3.00E+10 3.31E+10 -0.18

377.367 5s5p2 184888.45/2 5s5p5d 449886o
7/2 2.24E+11 6.08E+10 0.11

377.367 5s5p2 143356.93/2 5s5p5d 408346o
3/2 8.10E+10 2.55E+10 -0.26

377.717 5s5p2 143356.93/2 5s5p5d 408104o
5/2 7.80E+10 5.34E+10 0.04

378.157 5s5p2 143356.93/2 4f5p2 407797o
1/2 4.20E+10 1.19E+10 -0.61

382.215 5s5p2 143356.93/2 5s5p5d 404990o
1/2 2.40E+10 4.77E+10 0.01

382.303 5s5p2 143356.93/2 4f5p2 404935o
3/2 6.00E+09 3.86E+09 -1.09

384.691 5s5p2 127670.41/2 5s5p5d 387619o
1/2 9.20E+10 7.78E+10 0.23

385.951 5s5p2 127670.41/2 5s5p5d 386770o
3/2 1.12E+11 1.02E+11 0.35

391.946 5s5p2 153628.15/2 4f5p2 408769o
7/2 3.20E+10 8.17E+09 -0.75

392.590 5s5p2 153628.15/2 5s5p5d 408346o
3/2 3.20E+10 1.96E+10 -0.34

392.960 5s5p2 153628.15/2 5s5p5d 408104o
5/2 1.24E+11 9.45E+10 0.32

393.098 5s5p2 153628.15/2 5s5p5d 408018o
7/2 2.34E+11 1.92E+11 0.63

394.802 5s5p2 184888.45/2 5s5p5d 438182o
7/2 1.06E+11 6.08E+10 0.11

395.074 5s25p 2Po
1/2 5s25d 253117.33/2 8.37E+09 -0.69

395.557 5s5p4f 2477825/2 5s25f 500588o
7/2 2.90E+10 1.18E+10 -0.60

399.607 5s5p2 191315.31/2 5s5p5d 441561o
1/2 2.80E+10 3.31E+10 -0.18

399.867 5s25d 249703.53/2 5s25f 499784o
5/2 1.02E+11 1.14E+11 0.41

400.478 5s25p 2Po
1/2 5s5p4f 249703.53/2 4.59E+10 0.03

400.599 5s5p2 143356.93/2 4f5p2 392988o
3/2 7.00E+09 5.10E+09 -0.93

402.380 5s5p2 143356.93/2 4f5p2 391878o
5/2 2.60E+10 1.58E+10 -0.44

402.961 5s5p2 127670.41/2 5p3 375835o
3/2 7.00E+09 7.54E+09 -0.75

404.216 5s5p2 153628.15/2 4f5p2 401024o
5/2 2.20E+10 3.51E+10 -0.08

405.407 5s5p4f 253117.33/2 5s25f 499784o
5/2 6.90E+10 2.18E+10 -0.33

405.654 5s5p4f 254070.05/2 5s25f 500588o
7/2 1.02E+11 2.42E+11 0.78

406.546 5s5p2 174459.33/2 4f5p2 420432o
5/2 1.50E+10 9.99E+08 -1.60

406.819 5s5p2 191315.31/2 5s5p5d 437125o
3/2 1.13E+11 7.89E+10 0.29

409.397 5s5p2 143356.93/2 5s5p5d 387619o
1/2 2.00E+09 1.63E+09 -1.40

410.820 5s5p2 143356.93/2 5s5p5d 386770o
3/2 2.50E+10 2.21E+10 -0.27

411.272 5s5p2 221736.43/2 4f5p2 464884o
5/2 1.31E+11 2.48E+09 -1.19

411.363 5s5p2 153628.15/2 4f5p2 396724o
7/2 4.10E+10 5.55E+10 0.13

411.670 5s25p 2Po
3/2 5s5p4f 271182.13/2 1.15E+10 -0.55

412.502 5s5p2 174459.33/2 5s5p5d 416886o
3/2 5.20E+10 4.54E+10 0.04

413.257 5s5p2 221736.43/2 5s5p5d 463717o
3/2 1.21E+11 1.55E+07 -3.40

414.094 5s5p2 221736.43/2 4f5p2 463230o
5/2 1.40E+11 1.88E+11 0.67

415.112 5s5p2 143356.93/2 5s5p5d 384255o
5/2 1.06E+11 1.07E+11 0.42

415.599 5s5p2 153628.15/2 4f5p2 394242o
5/2 8.00E+09 9.44E+09 -0.63

421.169 5s5p2 220463.21/2 5s5p5d 457898o
1/2 2.80E+10 3.16E+10 -0.02

421.247 5s5p2 184888.45/2 5s5p5d 422273o
7/2 3.50E+10 5.60E+10 0.15

422.810 5s5p2 191315.31/2 4f5p2 427829o
3/2 1.90E+10 7.89E+10 0.29

422.987 5s25d 264176.55/2 5s25f 500588o
7/2 2.36E+11 2.42E+11 0.78

423.890 5s25p 2Po
3/2 5s25d 264176.55/2 1.07E+11 0.44

424.432 5s25d 264176.55/2 5s25f 499784o
5/2 2.20E+10 6.75E+09 -0.77

424.945 5s5p2 220463.21/2 5s5p5d 455788o
3/2 5.60E+10 1.10E+10 -0.56

424.945 5s5p2 191315.31/2 4f5p2 426634o
3/2 1.50E+10 2.24E+10 -0.21

426.161 5s5p2 143356.93/2 4f5p2 378012o
5/2 1.20E+10 1.13E+10 -0.54

431.037 5s5p2 184888.45/2 5s5p5d 416886o
3/2 6.00E+09 4.21E+09 -0.96

433.353 5s5p2 220463.21/2 5s26p 451225o
3/2 4.60E+10 4.51E+09 -0.91
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Table A.5: Continued.

λobs (Å)a Transition gA (s−1) log (gf )
Lower level Upper level Previousb This workc This workc

433.602 5s5p2 153628.15/2 5s5p5d 384255o
5/2 2.30E+10 1.78E+10 -0.32

435.102 5s5p2 184888.45/2 5s5p5d 414722o
5/2 1.11E+11 8.35E+10 0.35

435.742 5s5p2 221736.43/2 5s26p 451225o
3/2 1.50E+10 3.03E+09 -1.07

437.450 5s5p4f 271182.13/2 5s25f 499784o
5/2 8.70E+10 9.61E+10 0.40

442.862 5s25p 2Po
3/2 5s5p4f 254070.05/2 2.75E+10 -0.10

444.737 5s25p 2Po
3/2 5s25d 253117.33/2 1.67E+09 -1.29

448.158 5s5p2 184888.45/2 5s5p5d 408018o
7/2 3.00E+10 1.72E+10 -0.30

448.461 5s5p2 143356.93/2 5s5p5d 366348o
5/2 5.00E+09 5.15E+09 -0.83

449.135 5s25p 2Po
1/2 5s5p4f 222651.23/2 1.95E+10 -0.24

450.990 5s25p 2Po
1/2 5s5p2 221736.43/2 6.98E+08 -1.56

451.587 5s25p 2Po
3/2 5s5p4f 249703.53/2 9.76E+09 -0.55

451.919 5s5p2 153628.15/2 5s5p5d 374907o
7/2 2.50E+10 1.87E+10 -0.26

452.290 5s5p2 220463.21/2 5s5p5d 441561o
1/2 3.10E+10 3.16E+10 -0.02

453.589 5s25p 2Po
1/2 5s5p2 220463.21/2 2.69E+09 -1.09

455.550 5s25p 2Po
3/2 5s5p4f 247782o

5/2 1.10E+09 4.67E+09 -0.84
457.602 5s5p2 174459.33/2 4f5p2 392988o

3/2 2.80E+10 2.65E+10 -0.10
457.970 5s5p2 143356.93/2 5s5p5d 361709o

3/2 2.00E+09 2.13E+09 -1.19
459.950 5s5p2 174459.33/2 4f5p2 391878o

5/2 2.90E+10 4.72E+09 -0.79
465.562 5s5p2 221736.43/2 4f5p2 436530o

5/2 1.40E+10 6.62E+09 -0.67
470.099 5s5p2 153628.15/2 5s5p5d 366348o

5/2 8.00E+09 5.15E+09 -0.83
471.012 5s5p2 174459.33/2 5s5p5d 386770o

3/2 1.20E+10 5.44E+09 -0.75
483.863 5s5p2 127670.41/2 5p3 334342o

3/2 1.00E+10 1.06E+10 -0.45
495.856 5s5p2 191315.31/2 4f5p2 392988o

3/2 1.60E+10 1.24E+10 -0.33
498.255 5s5p4f 225404.09/2 4f5p2 426108o

11/2 2.60E+10 2.34E+10 -0.07
510.805 5s5p4f 234301.47/2 4f5p2 430074o

9/2 2.30E+10 1.74E+10 -0.17
511.832 5s24f 2Fo

7/2 5s5p4f 297037.65/2 1.01E+11 0.59
513.434 5s5p4f 231868.25/2 4f5p2 426634o

3/2 2.30E+10 4.62E+09 -0.75
514.440 5s25p 2Po

3/2 5s5p4f 222651.23/2 6.85E+10 0.41
515.377 5s24f 2Po

5/2 5s5p4f 293802.33/2 7.00E+10 0.44
516.870 5s25p 2Po

3/2 5s5p2 221736.43/2 2.90E+08 -2.05
519.629 5s25d 249703.53/2 5s5p5d 442148o

5/2 2.30E+10 1.51E+10 -0.22
520.300 5s25p 2Po

3/2 5s5p2 220463.21/2 2.26E+10 -0.06
520.629 5s25d 249703.53/2 5s26p 441779o

1/2 5.00E+09 2.29E+09 -1.05
521.889 5s25d 264176.25/2 5s5p5d 455788o

3/2 3.10E+10 1.83E+10 -0.16
522.697 5s25p 2Po

1/2 5s5p2 191315.31/2 3.03E+10 0.07
523.601 5s5p2 143356.93/2 5p3 334342o

3/2 1.30E+10 2.13E+10 -0.09
523.703 5s5p2 184888.45/2 5p3 375835o

3/2 2.40E+10 1.81E+10 -0.15
527.468 5s5p2 127670.41/2 5p3 317255o

3/2 1.20E+10 1.06E+10 -0.45
528.240 5s5p4f 2605789/2 5s5p5d 449886o

7/2 6.10E+10 3.88E+09 -0.75
531.949 5s5p4f 216947.85/2 4f5p2 404935o

3/2 2.60E+10 2.30E+10 -0.01
534.050 5s5p2 174459.33/2 5s5p5d 361709o

3/2 3.00E+09 1.58E+09 -1.18
536.731 5s5p2 174459.33/2 5p3 360769o

1/2 2.10E+10 1.40E+10 -0.24
537.262 5s5p4f 234301.47/2 4f5p2 420432o

5/2 2.90E+10 2.42E+10 0.01
538.134 5s5p4f 279688.77/2 4f5p2 465514o

7/2 5.20E+10 2.75E+10 0.09
541.283 5s5p4f 2517787/2 4f5p2 436530o

5/2 3.00E+10 3.30E+10 0.14
541.605 5s24f 2Fo

5/2 5s5p4f 284406.67/2 6.26E+10 0.47
544.876 5s5p4f 219995.47/2 4f5p2 403523o

5/2 2.10E+10 1.52E+10 -0.18
545.227 5s24f 2Fo

7/2 5s5p4f 285070.39/2 1.13E+11 0.70
546.190 5s5p4f 2442499/2 4f5p2 427335o

9/2 4.20E+10 3.30E+10 0.16
546.355 5s5p4f 2442499/2 4f5p2 427277o

7/2 3.50E+10 2.91E+10 0.10
546.449 5s5p2 153628.15/2 5p3 336627o

5/2 7.00E+09 2.64E+09 -0.94
547.212 5s24f 2Fo

7/2 5s5p4f 284406.67/2 9.50E+09 -0.37
547.450 5s5p4f 224528.17/2 4f5p2 407192o

9/2 1.30E+10 1.09E+10 -0.32
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Table A.5: Continued.

λobs (Å)a Transition gA (s−1) log (gf )
Lower level Upper level Previousb This workc This workc

548.998 5s5p4f 219995.47/2 4f5p2 402146o
9/2 3.20E+10 3.23E+10 0.16

550.021 5s5p4f 245526.87/2 4f5p2 427335o
9/2 1.90E+10 1.79E+10 -0.11

550.214 5s5p4f 245526.87/2 4f5p2 427277o
7/2 2.30E+10 1.39E+10 -0.21

550.528 5s5p4f 245526.87/2 4f5p2 427173o
5/2 2.60E+10 1.87E+10 -0.08

552.400 5s5p4f 219995.47/2 4f5p2 401024o
5/2 1.40E+10 8.27E+09 -0.42

553.360 5s5p2 153628.15/2 5p3 334342o
3/2 1.60E+10 1.91E+10 -0.09

553.794 5s5p4f 246760.011/2 4f5p2 427335o
9/2 4.30E+10 3.34E+10 0.18

554.192 5s5p4f 285070.39/2 4f5p2 465514o
7/2 8.30E+10 4.49E+10 0.33

555.810 5s24f 2Fo
5/2 5s5p4f 279688.77/2 1.01E+10 -0.33

557.119 5s5p4f 2477825/2 4f5p2 427277o
7/2 2.00E+10 4.85E+09 -0.66

557.579 5s5p4f 24676011/2 4f5p2 426108o
11/2 5.60E+10 4.37E+10 0.30

559.208 5s5p4f 284406.67/2 4f5p2 463230o
5/2 3.00E+10 1.77E+08 -2.10

560.309 5s24f 2Fo
5/2 5s5p4f 278244.05/2 6.26E+10 0.47

561.708 5s25p 2Fo
7/2 5s5p4f 279688.77/2 7.81E+10 0.56

563.001 5s5p4f 224528.17/2 4f5p2 402146o
9/2 2.30E+10 9.17E+09 -0.37

563.613 5s5p4f 225404.09/2 4f5p2 402830o
7/2 2.20E+10 1.17E+10 -0.26

563.847 5s5p4f 219995.47/2 4f5p2 397350o
9/2 2.30E+10 3.23E+10 0.16

564.224 5s5p4f 225404.09/2 4f5p2 402638o
11/2 4.80E+10 3.44E+10 0.20

565.288 5s5p4f 231868.25/2 4f5p2 408769o
7/2 3.20E+10 2.06E+10 -0.02

565.483 5s5p4f 224184.05/2 4f5p2 401024o
5/2 9.00E+09 5.32E+09 -0.59

565.820 5s5p4f 219995.47/2 4f5p2 396724o
7/2 1.60E+10 9.74E+09 -0.33

568.073 5s5p4f 216947.85/2 4f5p2 392986o
7/2 1.20E+10 7.03E+09 -0.47

571.660 5s5p4f 216947.85/2 4f5p2 391878o
5/2 1.10E+10 8.89E+09 -0.37

573.200 5s25p 2Po
1/2 5s5p2 174459.33/2 9.93E+09 -0.30

574.516 5s5p4f 253117.33/2 4f5p2 427173o
5/2 1.60E+10 1.35E+10 -0.20

574.688 5s25d 264176.55/2 5s5p5d 438182o
7/2 1.00E+10 3.31E+10 0.20

575.044 5s5p2 143356.93/2 5p3 317255o
3/2 1.00E+10 2.13E+10 -0.09

575.529 5s5p4f 2528791/2 4f5p2 426634o
3/2 8.00E+09 8.74E+09 -0.38

577.353 5s5p4f 254070.05/2 4f5p2 427277o
7/2 1.00E+10 5.26E+09 -0.59

578.399 5s5p4f 234301.47/2 4f5p2 407192o
9/2 1.10E+10 4.74E+09 -0.63

579.571 5s5p4f 224184.05/2 4f5p2 396724o
7/2 2.10E+10 1.19E+10 -0.23

580.196 5s25d 264176.55/2 4f5p2 436530o
5/2 1.20E+10 4.81E+09 -0.62

581.571 5s5p4f 225404.09/2 4f5p2 397350o
9/2 9.00E+09 6.85E+09 -0.49

582.786 5s5p4f 222651.23/2 4f5p2 394242o
5/2 1.00E+10 4.87E+09 -0.62

586.182 5s5p4f 271182.13/2 5s26p 441779o
1/2 3.00E+09 8.92E+08 -1.37

589.979 5s5p4f 2605789/2 4f5p2 430074o
9/2 5.20E+10 4.19E+10 0.33

590.128 5s5p2 191315.31/2 5p3 360769o
1/2 2.00E+09 5.56E+08 -1.53

590.920 5s5p4f 222651.23/2 4f5p2 391878o
5/2 5.00E+09 5.15E+09 -0.58

593.610 5s5p4f 224528.17/2 4f5p2 392986o
7/2 6.00E+09 5.09E+09 -0.57

603.487 5s5p4f 224528.17/2 5s5p5d 390232o
9/2 4.00E+09 1.27E+09 -1.15

604.784 5s5p4f 271182.13/2 4f5p2 436529o
5/2 2.20E+10 9.79E+09 -0.28

611.150 5s5p2 153628.15/2 5p3 317255o
3/2 2.40E+10 1.91E+10 -0.09

613.313 5s25p 2Po
3/2 5s5p2 191315.31/2 8.57E+08 -1.35

613.704 5s5p4f 2517787/2 5s5p5d 414722o
5/2 5.00E+09 2.38E+09 -0.89

614.188 5s5p4f 254070.05/2 5s5p5d 416886o
3/2 6.00E+09 2.88E+09 -0.81

615.100 5s5p4f 245526.87/2 5s5p5d 408104o
5/2 1.10E+10 1.09E+10 -0.21

622.460 5s5p4f 224184.05/2 4f5p2 384837o
7/2 8.00E+09 1.19E+10 -0.23
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Table A.5: Continued.

λobs (Å)a Transition gA (s−1) log (gf )
Lower level Upper level Previousb This workc This workc

622.806 5s5p4f 2477825/2 5s5p5d 408346o
3/2 7.00E+09 1.72E+08 -1.98

623.797 5s5p4f 224528.17/2 4f5p2 384837o
7/2 1.20E+10 1.14E+08 -2.24

627.224 5s5p4f 225404.09/2 4f5p2 384837o
7/2 4.00E+10 1.19E+08 -2.22

632.843 5s5p4f 219995.47/2 4f5p2 378012o
5/2 1.20E+10 7.46E+09 -0.36

638.478 5s25p 2Po
3/2 5s5p2 184888.45/2 6.27E+09 -0.40

641.531 5s5p4f 24676011/2 4f5p2 402638o
11/2 4.40E+10 3.15E+10 0.27

643.560 5s5p4f 24676011/2 4f5p2 402146o
9/2 3.70E+10 2.75E+10 0.22

648.938 5s5p2 221736.43/2 5p3 375835o
3/2 1.30E+10 5.49E+09 -0.44

653.167 5s5p4f 2442499/2 4f5p2 397350o
9/2 2.30E+10 7.46E+09 -0.36

655.850 5s5p4f 2442499/2 4f5p2 396724o
7/2 1.40E+10 7.32E+09 -0.34

657.646 5s5p4f 2528791/2 4f5p2 404935o
3/2 9.00E+09 5.27E+09 -0.48

657.864 5s24f 2Fo
5/2 5s5p4f 2517787/2 1.00E+09 3.86E+08 -1.57

659.030 5s5p2 184888.45/2 5p3 336627o
5/2 1.60E+10 1.04E+09 -1.10

662.033 5s5p4f 2517787/2 4f5p2 402830o
7/2 8.00E+09 3.61E+08 -1.61

664.290 5s5p4f 234301.47/2 4f5p2 384837o
7/2 2.00E+10 1.95E+09 -0.96

666.144 5s24f 2Fo
7/2 5s5p4f 2517787/2 2.00E+09 7.01E+08 -1.29

674.798 5s5p4f 2605789/2 4f5p2 408769o
7/2 1.10E+10 7.44E+09 -0.31

675.626 5s24f 2Fo
5/2 5s5p4f 2477825/2 7.00E+09 2.82E+08 -1.68

678.145 5s5p4f 245526.87/2 4f5p2 392986o
7/2 1.20E+10 6.98E+09 -0.33

682.068 5s5p4f 2605789/2 4f5p2 407192o
9/2 1.50E+10 1.14E+10 -0.12

684.024 5s25p 2Po
3/2 5s5p2 174459.33/2 1.06E+08 -2.13

690.791 5s5p4f 216947.85/2 5s5p5d 361709o
3/2 3.00E+09 2.98E+09 -0.66

695.090 5s24f 2Fo
7/2 5s5p4f 245526.87/2 7.39E+08 -1.23

696.996 5s5p4f 24676011/2 5s5p5d 390232o
9/2 2.00E+09 5.07E+09 -0.42

700.298 5s5p2 174459.33/2 5p3 317255o
3/2 4.00E+09 1.11E+09 -1.21

709.024 5s5p4f 285070.39/2 4f5p2 426108o
11/2 1.90E+10 1.19E+10 -0.02

711.208 5s5p4f 234301.47/2 5s5p5d 374907o
7/2 3.00E+09 2.13E+09 -0.78

712.734 5s5p2 220463.21/2 5p3 360769o
1/2 6.00E+09 2.99E+09 -0.64

743.330 5s24f 2Fo
5/2 5s5p4f 234301.47/2 1.64E+08 -1.83

753.911 5s24f 2Fo
7/2 5s5p4f 234301.47/2 8.95E+08 -1.08

757.023 5s24f 2Fo
5/2 5s5p4f 231868.25/2 1.96E+08 -1.74

768.001 5s24f 2Fo
7/2 5s5p4f 231868.25/2 4.98E+08 -1.32

783.265 5s25p 2Po
1/2 5s5p2 127670.41/2 2.95E+08 -1.55

794.035 5s5p2 191315.31/2 5p3 317255o
3/2 3.00E+09 8.19E+08 -1.20

797.689 5s25p 2Po
3/2 5s5p2 153628.15/2 9.16E+08 -1.04

801.563 5s24f 2Fo
5/2 5s5p4f 224528.17/2 7.78E+08 -1.09

803.775 5s24f 2Fo
5/2 5s5p4f 224184.05/2 5.18E+08 -1.26

808.124 5s24f 2Fo
7/2 5s5p4f 225404.09/2 8.49E+08 -1.04

813.880 5s24f 2Fo
7/2 5s5p4f 224528.17/2 4.59E+08 -1.30

831.779 5s24f 2Fo
5/2 5s5p4f 219995.47/2 1.80E+08 -1.70

853.412 5s24f 2Fo
5/2 5s5p4f 216947.85/2 9.14E+07 -1.97

868.878 5s25p 2Po
3/2 5s5p2 143356.93/2 8.37E+07 -2.00

870.394 5s5p2 221736.43/2 5p3 336627o
5/2 4.00E+09 2.35E+09 -0.52

1006.004 5s25p 2Po
3/2 5s5p2 127670.41/2 2.70E+07 -2.37

a Gayasov et al. (1998) and Churilov and Joshi (2001)

b Churilov and Joshi (2001)

c Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.6: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in La X.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb This workb

160.066 5s2 1S0 5s6p 1Po
1 3.47E+10 3.27E+10 -0.90

162.335 5s2 1S0 5s6p 3Po
1 1.17E+10 9.95E+09 -1.40

236.951 5s5p 3Po
0 5s6s 3S1 2.08E+10 2.44E+10 -0.68

240.719 5s5p 3Po
1 5s6s 3S1 5.57E+10 6.66E+10 -0.24

255.507 5s5p 3Po
2 5s6s 3S1 8.28E+10 9.84E+10 -0.02

272.757 5s5p 1Po
1 5s6s 1S0 4.00E+10 4.35E+10 -0.30

280.140 5s5p 1Po
1 5s6s 3S1 2.40E+09 1.90E+09 -1.63

335.339 5p2 3P1 4f5d 3Do
2 1.30E+10 1.02E+10 -0.75

335.638 5s5p 3Po
1 5s5d 1D2 9.80E+09 3.13E+09 -1.29

337.243 5p2 1D2 4f5d 3Do
3 3.48E+10 2.70E+10 -0.33

363.174 5p2 1D2 5p5d 1Fo
3 5.74E+10 5.76E+10 0.06

366.409 5s5p 3Po
0 5s5d 3D1 5.09E+10 3.95E+10 -0.11

369.473 5p2 3P2 5s6p 3Po
1 6.50E+09 4.31E+09 -1.09

374.335 5s5p 3Po
1 5s5d 3D2 1.17E+11 9.19E+10 0.28

374.675 5p2 3P1 5p5d 3Po
1 6.89E+10 5.30E+10 0.06

375.498 5s5p 3Po
1 5s5d 3D1 3.33E+10 3.31E+09 -1.29

376.079 4f5p 3G4 4f5d 1Ho
5 3.88E+10 3.50E+10 -0.12

380.193 5p2 3P0 5p5d 3Do
1 1.23E+11 9.12E+10 0.31

383.615 5p2 1D2 5p5d 3Do
3 1.92E+11 1.57E+11 0.54

383.615 4f5p 3F3 4f5d 3Do
3 3.62E+10 3.84E+10 -0.05

384.314 4f5p 3F3 4f5d 3Do
2 8.63E+10 7.01E+10 0.20

386.512 4f5p 3G4 4f5d 3Do
3 3.56E+10 3.24E+10 -0.13

388.989 5s5p 3Po
0 4f5p 3D1 1.11E+10 3.95E+10 -0.11

390.180 5p2 3P1 5p5d 3Do
2 1.10E+11 8.17E+10 0.28

393.523 5p2 1D2 5p5d 3Do
2 4.86E+10 2.80E+10 -0.18

393.698 4f5p 3G3 4f5d 3Ho
4 8.11E+10 6.67E+10 0.20

394.309 4f5p 3G3 4f5d 3Fo
3 2.71E+10 2.38E+10 -0.24

395.986 5s5d 3D1 5s5f 3Fo
2 1.64E+11 1.23E+11 0.46

396.578 5s5d 3D2 5s5f 3Fo
3 2.63E+11 1.99E+11 0.67

396.865 4f5p 3G3 4f5d 3Fo
2 2.94E+10 2.38E+10 -0.24

398.083 4f5p 3G4 4f5d 3Go
4 4.01E+10 4.53E+09 -0.96

398.865 4f5p 3G4 4f5d 3Ho
5 2.11E+11 5.21E+10 0.11

399.220 4f5p 3G3 4f5d 1Go
4 1.51E+11 1.16E+11 0.45

399.250 5s5p 3Po
1 4f5p 3D1 7.20E+09 7.82E+09 -0.73

399.397 5s5d 3D3 5s5f 3Fo
4 4.08E+11 3.20E+11 0.88

399.622 4f5p 3F3 4f5d 3Ho
4 6.57E+10 4.44E+10 0.04

400.254 4f5p 3F3 4f5d 3Fo
3 9.40E+10 2.37E+10 -0.23

401.941 4f5p 3F2 4f5d 3Fo
2 9.51E+10 7.66E+10 0.28

402.758 4f5p 3G4 4f5d 3Ho
4 7.46E+10 5.21E+10 0.11

404.193 5p2 3P2 5p5d 1Fo
3 1.52E+11 1.23E+11 0.48

404.193 5s5p 3Po
1 4f5p 3D2 1.20E+10 1.11E+10 -0.57

405.283 4f5p 3F3 4f5d 1Go
4 2.42E+10 1.92E+10 -0.31

407.301 5s5p 3Po
2 5s5d 3D3 1.20E+10 1.48E+11 0.55

408.517 4f5p 3G4 4f5d 1Go
4 3.18E+10 2.23E+10 -0.24

411.346 5s5p 3Po
2 5s5d 3D2 3.04E+10 2.41E+10 -0.23

417.550 5s5p 1Po
1 5s5d 1D2 1.53E+11 6.57E+10 0.24

420.342 5p2 3P2 5p5d 3Po
2 1.18E+11 8.33E+10 0.35

421.312 4f5p 1F3 4f5d 3Do
3 2.98E+10 2.66E+10 -0.12

422.185 4f5p 1F3 4f5d 3Do
2 1.61E+10 3.19E+09 -1.04

422.704 5p2 3P1 5p5d 1Do
2 7.97E+10 4.91E+10 0.13

422.969 4f5p 3D3 4f5d 3Po
2 6.93E+10 5.67E+10 0.19
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Table A.6: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb This workb

424.142 5s5d 1D2 5s5f 1Fo
3 3.10E+11 1.26E+11 0.54

426.173 4f5p 3F4 4f5d 3Do
3 2.73E+10 2.44E+10 -0.17

426.610 5p2 1D2 5p5d 1Do
2 4.30E+10 3.85E+10 0.03

429.695 5p2 3P2 5p5d 3Do
3 7.31E+10 6.11E+10 0.23

432.371 4f5p 3D3 4f5d 3Do
3 2.98E+10 2.66E+10 -0.12

432.647 4f5p 1F3 4f5d 3Po
4 6.23E+10 1.82E+10 -0.27

433.343 4f5p 1G4 4f5d 1Ho
5 2.41E+11 1.88E+11 0.73

434.237 4f5p 3F4 4f5d 3Go
5 1.79E+11 1.31E+11 0.58

435.104 4f5p 1F3 4f5d 3Go
4 6.72E+10 3.35E+10 -0.02

435.386 5p2 1D2 5p5d 3Fo
3 3.32E+10 1.74E+10 -0.29

437.515 5p2 1S0 4f5d 1Po
1 5.75E+10 7.20E+07 -2.72

437.765 4f5p 3F4 4f5d 3Fo
4 6.33E+10 1.82E+10 -0.27

440.709 4f5p 1F3 4f5d 3Ho
4 4.74E+10 4.84E+10 0.15

441.273 4f5p 3F4 4f5d 3Ho
5 6.04E+10 5.79E+10 0.23

441.561 4f5p 3G5 4f5d 3Ho
6 3.12E+11 2.49E+11 0.87

441.845 4f5p 3G5 4f5d 3Go
5 7.23E+10 6.11E+10 0.26

444.310 4f5p 3D3 4f5d 3Fo
4 6.69E+10 1.18E+10 -0.44

445.263 5s5p 3Po
2 4f5p 3D3 1.00E+10 1.26E+10 -0.44

447.604 4f5p 1F3 4f5d 1Go
4 5.40E+09 6.32E+09 -0.72

449.110 4f5p 3G5 4f5d 3Ho
5 2.98E+10 2.08E+10 -0.19

453.110 4f5p 3F4 4f5d 1Go
4 7.80E+09 6.24E+09 -0.71

457.348 5s5p 3Po
1 4f5p 3F2 1.30E+09 9.66E+08 -1.53

458.894 5s5d 3D2 4f5d 3Po
2 1.51E+10 1.44E+10 -0.33

460.645 5p2 1D2 5p5d 3Fo
2 1.84E+10 1.06E+10 -0.46

462.509 4f5s 1Fo
3 5s5d 1D2 3.69E+10 2.04E+10 -0.19

462.806 4f5p 1G4 4f5d 3Go
4 3.98E+10 2.21E+07 -3.15

463.658 5s5d 3D1 5s6p 3Po
1 1.91E+10 1.44E+10 -0.32

463.871 4f5p 1G4 4f5d 3Ho
5 1.48E+10 1.43E+10 -0.33

464.043 5s5d 3D3 4f5d 3Po
2 1.84E+10 1.94E+10 -0.20

465.442 5s5d 3D2 5s6p 3Po
1 3.04E+10 2.54E+10 -0.07

473.164 5s5p 3Po
1 5p2 3P2 1.21E+10 1.07E+10 -0.45

476.986 4f5p 1G4 4f5d 1Go
4 3.83E+10 3.60E+10 0.10

489.580 4f5p 1D2 4f5d 1Fo
3 1.58E+10 2.49E+10 -0.13

510.164 5s5p 1Po
1 4f5p 1D2 1.83E+10 1.26E+10 -0.29

511.328 4f5s 3Fo
3 5s5d 3D3 5.50E+09 5.74E+09 -0.64

514.661 4f5s 3Fo
4 5s5d 3D3 4.03E+10 4.28E+10 0.24

515.852 4f5s 3Fo
2 5s5d 3D2 6.40E+09 6.63E+09 -0.57

517.743 4f5s 3Fo
3 5s5d 3D2 3.19E+10 3.38E+10 0.14

518.068 4f5s 3Fo
2 5s5d 3D1 2.66E+10 2.77E+10 0.05

518.742 5s5d 1D2 5s6p 1Po
1 2.33E+10 1.03E+10 -0.37

519.525 5s2 1S0 5s5p 1Po
1 4.08E+10 3.88E+10 0.19

521.162 4f5p 3G4 5p5d 3Fo
3 1.76E+10 1.63E+10 -0.15

532.394 5s5p 3Po
0 5p2 3P1 1.77E+10 1.38E+10 -0.25

533.922 5s5p 3Po
2 5p2 3P2 4.15E+10 3.42E+10 0.15
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Table A.6: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb This workb

539.881 4f5p 3G5 5p5d 3Fo
4 2.48E+10 2.52E+10 0.07

540.570 4f5p 3G3 5p5d 3Fo
2 1.38E+10 1.39E+10 -0.19

545.280 5s5p 3Po
1 5p2 1D2 1.44E+10 9.56E+09 -0.38

548.507 4f5s 3Fo
3 4f5p 1G4 8.90E+09 7.78E+09 -0.44

551.812 5s5p 3Po
1 5p2 3P1 1.12E+10 8.89E+09 -0.41

552.313 4f5s 3Fo
4 4f5p 1G4 6.70E+09 5.80E+09 -0.56

554.078 4f5s 3Fo
3 4f5p 1D2 4.20E+09 1.96E+09 -1.04

564.314 5s5p 1Po
1 5p2 1S0 1.50E+10 1.17E+10 -0.25

564.420 4f5s 3Fo
2 4f5p 3D1 7.60E+09 2.51E+07 -2.93

565.211 5s5d 3D2 5p5d 3Do
3 1.59E+10 8.89E+09 -0.37

570.315 4f5s 3Fo
2 4f5p 3D3 9.00E+08 6.59E+08 -1.48

572.636 4f5s 3Fo
3 4f5p 3D3 1.28E+10 9.16E+09 -0.34

572.788 4f5s 1Fo
3 4f5p 1G4 4.27E+10 3.33E+10 0.23

573.066 5s5d 3D3 5p5d 3Do
3 2.30E+10 1.72E+10 -0.07

574.298 4f5s 3Fo
2 4f5p 3D2 1.57E+10 1.23E+10 -0.20

574.803 4f5s 3Fo
4 4f5p 3G5 7.12E+10 5.75E+10 0.47

576.663 4f5s 3Fo
3 4f5p 3D2 2.80E+09 2.03E+09 -0.99

576.813 4f5s 3Fo
4 4f5p 3D3 8.70E+09 6.38E+09 -0.49

578.908 4f5s 1Fo
3 4f5p 1D2 9.30E+09 7.90E+09 -0.39

583.864 4f5s 3Fo
3 4f5p 3F4 3.82E+10 3.15E+10 0.22

588.205 4f5s 3Fo
4 4f5p 3F4 1.67E+10 1.40E+10 -0.13

590.741 4f5s 3Fo
2 4f5p 1F3 2.20E+10 1.84E+10 -0.01

593.244 4f5s 3Fo
3 4f5p 1F3 7.30E+09 6.77E+09 -0.43

599.168 4f5s 1Fo
3 4f5p 3D3 9.50E+09 7.97E+09 -0.36

606.422 5s5d 3D3 5p5d 3Fo
4 3.39E+10 2.08E+10 0.09

621.777 4f5s 1Fo
3 4f5p 1F3 1.13E+10 7.97E+09 -0.36

621.949 5s5d 1D2 5p5d 1Fo
3 1.78E+10 7.11E+09 -0.37

626.590 5s5p 3Po
1 5p2 3P0 1.06E+10 8.70E+09 -0.32

627.593 5s5p 3Po
2 5p2 1D2 1.41E+10 9.98E+09 -0.25

636.241 5s5p 3Po
2 5p2 3P1 1.28E+10 1.05E+10 -0.22

654.123 5s5p 1Po
1 5p2 3P2 8.10E+09 5.18E+09 -0.45

679.395 4f5s 3Fo
3 4f5p 3G4 6.30E+09 4.67E+09 -0.49

685.284 4f5s 3Fo
4 4f5p 3G4 2.17E+10 1.88E+10 0.13

687.918 4f5s 3Fo
2 4f5p 3F2 8.10E+09 7.78E+09 -0.25

688.537 4f5s 3Fo
3 4f5p 3F3 5.90E+09 5.12E+09 -0.44

691.309 4f5s 3Fo
3 4f5p 3F2 7.50E+09 6.25E+09 -0.34

694.584 4f5s 3Fo
4 4f5p 3F3 1.29E+10 1.02E+10 -0.13

703.283 4f5s 3Fo
2 4f5p 3G3 1.13E+10 9.14E+09 -0.17

706.822 4f5s 3Fo
3 4f5p 3G3 7.30E+09 6.80E+09 -0.29

717.070 4f5s 1Fo
3 4f5p 3G4 6.10E+09 5.26E+09 -0.39

727.272 4f5s 1Fo
3 4f5p 3F3 5.20E+09 5.58E+09 -0.35

746.148 5s2 1S0 5s5p 3Po
1 9.00E+08 5.30E+08 -1.32

747.702 4f5s 1Fo
3 4f5p 3G3 5.70E+09 4.69E+09 -0.40

800.455 5s5p 1Po
1 5p2 1D2 5.30E+09 4.31E+09 -0.35

a Ryabtsev et al. (2002)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table A.7: Comparison between oscillator strengths (log(gf )) obtained in the present work using HFR,
MCDHF and AMBiT methods for a sample of lines in La V, La VIII and La X.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

La V
398.531 -1.40 -1.50 -1.16
421.547 -1.55 -1.57 -1.42
423.074 -0.13 -2.10 0.50
432.108 0.76 0.57 0.84
435.275 1.02 1.04 0.96
436.135 0.87 0.80 0.72
436.843 0.51 0.55 0.63
450.405 -0.27 0.33 -0.24
463.848 -0.50 0.49 0.36
476.667 -1.71 -0.33 -1.26
482.164 -0.94 -0.65 -0.79
482.434 -0.72 -0.79 -1.78
498.081 -1.22 -0.90 -1.20
499.028 -0.48 -0.22 -0.19
503.583 -1.32 -1.01 -1.25
508.147 -3.30 -4.82 -3.16
525.712 -1.70 -1.37 -1.37
526.755 -1.18 -0.94 -1.10
531.069 -0.89 -0.70 -0.87
533.233 -0.89 -0.57 -0.71
540.203 -1.19 -1.23 -1.00
544.805 -1.79 -0.89 -1.48
547.437 -1.47 -1.07 -1.18
570.903 -2.35 -2.00 -2.07
593.181 -1.88 -1.64 -1.88
597.698 -2.75 -2.52 -2.68
600.009 -2.11 -1.84 -2.04
600.237 -2.26 -2.11 -2.12
611.695 -2.66 -2.63 -2.38
617.600 -3.29 -2.11 -3.35
620.981 -2.79 -3.00 -3.12
686.469 -4.70 -4.68 -4.83
699.449 -1.44 -1.09 -1.22
824.156 -1.52 -1.27 -1.40
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Table A.7: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

La VIII
370.024 -2.10 -1.19 -0.52
379.061 -0.41 -0.22 0.07
391.082 -1.11 -0.47 0.05
395.969 -0.20 -0.33 -0.13
398.509 0.04 -0.24 -0.62
400.709 -0.44 -0.61 0.16
401.128 -0.41 -0.50 -0.55
401.29 -0.07 0.28 0.09
401.373 -0.02 -0.08 0.02
407.895 0.62 0.41 0.75
408.095 -0.73 -0.71 -0.02
408.959 -1.08 -1.30 -0.51
411.267 -2.82 -2.64 -0.10
418.762 0.05 0.55 0.72
435.017 -0.42 -0.19 -0.02
438.465 0.17 0.39 0.42
443.03 -0.56 -0.71 -0.70
445.851 -0.41 -0.42 -0.55
446.161 -0.14 0.07 0.41
451.14 -0.33 0.02 -0.04
454.23 -0.19 -0.47 -0.16
455.551 -1.38 -1.29 -0.36
455.956 -1.83 -1.66 -2.05
458.423 -0.04 0.25 0.26
459.727 -0.49 -0.56 -0.39
466.767 -1.00 -1.00 -0.20
477.454 -1.18 -0.89 -0.87
479.129 -0.37 -0.07 -1.11
489.046 -2.70 -1.96 -2.91
492.517 -0.86 -0.39 -0.54
503.887 -0.60 -0.87 -0.30
504.545 -0.18 -0.22 -0.10
507.156 -1.79 -1.59 -1.56
508.511 -0.92 -0.47 -0.60
511.63 -1.12 -0.91 -1.01
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Table A.7: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

514.659 -0.02 0.13 0.10
521.397 0.24 0.24 0.34
528.453 -2.38 -2.88 -2.31
544.375 -2.38 -1.98 -2.74
559.753 -2.07 -2.89 -1.69
561.708 -1.04 -0.62 -0.73
567.753 -0.51 -0.26 -0.41
573.071 -0.73 -0.48 -0.66
575.852 -0.96 -0.82 -0.80
584.76 -0.21 -0.04 -0.11
589.188 -1.88 -3.09 -1.46
599.598 -1.47 -1.12 -1.98
603.291 -0.26 -0.14 -0.20
603.881 -0.64 -0.45 -0.52
664.918 -0.66 -0.53 -0.56
669.155 -0.53 -0.41 -0.42
680.391 -1.36 -1.25 -1.24
684.932 -1.57 -1.09 -1.89
699.114 -2.43 -2.18 -2.32
714.96 -1.60 -1.30 -1.58
797.561 -0.76 -0.64 -0.69
800.581 -1.78 -1.66 -1.70
842.378 -1.78 -1.66 -1.49
847.275 -2.10 -1.92 -2.26
870.654 -1.88 -1.80 -1.71
890.432 -1.67 -1.45 -1.56
1052.091 -2.62 -2.81 -2.46
1145.559 -2.55 -2.49 -2.36
La X
335.339 -0.75 -0.99 -0.67
337.243 -0.33 -0.19 -0.25
363.174 0.06 0.34 0.12
366.409 -0.11 -0.40 -0.11
374.335 0.28 0.18 0.31
374.675 0.06 -0.46 0.14
375.498 -1.29 -0.57 -0.26



APPENDIX A. COMPARISON OF THE RADIATIVE PARAMETERS FOR
LA V–X IONS 160

Table A.7: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

380.193 0.31 0.30 0.38
383.615 0.54 0.34 0.62
384.314 0.20 0.46 0.22
388.989 -0.11 -0.29 -0.34
390.180 0.28 -0.07 0.37
393.523 -0.18 0.27 -0.09
394.309 -0.24 -0.30 -0.28
396.865 -0.24 -0.28 -0.21
398.083 -0.96 -0.80 -0.61
398.865 0.11 0.69 0.65
399.220 0.45 0.16 0.50
399.250 -0.73 -0.45 -0.48
400.254 -0.23 -0.27 0.35
401.941 0.28 0.02 0.35
402.758 0.11 0.24 0.21
404.193 0.48 -0.03 0.57
405.283 -0.31 0.28 -0.21
407.301 0.55 0.70 0.63
408.517 -0.24 0.24 -0.07
411.346 -0.23 -0.34 -0.17
417.550 0.24 0.58 0.65
420.342 0.35 0.03 0.45
422.185 -1.04 -1.13 -0.35
422.704 0.13 -0.04 0.23
422.969 0.19 0.18 0.15
426.173 -0.17 -0.12 -0.19
426.610 0.03 0.27 0.14
429.695 0.23 0.01 0.32
432.371 -0.12 -0.34 -0.18
432.647 -0.27 0.19 0.17
433.343 0.73 0.86 0.79
434.237 0.58 0.82 0.68
435.386 -0.29 -0.19 -0.19
437.765 -0.27 0.41 0.11
440.709 0.15 0.18 0.14
441.273 0.23 -0.28 0.23
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Table A.7: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

441.561 0.87 1.00 0.95
441.845 0.26 0.18 0.35
444.310 -0.44 0.40 -0.10
447.604 -0.72 -0.43 -0.69
449.110 -0.19 -0.03 -0.05
453.110 -0.71 -0.79 -0.75
457.348 -1.53 -1.22 -1.44
458.894 -0.33 -0.17 -0.07
460.645 -0.46 -0.34 -0.36
462.509 -0.19 -0.01 0.15
463.871 -0.33 -0.78 -0.28
473.164 -0.45 -0.63 -0.29
476.986 0.10 0.24 0.16
510.164 -0.29 -0.84 -0.16
511.328 -0.64 -0.89 -0.52
514.661 0.24 0.15 0.29
515.852 -0.57 -0.74 -0.44
517.743 0.14 -0.37 0.22
518.068 0.05 0.06 0.14
519.525 0.19 0.20 0.31
521.162 -0.15 -0.64 -0.17
532.394 -0.25 -0.28 -0.12
533.922 0.15 0.03 0.29
539.881 0.07 0.43 0.05
540.570 -0.19 -0.19 -0.21
545.280 -0.38 -0.28 -0.26
548.507 -0.44 -0.52 -0.35
551.812 -0.41 -0.46 -0.28
552.313 -0.56 -0.63 -0.49
554.078 -1.04 -0.08 -1.01
564.314 -0.25 -0.29 -0.13
564.420 -2.93 -1.90 -0.72
570.315 -1.48 -1.40 -1.24
572.636 -0.34 -0.23 -0.18
572.788 0.23 0.21 0.35
573.066 -0.07 -0.53 0.01



APPENDIX A. COMPARISON OF THE RADIATIVE PARAMETERS FOR
LA V–X IONS 162

Table A.7: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

574.298 -0.20 -0.33 -0.11
574.803 0.47 0.43 0.58
576.663 -0.99 -0.08 -1.12
576.813 -0.49 -0.21 -0.46
578.908 -0.39 -0.60 -0.27
583.864 0.22 0.17 0.32
588.205 -0.13 -0.18 0.01
590.741 -0.01 -0.06 0.10
593.244 -0.43 -0.57 -0.39
599.168 -0.36 -0.45 -0.32
621.777 -0.36 -0.29 -0.11
621.949 -0.37 -0.77 -0.03
626.590 -0.32 -0.37 -0.19
627.593 -0.25 -0.17 -0.15
636.241 -0.22 -0.29 -0.11
654.123 -0.45 -0.17 -0.37
679.395 -0.49 -0.48 -0.34
685.284 0.13 0.05 0.24
687.918 -0.25 -0.36 -0.14
688.537 -0.44 -0.49 -0.27
691.309 -0.34 -0.49 -0.25
694.584 -0.13 -0.15 -0.03
703.283 -0.17 -0.23 -0.06
706.822 -0.29 -0.43 -0.23
717.070 -0.39 -0.47 -0.32
727.272 -0.35 -0.51 -0.29
746.148 -1.32 -1.04 -1.26
747.702 -0.40 -0.45 -0.24
800.455 -0.35 -0.34 -0.24

a Extracted from Tables A.1, A.4 and A.6 for La V, La VIII, and La X, respectively.
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Table B.1: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Ce V.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb Previousa This workb

365.661 5s25p6 1S0 5s25p56s 3Po
1 2.13E+10 2.74E+10 -0.32

399.361 5s25p6 1S0 5s25p55d 1Po
1 2.81E+11 2.88E+11 0.76

404.209 5s25p6 1S0 5s25p56s 1Po
1 1.51E+10 2.94E+10 -0.21

482.963 5s25p6 1S0 5s25p55d 3Do
1 9.15E+09 6.68E+09 -0.70

507.683 4f5s25p5 3D1 4f5s5p6 3Fo
2 3.44E+10 9.44E+06 -3.25

509.870 4f5s25p5 3D2 4f5s5p6 3Fo
3 2.97E+10 1.22E+07 -3.13

513.193 4f5s25p5 3G5 4f5s5p6 3Fo
4 1.31E+11 6.93E+08 -1.36

515.701 4f5s25p5 3D2 4f5s5p6 3Fo
2 1.99E+10 2.75E+07 -2.77

518.645 4f5s25p5 3G4 4f5s5p6 3Fo
3 9.42E+10 4.10E+08 -1.58

522.234 4f5s25p5 3D3 4f5s5p6 3Fo
3 2.32E+10 6.90E+07 -2.35

522.841 4f5s25p5 3F4 4f5s5p6 1Fo
3 4.90E+10 7.37E+07 -2.32

529.817 4f5s25p5 1D2 4f5s5p6 1Fo
3 3.31E+10 2.79E+08 -1.73

535.649 4f5s25p5 3F4 4f5s5p6 3Fo
4 4.12E+10 2.07E+08 -1.84

536.827 4f5s25p5 3G3 4f5s5p6 3Fo
2 4.02E+10 3.28E+08 -1.64

552.134 5s25p6 1S0 5s25p55d 3Po
1 5.64E+07 5.88E+07 -2.64

905.114 5s25p55d 3Po
2 5s25p56p 3P2 1.81E+08 1.13E+09 -0.89

917.980 5s25p55d 3Po
0 5s25p56p 3S1 1.15E+09 1.51E+09 -0.74

926.103 5s25p55d 3Po
1 5s25p56p 3D2 2.10E+08 1.68E+08 -1.68

929.993 5s25p55d 3Po
2 5s25p56p 1P1 1.81E+08 3.21E+08 -1.41

936.241 5s25p54f 1D2 5s25p55d 1Po
1 4.26E+08 2.23E+08 -1.58

937.539 5s25p55d 3Po
2 5s25p56p 3D3 2.21E+08 5.27E+08 -1.18

941.960 5s25p55d 3Po
1 5s25p56p 3S1 2.33E+09 3.22E+09 -0.38

944.710 5s25p55d 3Fo
4 5s25p56p 3D3 2.67E+09 7.40E+09 -0.03

953.946 5s25p55d 3Fo
3 5s25p56p 3D3 3.53E+08 8.88E+08 -0.94

957.514 5s25p55d 3Do
2 5s25p56p 3P1 4.34E+09 3.81E+09 -0.30

974.399 5s25p55d 3Po
2 5s25p56p 3D2 8.21E+07 1.80E+07 -2.60

975.215 5s25p55d 3Fo
2 5s25p56p 1P1 3.26E+09 3.78E+09 -0.29

976.416 5s25p55d 3Fo
2 5s25p56p 3D1 2.49E+09 4.35E+09 -0.25

980.577 5s25p55d 1Fo
3 5s25p56p 3D2 5.33E+09 7.27E+04 -5.00

991.965 5s25p55d 3Po
2 5s25p56p 3S1 1.95E+09 2.60E+09 -0.43

992.129 5s25p55d 3Fo
3 5s25p56p 3D2 2.09E+09 2.13E+09 -0.51

1010.827 5s25p55d 3Do
3 5s25p56p 3P2 8.07E+08 3.33E+09 -0.32

1024.151 5s25p55d 3Fo
2 5s25p56p 3D2 5.08E+08 4.17E+08 -1.19

1043.576 5s25p55d 3Fo
2 5s25p56p 3S1 9.37E+07 5.53E+07 -2.06

1051.112 5s25p55d 3Do
1 5s25p56p 3P0 9.77E+08 7.67E+08 -0.90

1051.438 5s25p55d 3Do
3 5s25p56p 3D3 2.07E+08 5.26E+08 -1.08

1114.848 5s25p56p 3D3 5s25p56d 3Fo
3 2.77E+06 4.63E+06 -3.05

1141.824 4f5s25p5 3D2 5s25p55d 3Do
3 9.67E+06 1.35E+07 -2.57

1150.225 5s25p55d 3Do
1 5s25p56p 1P1 6.19E+08 6.26E+08 -0.93

1186.865 4f5s25p5 3G4 5s25p55d 3Do
3 2.62E+07 4.83E+07 -1.98

1205.859 4f5s25p5 3D3 5s25p55d 3Do
3 1.15E+08 1.27E+08 -1.54

1211.818 4f5s25p5 1D2 5s25p55d 3Do
1 2.48E+08 2.26E+08 -1.29

1234.403 4f5s25p5 3D2 5s25p55d 3Fo
2 1.93E+07 2.21E+07 -2.28

1250.718 4f5s25p5 3G3 5s25p55d 3Do
3 5.48E+06 8.14E+05 -3.70

1264.429 4f5s25p5 3D1 5s25p55d 3Po
2 9.64E+06 1.08E+07 -2.57

1286.305 4f5s25p5 3F3 5s25p55d 1Fo
3 5.16E+07 3.31E+07 -2.10

1299.297 4f5s25p5 3F4 5s25p55d 1Fo
3 5.92E+08 7.25E+08 -0.72

1309.589 4f5s25p5 3D3 5s25p55d 3Fo
2 1.10E+07 7.83E+06 -2.68

1315.354 4f5s25p5 3D2 5s25p55d 3Po
2 1.45E+08 1.41E+08 -1.41

1315.826 4f5s25p5 3F4 5s25p55d 3Do
3 5.50E+08 6.23E+08 -0.77

1331.550 4f5s25p5 3F3 5s25p55d 3Do
2 4.83E+08 3.90E+05 -4.00

1341.640 4f5s25p5 3G4 5s25p55d 3Fo
3 3.73E+08 5.91E+08 -0.77

1356.192 4f5s25p5 3D1 5s25p55d 3Po
1 9.56E+07 9.92E+07 -1.54

1358.358 4f5s25p5 3G3 5s25p55d 3Fo
2 3.54E+08 4.92E+08 -0.84

1360.331 4f5s25p5 3G4 5s25p55d 3Fo
4 4.23E+07 4.76E+07 -1.85

1360.786 4f5s25p5 1D2 5s25p55d 3Do
3 1.56E+04 3.77E+06 -2.96

1362.125 4f5s25p5 3G5 5s25p55d 3Fo
4 4.62E+08 8.12E+08 -0.61

1362.463 5s25p56s 3Po
2 5s25p56p 3P1 1.89E+08 9.18E+07 -1.60

1362.668 4f5s25p5 3G3 5s25p55d 3Fo
2 3.15E+08 4.43E+08 -0.88

1365.964 4f5s25p5 3D3 5s25p55d 3Fo
3 7.74E+07 5.96E+07 -1.75

1385.346 4f5s25p5 3D3 5s25p55d 3Fo
4 4.58E+06 1.22E+07 -2.42
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Table B.1: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb Previousa This workb

1401.064 4f5s25p5 3D3 5s25p55d 3Po
2 3.20E+08 3.52E+08 -0.96

1401.241 5s25p55d 1Po
1 5s25p56p 1S0 5.14E+08 2.05E+08 -1.12

1409.195 4f5s25p5 3D1 5s25p55d 3Po
0 9.21E+07 9.78E+07 -1.51

1414.959 4f5s25p5 3D2 5s25p55d 3Po
1 1.84E+08 1.96E+08 -1.21

1415.046 5s25p56p 3D1 5s25p56d 3Do
1 1.15E+09 1.06E+08 -1.44

1423.824 4f5s25p5 3G3 5s25p55d 3Fo
3 6.74E+07 7.09E+07 -1.63

1444.901 4f5s25p5 3G3 5s25p55d 3Fo
4 6.21E+06 4.93E+06 -2.77

1457.288 5s25p56p 3D1 5s25p56d 3Do
2 3.79E+07 9.92E+06 -2.47

1459.172 5s25p56p 3D1 5s25p56d 3Fo
2 6.25E+09 2.35E+08 -1.07

1473.624 5s25p56p 3D2 5s25p56d 1Do
2 1.28E+09 9.61E+08 -0.54

1475.078 5s25p56p 3S1 5s25p56d 3Po
2 4.15E+09 3.14E+09 -0.01

1487.498 5s25p56p 1P1 5s25p56d 1Po
1 2.34E+09 1.38E+09 -0.34

1494.356 4f5s25p5 1D2 5s25p55d 3Fo
2 7.33E+07 6.49E+07 -1.64

1507.607 5s25p56p 3D2 5s25p56d 3Fo
3 5.47E+09 4.20E+09 0.13

1508.812 4f5s25p5 3F4 5s25p55d 3Fo
3 6.46E+05 1.23E+07 -2.34

1518.101 5s25p56p 3S1 5s25p56d 3Po
1 5.10E+09 2.87E+09 -0.02

1532.497 4f5s25p5 3F4 5s25p55d 3Fo
4 9.51E+07 6.87E+07 -1.57

1540.573 5s25p56p 3S1 5s25p56d 3Po
0 2.17E+09 1.12E+09 -0.41

1549.367 5s25p56p 3D3 5s25p56d 3Do
3 7.94E+08 8.42E+08 -0.54

1568.225 4f5s25p5 1D2 5s25p55d 3Fo
3 5.83E+06 8.18E+06 -2.48

1575.641 4f5s25p5 1D2 5s25p55d 3Do
1 5.57E+07 8.83E+07 -1.46

1588.325 5s25p56p 1P1 5s25p56d 1Do
2 6.21E+09 3.85E+09 0.16

1599.641 5s25p56p 3D2 5s25p56d 3Fo
3 9.53E+09 2.01E+09 -0.11

1605.239 5s25p56p 3D3 5s25p56d 3Fo
3 3.93E+08 8.05E+08 -0.51

1608.160 5s25p56p 3D3 5s25p56d 3Fo
4 4.48E+09 4.66E+09 0.26

1610.488 5s25p56p 1S0 5s25p56d 3Do
1 2.02E+09 7.69E+08 -0.55

1621.270 5s25p56p 3P1 5s25p56d 3Do
2 8.77E+09 1.72E+09 -0.18

1628.460 5s25p56p 3D2 5s25p56d 3Fo
2 1.03E+09 2.58E+08 -1.02

1646.859 5s25p56p 3P2 5s25p56d 3Do
3 1.36E+09 2.59E+09 0.03

1694.062 5s25p56p 3P0 5s25p56d 1Po
1 2.42E+09 1.05E+09 -0.37

1720.590 5s25p56p 3P2 5s25p56d 3Po
2 3.68E+08 1.05E+09 -0.31

1741.233 4f5s25p5 3F3 5s25p55d 3Do
3 4.32E+06 4.29E+06 -2.68

1765.111 4f5s25p5 3F4 5s25p55d 3Do
3 4.77E+06 8.96E+06 -2.35

1767.382 4f5s25p5 1D2 5s25p55d 3Po
1 1.93E+05 5.77E+05 -3.52

1779.403 5s25p56p 3P2 5s25p56d 3Po
1 6.45E+07 1.46E+08 -1.14

1824.990 5s25p56s 1Po
1 5s25p56p 3P0 7.85E+08 4.57E+08 -0.59

1841.673 4f5s25p5 3G3 5s25p55d 3Fo
2 3.65E+05 1.80E+04 -5.00

1955.172 4f5s25p5 3G3 5s25p55d 3Fo
3 4.31E+06 7.67E+05 -3.30

1991.325 5s25p56s 3Po
2 5s25p56p 3P2 2.00E+08 7.74E+08 -0.36

2018.054 5s25p56s 1Po
1 5s25p56p 3P2 2.78E+08 4.66E+08 -0.53

2070.845 5s25p56s 3Po
1 5s25p56p 1S0 4.87E+08 2.25E+08 -0.79

2081.251 5s25p56s 3Po
0 5s25p56p 3Po

1 1.27E+09 4.90E+08 -0.52
2095.999 4f5s25p5 3F3 5s25p55d 3Fo

3 4.63E+06 2.92E+06 -2.66
2115.855 5s25p56s 3Po

2 5s25p56p 1P1 3.82E+07 5.14E+07 -1.47
2130.691 4f5s25p5 3F4 5s25p55d 3Fo

3 1.75E+05 1.67E+06 -2.89
2135.022 5s25p56s 3Po

1 5s25p56p 3D2 6.57E+06 1.36E+09 0.00
2141.969 4f5s25p5 3F3 5s25p55d 3Fo

4 6.00E+08 5.10E+06 -2.39
2143.434 5s25p56s 3Po

1 5s25p56p 3P1 1.54E+09 4.17E+08 -0.56
2146.057 5s25p56s 1Po

1 5s25p56p 1P1 1.12E+09 9.90E+08 -0.14
2155.318 5s25p56s 3Po

2 5s25p56p 3D3 8.67E+06 1.65E+09 0.06
2178.222 4f5s25p5 3F4 5s25p55d 3Fo

4 3.07E+08 3.25E+06 -2.57
2360.591 5s25p56s 3Po

2 5s25p56p 3D2 5.02E+08 8.47E+07 -1.11
2398.256 5s25p56s 1Po

1 5s25p56p 3D2 2.10E+08 3.58E+08 -0.42
2432.642 5s25p56s 3Po

0 5s25p56p 3D1 1.10E+09 5.63E+08 -0.39
2466.420 5s25p56s 3Po

2 5s25p56p 3S1 5.95E+08 7.52E+08 -0.14
2518.038 5s25p56s 3Po

1 5s25p56p 3D1 2.13E+10 1.96E+08 -0.81

a Wajid et al. (2021)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table B.2: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Ce VI.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb Previousa This workb

311.989 5s25p5 2Po
1/2 5s25p46s 3465091/2 9.60E+09 1.82E+10 -0.62

321.678 5s25p5 2Po
3/2 5s25p46s 3108703/2 9.90E+09 8.81E+09 -0.91

323.020 5s25p5 2Po
3/2 5s25p46s 3095785/2 5.00E+10 5.48E+10 -0.11

328.952 5s25p5 2Po
3/2 5s25p46s 3039951/2 1.95E+10 2.64E+10 -0.41

332.998 5s25p5 2Po
3/2 5s25p46s 3003013/2 2.51E+10 2.71E+10 -0.39

345.313 5s25p5 2Po
3/2 5s25p46s 2885921/2 5.50E+09 8.05E+09 -0.89

351.019 5s25p5 2Po
1/2 5s25p46s 3108703/2 4.28E+10 4.87E+10 -0.10

359.699 5s25p5 2Po
1/2 5s25p46s 3039951/2 2.53E+10 3.23E+10 -0.25

361.140 5s25p5 2Po
3/2 5s25p46s 2768993/2 6.92E+10 8.63E+10 0.17

364.543 5s25p5 2Po
1/2 5s25p46s 3003013/2 1.60E+09 6.69E+09 -0.92

366.323 5s25p5 2Po
3/2 5s25p46s 2729835/2 5.60E+09 6.46E+09 -0.94

370.565 5s25p5 2Po
3/2 5s25p45d 2698571/2 2.60E+09 1.10E+10 -0.71

372.816 5s25p5 2Po
3/2 5s25p45d 2682295/2 4.00E+08 2.70E+11 0.71

383.440 5s25p5 2Po
1/2 5s25p45d 2867823/2 1.88E+11 2.73E+08 -2.19

385.839 5s25p5 2Po
3/2 5s25p45d 2591755/2 6.41E+11 2.56E+09 -1.30

387.312 5s25p5 2Po
3/2 5s25p45d 2581903/2 2.46E+11 1.83E+11 0.54

388.784 5s25p5 2Po
3/2 5s25p45d 2572111/2 2.24E+11 1.82E+11 0.53

390.048 5s25p5 2Po
1/2 5s25p45d 2823633/2 1.86E+11 3.01E+08 -2.14

398.545 5s25p5 2Po
1/2 5s25p46s 2768993/2 4.00E+08 1.10E+08 -2.64

399.448 5s25p5 2Po
3/2 5s25p45d 2503453/2 8.64E+10 2.18E+10 -0.32

410.053 5s25p5 2Po
1/2 5s25p45d 2698571/2 1.57E+11 1.43E+11 0.48

426.917 5s25p5 2Po
3/2 5s25p45d 2342375/2 6.10E+09 3.89E+09 -1.03

430.653 5s25p5 2Po
1/2 5s25p45d 2581903/2 1.37E+10 7.73E+08 -1.76

432.481 5s25p5 2Po
1/2 5s25p45d 2572111/2 6.70E+09 1.78E+09 -1.40

439.717 5s25p5 2Po
3/2 5s25p45d 2274195/2 7.00E+08 1.99E+09 -1.29

444.942 5s25p5 2Po
3/2 5s25p45d 2247485/2 9.50E+09 2.62E+09 -1.16

445.713 5s25p5 2Po
1/2 5s25p45d 2503453/2 2.50E+10 1.32E+10 -0.46

446.633 5s25p5 2Po
3/2 5s25p45d 2238993/2 1.00E+08 2.63E+06 -4.00

463.376 5s25p5 2Po
3/2 5s25p45d 2158073/2 1.40E+09 4.94E+08 -1.85

467.558 5s25p5 2Po
3/2 5s25p45d 2138775/2 4.00E+09 3.04E+09 -1.06

474.178 5s25p5 2Po
3/2 5s25p45d 2108913/2 9.30E+09 5.64E+09 -0.78

475.343 5s25p5 2Po
3/2 5s25p45d 2103745/2 1.09E+10 4.87E+09 -0.84

478.387 5s25p5 2Po
3/2 5s25p45d 2090371/2 1.00E+08 2.00E+09 -1.44

485.117 5s25p5 2Po
3/2 5s25p45d 2061351/2 8.70E+09 2.05E+09 -1.21

487.679 5s25p5 2Po
3/2 5s25p45d 2050553/2 2.20E+09 9.96E+08 -1.51

505.268 5s25p5 2Po
1/2 5s25p45d 2238993/2 4.00E+08 1.22E+08 -2.40

526.234 5s25p5 2Po
3/2 5s25p45d 1900301/2 2.00E+08 3.80E+07 -2.85

526.811 5s25p5 2Po
1/2 5s25p45d 2158073/2 2.00E+08 2.51E+08 -2.06

531.723 5s25p5 2Po
3/2 5s25p45d 1880683/2 1.00E+08 5.88E+07 -2.66

533.058 5s25p5 2Po
3/2 5s25p45d 1875975/2 2.00E+08 1.43E+08 -2.27

546.288 5s25p5 2Po
1/2 5s25p45d 2090371/2 1.00E+08 4.04E+07 -2.80

555.100 5s25p5 2Po
1/2 5s25p45d 2061351/2 5.00E+08 7.08E+07 -2.57

558.436 5s25p5 2Po
1/2 5s25p45d 2050553/2 1.00E+08 5.60E+07 -2.66

623.379 5s25p5 2Po
3/2 5s5p6 1604161/2 2.60E+09 1.04E+09 -1.28

743.876 5s25p5 2Po
1/2 5s5p6 1604161/2 1.20E+09 5.50E+08 -1.42

a Churilov and Joshi (2000)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table B.3: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Ce VII.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousb This workc Previousb This workc

262.945 5s25p4 3P2 5s25p36s 1Po
1 3.48E+08 4.14E+08 -2.46 -2.40

273.144 5s25p4 3P0 5s25p36s 1Po
1 3.63E+08 1.55E+08 -2.40 -2.80

281.211 5s25p4 3P1 5s25p36s 1Po
1 1.38E+09 2.98E+09 -1.80 -1.49

282.720 5s25p4 3P1 5s25p36s 1Po
1 6.75E+09 8.20E+09 -1.10 -1.04

288.039 5s25p4 1D2 5s25p36s 1Po
1 1.72E+10 2.37E+10 -0.68 -0.57

289.619 5s25p4 1D2 5s25p36s 1Po
2 8.85E+09 7.70E+09 -0.97 -1.05

289.655 5s25p4 3P2 5s25p36s 1Po
2 1.09E+10 1.39E+10 -0.87 -0.79

290.291 5s25p4 3P0 5s25p36s 1Po
1 1.38E+10 3.97E+09 -0.77 -1.28

292.123 5s25p4 3P2 5s25p36s 1Po
3 3.84E+10 8.00E+10 -0.32 -0.03

295.643 5s25p4 3P2 5s25p36s 1Po
1 8.04E+09 8.10E+09 -0.99 -1.01

298.564 5s25p4 3P2 5s25p36s 1Po
2 1.77E+10 3.74E+10 -0.52 -0.34

299.416 5s25p4 3P1 5s25p36s 1Po
1 3.75E+09 3.10E+09 -1.38 -1.42

299.891 5s25p4 3P1 5s25p36s 1Po
0 5.31E+09 6.34E+09 -1.16 -1.11

307.170 5s25p4 1D2 5s25p36s 1Po
1 1.29E+10 2.74E+09 -0.76 -1.45

308.620 5s25p4 3P0 5s25p36s 1Po
1 8.64E+08 4.56E+09 -1.92 -1.17

311.984 5s25p4 3P1 5s25p36s 1Po
2 1.16E+10 1.74E+10 -0.79 -0.64

314.984 5s25p4 3P2 5s25p36s 1Po
1 5.28E+10 9.96E+09 -0.12 -0.87

318.946 5s25p4 3P1 5s25p36s 1Po
1 4.47E+10 3.18E+10 -0.18 -0.35

319.459 5s25p4 3P2 5s25p36s 1Po
2 1.27E+09 6.07E+09 -1.71 -1.04

320.412 5s25p4 1D2 5s25p36s 1Po
2 1.10E+11 1.03E+11 0.22 0.16

322.340 5s25p4 3P1 5s25p36s 1Po
2 3.87E+09 8.36E+09 -1.23 -0.93

323.433 5s25p4 1D2 5s25p36s 1Po
3 8.75E+09 7.39E+09 -0.88 -0.98

327.760 5s25p4 1D2 5s25p36s 1Po
1 6.48E+09 3.30E+09 -0.99 -1.31

329.744 5s25p4 3P0 5s25p36s 1Po
1 2.22E+10 8.73E+09 -0.45 -0.89

331.353 5s25p4 1D2 5s25p36s 1Po
2 7.00E+09 4.00E+09 -0.95 -1.22

341.580 5s25p4 3P1 5s25p36s 1Po
1 9.00E+09 3.54E+09 -0.81 -1.25

487.862 5s25p4 3P2 5s25p35d 5Do
1 3.29E+08 -1.97

554.709 5s25p4 3P1 5s25p35d 5Do
1 4.40E+08 -1.74

571.236 5s25p4 3P2 5s5p5 3Po
1 2.87E+09 2.43E+09 -0.85 -0.97

572.450 5s25p4 1D2 5s5p5 1Po
1 4.29E+09 3.89E+09 -0.68 -0.76

581.935 5s25p4 1D2 5s25p35d 5Do
1 1.60E+09 -1.14

606.582 5s25p4 3P1 5s5p5 3Po
0 1.19E+09 1.04E+09 -1.18 -1.29

611.894 5s25p4 3P2 5s5p5 3Po
2 4.20E+09 3.53E+09 -0.63 -0.75

621.703 5s25p4 3P0 5s5p5 3Po
1 1.01E+09 9.46E+08 -1.23 -1.31

665.114 5s25p4 3P1 5s5p5 3Po
1 7.38E+08 6.61E+08 -1.32 -1.41

704.617 5s25p4 1D2 5s5p5 3Po
1 2.55E+08 2.78E+08 -1.72 -1.74

720.884 5s25p4 3P1 5s5p5 3Po
2 1.34E+09 1.26E+09 -0.99 -1.06

721.828 5s25p4 1S0 5s5p5 1Po
1 2.71E+08 3.14E+08 -1.68 -1.68

737.009 5s25p4 1S0 5s25p35d 5Do
1 2.30E+08 -1.80

767.520 5s25p4 1D2 5s5p5 3Po
2 5.90E+08 5.87E+08 -1.28 -1.34

a Tauheed and Joshi (2008)

b Wajid and Jabeen (2019a)

c Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table B.4: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Ce VIII.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb Previousa This workb

426.529 5s25p3 2Do
3/2 5s5p4 2P1/2 2.56E+09 2.54E+09 -1.15 -1.39

440.622 5s25p3 4So
3/2 5s5p4 2S1/2 1.99E+09 1.66E+09 -1.24 -1.32

486.422 5s25p3 4So
3/2 5s5p4 2D5/2 9.96E+07 6.56E+07 -2.45 -2.64

489.149 5s25p3 2Do
3/2 5s5p4 2S1/2 7.78E+09 6.37E+09 -0.55 -0.65

504.486 5s25p3 4So
3/2 5s5p4 2D3/2 1.35E+09 1.01E+09 -1.29 -1.42

546.290 5s25p3 2Do
3/2 5s5p4 2D5/2 4.34E+07 3.86E+07 -2.71 -2.77

553.176 5s25p3 2Po
1/2 5s5p4 2S1/2 3.70E+09 3.24E+09 -0.76 -0.84

562.502 5s25p3 4So
3/2 5s5p4 4P1/2 3.32E+09 2.43E+09 -0.80 -0.96

569.147 5s25p3 2Do
5/2 5s5p4 2D5/2 1.04E+10 8.03E+09 -0.29 -0.42

569.147 5s25p3 2Do
3/2 5s5p4 2D3/2 9.92E+09 7.66E+09 -0.32 -0.44

572.185 5s25p3 4So
3/2 5s5p4 4P3/2 6.48E+09 5.00E+09 -0.49 -0.63

622.891 5s25p3 2Po
3/2 5s5p4 2S1/2 3.94E+07 1.50E+08 -2.64 -2.08

630.437 5s25p3 4So
3/2 5s5p4 4P5/2 4.62E+09 3.54E+09 -0.55 -0.70

644.147 5s25p3 2Do
3/2 5s5p4 4P1/2 1.69E+08 1.44E+08 -1.97 -2.08

656.876 5s25p3 2Do
3/2 5s5p4 4P3/2 1.52E+06 1.79E+06 -4.00 -3.96

690.223 5s25p3 2Do
5/2 5s5p4 4P3/2 2.60E+08 2.67E+08 -1.72 -1.74

718.569 5s25p3 2Po
3/2 5s5p4 2D5/2 2.30E+09 2.16E+09 -0.74 -0.80

734.807 5s25p3 2Do
3/2 5s5p4 4P5/2 1.33E+09 1.18E+09 -0.96 -1.05

758.682 5s25p3 2Po
3/2 5s5p4 2D3/2 1.97E+07 3.84E+06 -2.77 -3.51

759.920 5s25p3 2Po
1/2 5s5p4 4P1/2 2.38E+08 2.11E+08 -1.68 -1.77

776.746 5s25p3 2Do
5/2 5s5p4 4P5/2 5.36E+08 5.22E+08 -1.30 -1.35

777.735 5s25p3 2Po
1/2 5s5p4 4P3/2 6.20E+06 7.11E+06 -3.24 -3.22

923.047 5s25p3 2Po
3/2 5s5p4 4P3/2 1.12E+08 9.41E+07 -1.84 -1.97

1084.569 5s25p3 2Po
3/2 5s5p4 4P5/2 1.45E+07 1.16E+07 -2.58 -2.74

a Wajid and Jabeen (2019b)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table B.5: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Ce X.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa This workb Previousa This workb

226.189 5s25p 2Po
1/2 5s26s 2S1/2 4.50E+10 5.43E+10 -0.39

244.683 5s25p 2Po
3/2 5s26s 2S1/2 7.10E+10 8.66E+10 -0.12

335.712 5s25p 2Po
1/2 5s25d 2D3/2 1.16E+11 6.14E+10 0.00

346.792 5s5p2 4P3/2 5s5p(3P)5d 4Do
5/2 4.20E+10 4.48E+10 -0.11

348.806 5s5p2 4P1/2 5s5p(3P)5d 4Do
1/2 9.80E+10 8.47E+10 0.17

350.794 5s5p2 4P1/2 5s5p(3P)5d 4Do
3/2 1.16E+11 1.05E+11 0.27

360.090 5s5p2 4P3/2 5s5p(3P)5d 4Do
7/2 2.89E+11 1.77E+11 0.53

360.931 5s5p2 4P5/2 5s5p(3P)5d 4Do
5/2 8.10E+10 8.74E+10 0.22

372.659 5s25p 2Po
3/2 5s25d 2D5/2 1.93E+11 1.77E+11 0.55

378.142 5s25p 2Po
3/2 5s25d 2D3/2 2.30E+10 2.04E+10 -0.38

388.513 5s25p 2Po
1/2 4f5s(1F)5p 2D3/2 1.00E+10 1.07E+10 -0.64

408.869 5s25p 2Po
1/2 5s5p2 2P3/2 3.20E+10 2.50E+10 -0.22

409.419 4f5s2 2Fo
7/2 5s25d 2D5/2 7.70E+10 7.93E+10 0.30

411.649 4f5s2 2Fo
5/2 5s25d 2D3/2 3.90E+10 2.67E+10 -0.17

413.774 5s25p 2Po
1/2 5s5p2 2S1/2 3.00E+09 3.16E+09 -1.10

443.372 5s25p 2Po
3/2 4f5s(3F)5p 2D5/2 2.30E+10 2.06E+10 -0.24

446.500 5s25p 2Po
3/2 4f5s(1F)5p 2D3/2 7.00E+09 4.90E+09 -0.86

477.297 5s25p 2Po
3/2 5s5p2 2P3/2 8.30E+10 7.55E+10 0.38

480.196 5s25p 2Po
1/2 5s5p2 2P3/2 4.20E+10 3.52E+10 0.06

480.196 5s25p 2Po
3/2 5s5p2 2S1/2 3.00E+09 2.55E+10 -0.08

490.171 4f5s2 2Fo
5/2 4f5s(3F)5p 2D5/2 5.00E+09 2.91E+09 -0.98

493.974 4f5s2 2Fo
5/2 4f5s(3F)5p 2D3/2 4.90E+10 3.52E+10 0.11

495.514 4f5s2 2Fo
5/2 4f5s(3F)5p 2G7/2 1.15E+11 7.51E+10 0.44

496.427 4f5s2 2Fo
7/2 4f5s(3F)5p 2D5/2 6.30E+10 4.57E+10 0.22

498.487 4f5s2 2Fo
7/2 4f5s(3F)5p 2G9/2 1.72E+11 1.31E+11 0.69

501.904 4f5s2 2Fo
7/2 4f5s(3F)5p 2G7/2 1.70E+10 1.05E+10 -0.40

507.242 4f5s2 2Fo
5/2 4f5s(3F)5p 2F7/2 1.80E+10 1.36E+10 -0.28

513.167 4f5s2 2Fo
5/2 4f5s(3F)5p 2F5/2 9.10E+10 7.33E+10 0.46

513.948 4f5s2 2Fo
7/2 4f5s(3F)5p 2F7/2 1.12E+11 8.98E+10 0.55

519.115 5s25p 2Po
1/2 5s5p2 2D3/2 1.40E+10 6.96E+09 -0.54

572.011 5s25p 2Po
3/2 5s5p2 2P1/2 2.00E+09 1.09E+09 -1.30

578.268 5s25p 2Po
3/2 5s5p2 2D5/2 7.00E+09 3.95E+09 -0.69

717.173 5s25p 2Po
1/2 5s5p2 4P1/2 1.00E+09 4.42E+08 -1.45

732.436 5s25p 2Po
3/2 5s5p2 4P5/2 2.00E+09 1.44E+09 -0.92

a Joshi et al. (2001)

b Transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR
method (this work)
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Table B.6: Comparison between oscillator strengths (log gf ) obtained in the present work using HFR,
MCDHF and AMBiT methods for a sample of lines in Ce V, Ce VIII and Ce X.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

Ce V
399.361 0.76 0.75 0.81
482.963 -0.70 -0.43 -0.53
552.134 -2.64 -2.41 -2.52
936.241 -1.58 -1.01 -1.19
1141.824 -2.57 -2.51 -2.48
1186.865 -1.98 -1.85 -1.94
1205.859 -1.54 -1.41 -1.47
1211.818 -1.29 -1.03 -1.15
1234.403 -2.28 -2.18 -2.15
1250.718 -3.70 -3.65 -5.58
1264.429 -2.57 -2.42 -2.50
1286.305 -2.10 -2.04 -2.12
1299.297 -0.72 -0.56 -0.64
1309.589 -2.68 -2.55 -2.30
1315.354 -1.41 -1.30 -1.35
1315.826 -0.77 -0.60 -0.68
1331.550 -4.00 -0.69 -0.76
1341.640 -0.77 -0.66 -0.71
1356.192 -1.54 -1.42 -1.47
1358.358 -0.84 -0.75 -0.81
1360.331 -1.85 -1.73 -1.76
1360.786 -2.96 -3.45 -2.95
1362.125 -0.61 -0.51 -0.55
1362.668 -0.88 -0.78 -0.85
1365.964 -1.75 -1.70 -1.73
1385.346 -2.42 -2.87 -2.18
1401.064 -0.96 -0.82 -0.88
1409.195 -1.51 -1.39 -1.44
1414.959 -1.21 -1.08 -1.13
1423.824 -1.63 -1.50 -1.52
1444.901 -2.77 -2.76 -2.80
1494.356 -1.64 -1.52 -1.58
1508.812 -2.34 -2.52 -2.56
1532.497 -1.57 -1.45 -1.50
1568.225 -2.48 -2.55 -2.43
1575.641 -1.46 -1.51 -1.52
1741.233 -2.68 -2.49 -2.56
1765.111 -2.35 -2.40 -2.33
1767.382 -3.52 -3.68 -3.37
1841.673 -5.00 -3.92 -3.16
1955.172 -3.30 -3.13 -3.00
2095.999 -2.66 -2.49 -2.51
2141.969 -2.39 -2.49 -2.29
2178.222 -2.57 -2.45 -2.41
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Table B.6: Continued.

λobs (Å)a log(gf )
HFR MCDHF AMBiT

Ce VIII
440.622 -1.32 -2.83 -1.31
486.422 -2.64 -2.31 -2.51
489.149 -0.65 -0.48 -0.65
504.486 -1.42 -1.21 -1.23
546.290 -2.77 -2.51 -2.63
553.176 -0.84 -0.67 -0.85
562.502 -0.96 -0.75 -0.78
569.147 -0.42 -0.22 -0.27
569.147 -0.44 -0.23 -0.29
572.185 -0.63 -0.41 -0.47
622.891 -2.08 -1.83 -2.57
630.437 -0.70 -0.51 -0.54
644.147 -2.08 -2.04 -1.94
656.876 -3.96 -2.94 -4.12
690.223 -1.74 -1.49 -1.69
718.569 -0.80 -0.68 -0.71
734.807 -1.05 -0.93 -0.94
758.682 -3.51 -6.18 -2.82
759.920 -1.77 -1.57 -1.66
776.746 -1.35 -1.21 -1.27
777.735 -3.22 -3.29 -3.15
923.047 -1.97 -1.93 -1.82
1084.569 -2.74 -2.79 -2.62
Ce X
335.712 0.00 0.01 0.20
346.792 -0.11 -0.01 -0.07
348.806 0.17 0.13 0.19
350.794 0.27 -0.11 0.07
360.090 0.53 0.67 0.55
360.931 0.22 0.22 0.19
372.659 0.55 0.41 -0.02
378.142 -0.38 -0.56 -0.32
388.513 -0.64 -0.73 -0.40
408.869 -0.22 -0.36 -0.08
409.419 0.30 0.13 0.26
411.649 -0.17 -0.19 0.12
413.774 -1.10 -1.50 -0.84
443.372 -0.24 -0.30 -0.02
446.500 -0.86 -0.93 -0.57
477.297 0.38 0.21 0.48
480.196 0.06 0.06 0.17
480.196 -0.08 -0.12 0.05
490.171 -0.98 -2.11 -0.67
493.974 0.11 0.07 0.14
495.514 0.44 0.52 0.64
496.427 0.22 0.20 0.26
498.487 0.69 0.69 0.80
501.904 -0.40 -0.38 -0.28
507.242 -0.28 -0.33 -0.25
513.167 0.46 0.39 0.56
513.948 0.55 0.50 0.67
519.115 -0.54 -0.33 -0.18
572.011 -1.30 -1.02 -1.49
578.268 -0.69 -0.58 -0.46
717.173 -1.45 -1.27 -1.34
732.436 -0.92 -0.78 -0.83

a Extracted from Tables B.1, B.4 and B.5 for Ce V, Ce VIII, and Ce X, respectively.
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Table C.1: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Pr V.

λobs (Å)a Transitiona gA (s−1) log(gf )
Lower level Upper level HFRb HFRb MCDHFb AMBiTb Others

843.783 5s25p64f 2Fo
5/2 5s25p65d 2D5/2 6.78E+07 -2.11 -2.14 -2.00 -1.94d

-1.90e

-2.05g

865.902 5s25p64f 2Fo
7/2 5s25p65d 2D5/2 1.19E+09 -0.83 -0.86 -0.70 -0.64d

-0.59e

-0.77g

869.170 5s25p64f 2Fo
5/2 5s25p65d 2D3/2 8.23E+08 -0.99 -1.03 -0.88 -0.81d

-0.76e

-0.92g

869.662 5s25p65d 2D3/2 5s25p66p 2Po
3/2 1.33E+09 -0.82 -0.90 -0.91d

-0.91e

-0.81f

-0.84g

896.654 5s25p65d 2D5/2 5s25p66p 2Po
3/2 1.10E+10 0.12 0.07 0.06d

0.06e

0.16f

0.09g

922.290 5s25p65d 2D3/2 5s25p66p 2Po
1/2 5.74E+09 -0.15 -0.19 -0.18d

-0.19e

-0.08f

-0.18g

1234.070 5s25p66p 2Po
1/2 5s25p67s 2S1/2 2.17E+09 -0.34 -0.40 -0.31g

1342.775 5s25p66p 2Po
3/2 5s25p67s 2S1/2 3.58E+09 -0.07 -0.01 -0.04g

1958.088 5s25p66s 2S1/2 (F=2) 5s25p66p 2Po
3/2 2.28E+09 0.17 0.18 0.21c

0.17d

0.15e

0.28f

0.21g

1958.201 5s25p66s 2S1/2 (F=3) 5s25p66p 2Po
3/2 2.28E+09 0.17 0.18 0.21c

0.17d

0.15e

0.28f

0.21g

2246.759 5s25p66s 2S1/2 (F=2) 5s25p66p 2Po
1/2 7.86E+08 -0.19 -0.19 -0.15c

-0.19d

-0.21e

-0.08f

-0.15g

2246.900 5s25p66s 2S1/2 (F=3) 5s25p66p 2Po
1/2 7.86E+08 -0.19 -0.19 -0.15c

-0.19d

-0.21e

-0.08f

-0.15g

a Kaufman and Sugar (1967)

b Transition probabilities (gA) calculated with HFR method and oscillator strengths
(log(gf )) calculated using HFR, MCDHF and AMBiT methods (this work)

c Migdalek and Baylis (1979)

d Migdalek and Wyrozumska (1987)

e Savukov et al. (2003)

f Zilitis (2014)

g Karacoban and Dogan (2015)



Appendix D

Comparison of the radiative parameters
for Nd V

174



APPENDIX D. COMPARISON OF THE RADIATIVE PARAMETERS FOR ND V 175

Table D.1: Transition probabilities (gA) and oscillator strengths (log(gf )) for experimentally observed
lines in Nd V.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

370.698 5s25p64f2 5743.4 (J=6) 5s25p54f25d 275504.9 (J=5)o 4.19E+11 1.09E+11 0.30
371.855 5s25p64f2 2834.3 (J=5) 5s25p54f25d 271756.6 (J=4)o 1.80E+11 4.02E+09 -1.11
372.550 5s25p64f2 7784.8 (J=3) 5s25p54f25d 276205.0 (J=2)o 3.78E+11 9.70E+10 1.05
372.828 5s25p64f2 8311.4 (J=4) 5s25p54f25d 276531.3 (J=4)o 6.42E+11 4.77E+07 -2.98
373.070 5s25p64f2 7784.8 (J=3) 5s25p54f25d 275831.0 (J=3)o 4.91E+11 6.10E+10 1.06
373.564 5s25p64f2 5893.8 (J=2) 5s25p54f25d 273585.8 (J=3)o 4.22E+11 3.18E+08 -2.22
373.819 5s25p64f2 5743.4 (J=6) 5s25p54f25d 273256.0 (J=5)o 1.03E+12 1.23E+12 1.36
374.261 5s25p64f2 8311.4 (J=4) 5s25p54f25d 275504.9 (J=5)o 8.80E+11 2.35E+11 0.64
374.390 5s25p64f2 26088.1 (J=6) 5s25p54f25d 293189.0 (J=7)o 1.86E+12 3.64E+08 -2.19
374.658 5s25p64f2 7784.8 (J=3) 5s25p54f25d 274695.0 (J=4)o 9.85E+11 8.36E+11 1.19
374.930 5s25p64f2 12269.7 (J=4) 5s25p54f25d 278986.5 (J=4)o 1.06E+12 2.00E+09 -1.41
375.151 5s25p64f2 7784.8 (J=3) 5s25p54f25d 274344.0 (J=3)o 1.64E+11 4.68E+08 -1.53
375.451 5s25p64f2 0.0 (J=4) 5s25p54f25d 266346.0 (J=5)o 1.32E+12 1.47E+12 1.44
375.641 5s25p64f2 2834.3 (J=5) 5s25p54f25d 269046.0 (J=6)o 1.57E+12 1.73E+12 1.51
375.641 5s25p64f2 5743.4 (J=6) 5s25p54f25d 271955.0 (J=7)o 1.78E+12 2.00E+12 1.57
376.458 5s25p64f2 2834.3 (J=5) 5s25p54f25d 268468.0 (J=5)o 7.91E+11 2.22E+06 -4.40
377.058 5s25p64f2 5743.4 (J=6) 5s25p54f25d 270954.6 (J=6)o 1.59E+12 1.71E+12 1.51
377.432 5s25p64f2 8311.4 (J=4) 5s25p54f25d 273256.0 (J=5)o 3.94E+11 1.59E+11 0.48
408.012 5s25p64f2 8311.4 (J=4) 5s25p54f25d 253402.8 (J=5)o 6.87E+09 6.27E+06 -3.85
412.657 5s25p64f2 2834.3 (J=5) 5s25p54f25d 245165.8 (J=6)o 2.48E+09 7.70E+08 -1.73
412.734 5s25p64f2 5743.4 (J=6) 5s25p54f25d 248026.8 (J=7)o 1.67E+09 4.86E+09 -0.82
413.770 5s25p64f2 0.0 (J=4) 5s25p54f25d 241677.8 (J=3)o 1.16E+09 4.17E+07 -3.00
417.562 5s25p64f2 0.0 (J=4) 5s25p54f25d 239482.1 (J=3)o 3.24E+09 1.92E+08 -2.33
420.851 5s25p64f2 5743.4 (J=6) 5s25p54f25d 243355.7 (J=7)o 1.43E+10 1.36E+10 -0.45
421.607 5s25p64f2 0.0 (J=4) 5s25p54f25d 237184.8 (J=3)o 1.60E+09 3.67E+09 -1.10
424.125 5s25p64f2 5893.8 (J=2) 5s25p54f25d 241677.8 (J=3)o 2.98E+09 8.89E+11 1.22
427.543 5s25p64f2 7784.8 (J=3) 5s25p54f25d 241677.8 (J=3)o 2.11E+09 2.84E+09 -1.27
427.680 5s25p64f2 0.0 (J=4) 5s25p54f25d 233817.4 (J=3)o 3.28E+09 6.65E+09 -0.71
428.117 5s25p64f2 0.0 (J=4) 5s25p54f25d 233581.0 (J=5)o 5.62E+09 1.54E+09 -1.37
429.107 5s25p64f2 5743.4 (J=6) 5s25p54f25d 238787.0 (J=7)o 1.21E+09 2.32E+07 -3.20
430.296 5s25p64f2 5893.8 (J=2) 5s25p54f25d 238294.8 (J=3)o 3.45E+08 3.88E+08 -2.01
430.601 5s25p64f2 5893.8 (J=2) 5s25p54f25d 238127.6 (J=2)o 1.91E+09 5.86E+07 -2.81
431.594 5s25p64f2 7784.8 (J=3) 5s25p54f25d 239482.1 (J=3)o 1.25E+09 2.12E+07 -3.23
432.356 5s25p64f2 0.0 (J=4) 5s25p54f25d 231296.1 (J=4)o 3.88E+09 5.82E+09 -0.75
432.356 5s25p64f2 5893.8 (J=2) 5s25p54f25d 237184.8 (J=3)o 3.18E+09 8.14E+06 -3.59
432.389 5s25p64f2 2834.3 (J=5) 5s25p54f25d 234105.4 (J=5)o 1.65E+09 2.51E+09 -1.13
432.448 5s25p64f2 0.0 (J=4) 5s25p54f25d 231240.8 (J=4)o 8.12E+08 3.02E+08 -2.13
432.577 5s25p64f2 8311.4 (J=4) 5s25p54f25d 239482.1 (J=3)o 9.20E+08 8.96E+08 -1.62
432.810 5s25p64f2 0.0 (J=4) 5s25p54f25d 231046.4 (J=3)o 1.52E+09 1.10E+09 -1.52
432.960 5s25p64f2 0.0 (J=4) 5s25p54f25d 230967.9 (J=5)o 8.52E+09 3.21E+06 -4.05
433.130 5s25p64f2 7784.8 (J=3) 5s25p54f25d 238661.2 (J=4)o 3.32E+09 1.54E+09 -1.32
433.130 5s25p64f2 8311.4 (J=4) 5s25p54f25d 239188.9 (J=3)o 3.16E+09 1.97E+08 -2.29
433.366 5s25p64f2 2834.3 (J=5) 5s25p54f25d 233581.0 (J=5)o 3.25E+09 1.65E+08 -2.33
433.820 5s25p64f2 7784.8 (J=3) 5s25p54f25d 238294.8 (J=3)o 4.08E+08 5.84E+08 -1.82
434.131 5s25p64f2 7784.8 (J=3) 5s25p54f25d 238127.6 (J=2)o 2.45E+09 1.83E+09 -1.31
434.350 5s25p64f2 5743.4 (J=6) 5s25p54f25d 235965.1 (J=5)o 6.99E+08 4.40E+08 -1.87
434.808 5s25p64f2 8311.4 (J=4) 5s25p54f25d 238294.8 (J=3)o 7.51E+08 5.19E+08 -1.88
436.840 5s25p64f2 26088.1 (J=6) 5s25p54f25d 255005.0 (J=7)o 3.63E+10 9.07E+08 -1.49
437.166 5s25p64f2 0.0 (J=4) 5s25p54f25d 228737.2 (J=4)o 5.69E+08 1.00E+09 -1.69
437.401 5s25p64f2 0.0 (J=4) 5s25p54f25d 228623.7 (J=5)o 1.53E+09 1.25E+09 -1.46
437.711 5s25p64f2 2834.3 (J=5) 5s25p54f25d 231296.1 (J=4)o 1.15E+08 1.86E+08 -2.23
437.812 5s25p64f2 2834.3 (J=5) 5s25p54f25d 231240.8 (J=4)o 8.62E+09 3.72E+08 -1.97
437.897 5s25p64f2 5743.4 (J=6) 5s25p54f25d 234105.4 (J=5)o 4.79E+09 2.86E+09 -1.06
438.228 5s25p64f2 0.0 (J=4) 5s25p54f25d 228189.8 (J=3)o 5.54E+09 1.10E+09 -1.52
438.228 5s25p64f2 5743.4 (J=6) 5s25p54f25d 233935.4 (J=7)o 1.01E+10 8.47E+08 -1.60
438.430 5s25p64f2 5893.8 (J=2) 5s25p54f25d 233979.7 (J=2)o 3.75E+08 4.34E+08 -1.92
438.742 5s25p64f2 5893.8 (J=2) 5s25p54f25d 233817.4 (J=3)o 5.89E+09 8.00E+08 -1.64
438.913 5s25p64f2 5743.4 (J=6) 5s25p54f25d 233581.0 (J=5)o 2.45E+09 2.45E+09 -1.15
439.265 5s25p64f2 8311.4 (J=4) 5s25p54f25d 235965.1 (J=5)o 2.68E+09 4.66E+08 -1.83
439.918 5s25p64f2 26088.1 (J=6) 5s25p54f25d 253402.8 (J=5)o 2.05E+10 9.61E+09 -0.61
440.129 5s25p64f2 12269.7 (J=4) 5s25p54f25d 239482.1 (J=3)o 3.19E+09 2.96E+09 -1.08
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λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

440.424 5s25p64f2 0.0 (J=4) 5s25p54f25d 227051.0 (J=3)o 3.84E+09 3.96E+08 -1.93
440.685 5s25p64f2 12269.7 (J=4) 5s25p54f25d 239188.9 (J=3)o 1.79E+09 2.96E+09 -1.08
441.124 5s25p64f2 2834.3 (J=5) 5s25p54f25d 229533.7 (J=4)o 2.28E+09 1.06E+09 -1.42
441.268 5s25p64f2 0.0 (J=4) 5s25p54f25d 226618.2 (J=5)o 1.22E+10 2.16E+09 -1.21
441.679 5s25p64f2 0.0 (J=4) 5s25p54f25d 226411.4 (J=5)o 2.24E+07 3.40E+08 -2.02
441.714 5s25p64f2 12269.7 (J=4) 5s25p54f25d 238661.2 (J=4)o 1.16E+10 6.44E+08 -1.72
441.876 5s25p64f2 26088.1 (J=6) 5s25p54f25d 252396.0 (J=7)o 2.64E+10 4.15E+10 0.06
442.097 5s25p64f2 7784.8 (J=3) 5s25p54f25d 233979.7 (J=2)o 1.08E+09 1.44E+08 -2.39
442.216 5s25p64f2 0.0 (J=4) 5s25p54f25d 226134.9 (J=3)o 2.88E+08 3.83E+08 -1.99
442.424 5s25p64f2 7784.8 (J=3) 5s25p54f25d 233817.4 (J=3)o 7.09E+09 1.35E+09 -1.41
442.424 5s25p64f2 12269.7 (J=4) 5s25p54f25d 238294.8 (J=3)o 7.25E+09 7.96E+07 -2.68
442.678 5s25p64f2 2834.3 (J=5) 5s25p54f25d 228737.2 (J=4)o 3.99E+09 3.25E+09 -1.04
442.878 5s25p64f2 2834.3 (J=5) 5s25p54f25d 228623.7 (J=5)o 1.53E+09 3.31E+08 -2.03
442.878 5s25p64f2 8311.4 (J=4) 5s25p54f25d 234105.4 (J=5)o 1.10E+09 1.54E+09 -1.32
443.066 5s25p64f2 5893.8 (J=2) 5s25p54f25d 231592.0 (J=3)o 1.29E+09 4.09E+08 -1.95
443.333 5s25p64f2 2834.3 (J=5) 5s25p54f25d 228398.8 (J=6)o 2.96E+09 8.57E+09 -0.58
444.621 5s25p64f2 12269.7 (J=4) 5s25p54f25d 237184.8 (J=3)o 1.93E+09 1.15E+09 -1.52
445.375 5s25p64f2 0.0 (J=4) 5s25p54f25d 224529.3 (J=4)o 3.22E+09 5.02E+08 -1.84
446.855 5s25p64f2 2834.3 (J=5) 5s25p54f25d 226618.2 (J=5)o 3.70E+09 2.59E+09 -1.11
447.040 5s25p64f2 12269.7 (J=4) 5s25p54f25d 235965.1 (J=5)o 3.04E+09 2.11E+08 -2.16
447.401 5s25p64f2 7784.8 (J=3) 5s25p54f25d 231296.1 (J=4)o 3.54E+08 3.93E+08 -1.89
447.514 5s25p64f2 7784.8 (J=3) 5s25p54f25d 231240.8 (J=4)o 2.51E+09 2.25E+09 -1.17
447.875 5s25p64f2 8311.4 (J=4) 5s25p54f25d 231592.0 (J=3)o 2.21E+09 1.97E+08 -2.29
447.920 5s25p64f2 0.0 (J=4) 5s25p54f25d 223252.7 (J=3)o 4.92E+08 6.49E+08 -1.70
448.450 5s25p64f2 8311.4 (J=4) 5s25p54f25d 231296.1 (J=4)o 2.62E+09 6.03E+09 -0.77
448.572 5s25p64f2 8311.4 (J=4) 5s25p54f25d 231240.8 (J=4)o 2.68E+09 3.00E+08 -2.05
448.671 5s25p64f2 5743.4 (J=6) 5s25p54f25d 228623.7 (J=5)o 1.93E+10 8.51E+09 -0.61
448.967 5s25p64f2 8311.4 (J=4) 5s25p54f25d 231046.4 (J=3)o 1.81E+09 1.34E+10 -0.39
449.123 5s25p64f2 5743.4 (J=6) 5s25p54f25d 228398.8 (J=6)o 5.63E+09 8.33E+08 -1.61
449.123 5s25p64f2 8311.4 (J=4) 5s25p54f25d 230967.9 (J=5)o 2.48E+09 3.83E+08 -1.90
449.506 5s25p64f2 0.0 (J=4) 5s25p54f25d 222466.9 (J=4)o 1.59E+09 2.57E+08 -2.11
449.845 5s25p64f2 5893.8 (J=2) 5s25p54f25d 228189.8 (J=3)o 4.01E+09 1.54E+09 -1.35
450.322 5s25p64f2 0.0 (J=4) 5s25p54f25d 222061.2 (J=5)o 1.08E+09 7.72E+07 -2.72
450.580 5s25p64f2 26088.1 (J=6) 5s25p54f25d 248026.8 (J=7)o 1.55E+10 4.86E+09 -0.82
450.781 5s25p64f2 12269.7 (J=4) 5s25p54f25d 234105.4 (J=5)o 5.67E+07 5.01E+08 -1.79
450.968 5s25p64f2 7784.8 (J=3) 5s25p54f25d 229533.7 (J=4)o 2.70E+09 1.07E+08 -2.53
451.077 5s25p64f2 2834.3 (J=5) 5s25p54f25d 224529.3 (J=4)o 2.41E+09 1.06E+09 -1.50
451.217 5s25p64f2 2834.3 (J=5) 5s25p54f25d 224461.6 (J=6)o 2.11E+08 5.47E+08 -1.81
451.371 5s25p64f2 12269.7 (J=4) 5s25p54f25d 233817.4 (J=3)o 1.12E+09 8.65E+07 -2.59
451.640 5s25p64f2 0.0 (J=4) 5s25p54f25d 221416.7 (J=3)o 2.62E+08 4.91E+08 -1.85
451.858 5s25p64f2 12269.7 (J=4) 5s25p54f25d 233581.0 (J=5)o 2.20E+10 5.79E+09 -0.79
452.015 5s25p64f2 8311.4 (J=4) 5s25p54f25d 229533.7 (J=4)o 8.67E+09 2.65E+08 -2.13
452.228 5s25p64f2 20551.4 (J=2) 5s25p54f25d 241677.8 (J=3)o 1.18E+09 1.83E+08 -2.24
452.406 5s25p64f2 0.0 (J=4) 5s25p54f25d 221040.4 (J=3)o 1.65E+10 3.10E+07 -3.00
452.524 5s25p64f2 8311.4 (J=4) 5s25p54f25d 229292.9 (J=5)o 1.32E+10 7.46E+09 -0.65
452.600 5s25p64f2 7784.8 (J=3) 5s25p54f25d 228737.2 (J=4)o 4.21E+09 4.08E+08 -1.92
452.744 5s25p64f2 5743.4 (J=6) 5s25p54f25d 226618.2 (J=5)o 5.27E+09 1.13E+09 -1.47
452.881 5s25p64f2 2834.3 (J=5) 5s25p54f25d 223644.5 (J=6)o 4.51E+09 5.47E+08 -1.81
452.991 5s25p64f2 0.0 (J=4) 5s25p54f25d 220754.5 (J=4)o 4.74E+08 1.32E+08 -2.45
453.176 5s25p64f2 5743.4 (J=6) 5s25p54f25d 226411.4 (J=5)o 2.40E+09 5.34E+08 -1.80
453.176 5s25p64f2 5743.4 (J=6) 5s25p54f25d 226271.3 (J=7)o 4.60E+10 2.05E+10 -0.21
453.562 5s25p64f2 0.0 (J=4) 5s25p54f25d 220472.9 (J=5)o 5.78E+07 1.73E+09 -1.28
453.659 5s25p64f2 8311.4 (J=4) 5s25p54f25d 228737.2 (J=4)o 6.99E+08 6.58E+08 -1.73
453.914 5s25p64f2 8311.4 (J=4) 5s25p54f25d 228623.7 (J=5)o 6.13E+08 2.77E+09 -1.08
454.053 5s25p64f2 2834.3 (J=5) 5s25p54f25d 223069.0 (J=4)o 6.70E+09 1.45E+09 -1.37
454.053 5s25p64f2 5893.8 (J=2) 5s25p54f25d 226134.9 (J=3)o 2.27E+09 8.79E+08 -1.60
454.702 5s25p64f2 5743.4 (J=6) 5s25p54f25d 225668.8 (J=5)o 4.76E+09 6.18E+07 -2.69
454.791 5s25p64f2 2834.3 (J=5) 5s25p54f25d 222716.4 (J=5)o 4.27E+09 6.83E+09 -0.68



APPENDIX D. COMPARISON OF THE RADIATIVE PARAMETERS FOR ND V 177

Table D.1: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

455.194 5s25p64f2 0.0 (J=4) 5s25p54f25d 219685.7 (J=4)o 2.91E+09 1.42E+10 -0.37
455.194 5s25p64f2 5893.8 (J=2) 5s25p54f25d 225576.7 (J=3)o 6.10E+09 2.74E+09 -1.08
455.318 5s25p64f2 2834.3 (J=5) 5s25p54f25d 222466.9 (J=4)o 8.27E+08 7.02E+08 -1.71
455.954 5s25p64f2 12269.7 (J=4) 5s25p54f25d 231592.0 (J=3)o 1.13E+09 1.02E+09 -1.53
456.059 5s25p64f2 7784.8 (J=3) 5s25p54f25d 227051.0 (J=3)o 2.77E+09 1.47E+09 -1.53
456.398 5s25p64f2 0.0 (J=4) 5s25p54f25d 219103.5 (J=5)o 1.40E+10 4.29E+09 -0.89
456.460 5s25p64f2 26088.1 (J=6) 5s25p54f25d 245165.8 (J=6)o 9.23E+09 5.04E+09 -0.81
456.575 5s25p64f2 12269.7 (J=4) 5s25p54f25d 231296.1 (J=4)o 1.08E+09 6.18E+08 -1.72
456.688 5s25p64f2 12269.7 (J=4) 5s25p54f25d 231240.8 (J=4)o 7.24E+08 5.64E+08 -1.75
456.765 5s25p64f2 20551.4 (J=2) 5s25p54f25d 239482.1 (J=3)o 2.57E+08 1.03E+09 -1.48
457.171 5s25p64f2 8311.4 (J=4) 5s25p54f25d 227051.0 (J=3)o 2.80E+09 1.76E+08 -2.25
457.212 5s25p64f2 5743.4 (J=6) 5s25p54f25d 224461.6 (J=6)o 2.67E+10 5.20E+08 -1.82
457.380 5s25p64f2 0.0 (J=4) 5s25p54f25d 218638.7 (J=5)o 1.97E+08 1.73E+09 -1.28
457.380 5s25p64f2 2834.3 (J=5) 5s25p54f25d 221468.6 (J=6)o 1.27E+09 1.28E+09 -1.41
457.380 5s25p64f2 20551.4 (J=2) 5s25p54f25d 239188.9 (J=3)o 8.40E+08 1.39E+08 -2.45
457.939 5s25p64f2 0.0 (J=4) 5s25p54f25d 218371.0 (J=4)o 4.76E+09 3.34E+08 -2.02
458.099 5s25p64f2 5893.8 (J=2) 5s25p54f25d 224181.2 (J=2)o 7.18E+08 1.76E+08 -2.27
458.498 5s25p64f2 8311.4 (J=4) 5s25p54f25d 226411.4 (J=5)o 3.39E+09 2.35E+09 -1.14
458.674 5s25p64f2 5893.8 (J=2) 5s25p54f25d 223914.6 (J=3)o 6.30E+09 1.21E+08 -2.49
458.885 5s25p64f2 0.0 (J=4) 5s25p54f25d 217916.4 (J=4)o 1.47E+10 1.10E+09 -1.47
458.885 5s25p64f2 2834.3 (J=5) 5s25p54f25d 220754.5 (J=4)o 1.83E+09 7.02E+08 -1.71
458.921 5s25p64f2 5743.4 (J=6) 5s25p54f25d 223644.5 (J=6)o 1.06E+10 5.20E+08 -1.82
459.087 5s25p64f2 8311.4 (J=4) 5s25p54f25d 226134.9 (J=3)o 5.39E+09 5.87E+08 -1.77
459.157 5s25p64f2 7784.8 (J=3) 5s25p54f25d 225576.7 (J=3)o 7.95E+08 2.04E+09 -1.22
459.461 5s25p64f2 2834.3 (J=5) 5s25p54f25d 220472.9 (J=5)o 2.06E+10 3.17E+09 -1.00
459.606 5s25p64f2 20551.4 (J=2) 5s25p54f25d 238127.6 (J=2)o 1.92E+09 3.06E+08 -2.03
460.074 5s25p64f2 5893.8 (J=2) 5s25p54f25d 223252.7 (J=3)o 3.29E+09 2.27E+09 -1.16
460.074 5s25p64f2 8311.4 (J=4) 5s25p54f25d 225668.8 (J=5)o 1.67E+09 1.50E+08 -2.29
460.106 5s25p64f2 0.0 (J=4) 5s25p54f25d 217341.6 (J=4)o 5.52E+09 4.41E+08 -1.92
460.267 5s25p64f2 8311.4 (J=4) 5s25p54f25d 225576.7 (J=3)o 7.72E+08 7.56E+08 -1.65
460.267 5s25p64f2 26088.1 (J=6) 5s25p54f25d 243355.7 (J=7)o 7.42E+09 5.42E+08 -1.80
460.783 5s25p64f2 12269.7 (J=4) 5s25p54f25d 229292.9 (J=5)o 4.55E+09 2.41E+09 -1.13
460.898 5s25p64f2 5743.4 (J=6) 5s25p54f25d 222716.4 (J=5)o 2.52E+09 1.35E+08 -2.42
461.089 5s25p64f2 5893.8 (J=2) 5s25p54f25d 222773.5 (J=2)o 7.86E+08 1.76E+08 -2.27
461.152 5s25p64f2 2834.3 (J=5) 5s25p54f25d 219685.7 (J=4)o 1.62E+09 6.86E+08 -1.67
461.366 5s25p64f2 7784.8 (J=3) 5s25p54f25d 224529.3 (J=4)o 5.60E+09 1.53E+09 -1.32
461.605 5s25p64f2 20551.4 (J=2) 5s25p54f25d 237184.8 (J=3)o 8.04E+09 3.72E+09 -0.98
461.893 5s25p64f2 0.0 (J=4) 5s25p54f25d 216499.5 (J=5)o 7.64E+09 2.19E+09 -1.16
462.118 5s25p64f2 7784.8 (J=3) 5s25p54f25d 224181.2 (J=2)o 1.25E+09 1.92E+08 -2.22
462.199 5s25p64f2 12269.7 (J=4) 5s25p54f25d 228623.7 (J=5)o 1.53E+09 3.96E+09 -0.94
462.276 5s25p64f2 5743.4 (J=6) 5s25p54f25d 222061.2 (J=5)o 5.74E+08 1.14E+08 -2.52
462.387 5s25p64f2 2834.3 (J=5) 5s25p54f25d 219103.5 (J=5)o 3.78E+09 1.42E+09 -1.35
463.138 5s25p64f2 12269.7 (J=4) 5s25p54f25d 228189.8 (J=3)o 1.95E+09 5.35E+08 -1.78
463.276 5s25p64f2 26088.1 (J=6) 5s25p54f25d 241942.1 (J=6)o 1.15E+10 2.31E+09 -1.13
463.315 5s25p64f2 0.0 (J=4) 5s25p54f25d 215828.5 (J=5)o 2.86E+09 1.25E+09 -1.41
463.375 5s25p64f2 2834.3 (J=5) 5s25p54f25d 218638.7 (J=5)o 4.48E+09 3.17E+09 -1.00
463.554 5s25p64f2 5743.4 (J=6) 5s25p54f25d 221468.6 (J=6)o 4.14E+09 2.65E+09 -1.08
463.814 5s25p64f2 8311.4 (J=4) 5s25p54f25d 223914.6 (J=3)o 3.19E+09 1.13E+08 -2.53
463.987 5s25p64f2 2834.3 (J=5) 5s25p54f25d 218353.2 (J=6)o 2.81E+09 1.93E+09 -1.21
463.987 5s25p64f2 5893.8 (J=2) 5s25p54f25d 221416.7 (J=3)o 3.18E+08 9.31E+08 -1.55
464.102 5s25p64f2 7784.8 (J=3) 5s25p54f25d 223252.7 (J=3)o 2.38E+08 1.93E+08 -2.22
464.128 5s25p64f2 0.0 (J=4) 5s25p54f25d 215456.7 (J=5)o 3.83E+09 2.19E+09 -1.16
464.500 5s25p64f2 7784.8 (J=3) 5s25p54f25d 223069.0 (J=4)o 7.56E+09 1.63E+07 -3.30
464.810 5s25p64f2 5893.8 (J=2) 5s25p54f25d 221040.4 (J=3)o 6.49E+09 8.86E+08 -1.51
464.944 5s25p64f2 2834.3 (J=5) 5s25p54f25d 217916.4 (J=4)o 7.01E+08 2.14E+09 -1.20
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Table D.1: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

465.504 5s25p64f2 7784.8 (J=3) 5s25p54f25d 222602.3 (J=3)o 1.62E+09 1.47E+09 -1.53
465.596 5s25p64f2 12269.7 (J=4) 5s25p54f25d 227051.0 (J=3)o 1.47E+09 2.61E+09 -1.27
465.647 5s25p64f2 8311.4 (J=4) 5s25p54f25d 223069.0 (J=4)o 1.84E+08 3.54E+06 -3.96
465.714 5s25p64f2 5743.4 (J=6) 5s25p54f25d 220472.9 (J=5)o 1.89E+09 4.26E+08 -1.86
465.802 5s25p64f2 7784.8 (J=3) 5s25p54f25d 222466.9 (J=4)o 9.94E+08 1.55E+08 -2.35
466.074 5s25p64f2 5743.4 (J=6) 5s25p54f25d 220304.1 (J=6)o 1.47E+09 1.17E+09 -1.43
466.189 5s25p64f2 2834.3 (J=5) 5s25p54f25d 217341.6 (J=4)o 9.77E+08 2.10E+09 -1.24
466.401 5s25p64f2 8311.4 (J=4) 5s25p54f25d 222716.4 (J=5)o 1.03E+09 3.54E+09 -1.02
466.940 5s25p64f2 8311.4 (J=4) 5s25p54f25d 222466.9 (J=4)o 1.49E+09 2.30E+09 -1.18
466.976 5s25p64f2 12269.7 (J=4) 5s25p54f25d 226411.4 (J=5)o 8.45E+08 5.24E+08 -1.78
467.580 5s25p64f2 12269.7 (J=4) 5s25p54f25d 226134.9 (J=3)o 2.83E+09 9.87E+08 -1.53
467.825 5s25p64f2 7784.8 (J=3) 5s25p54f25d 221538.1 (J=4)o 7.54E+08 1.63E+07 -3.30
467.876 5s25p64f2 0.0 (J=4) 5s25p54f25d 213738.5 (J=4)o 1.08E+09 2.28E+08 -2.20
468.023 5s25p64f2 2834.3 (J=5) 5s25p54f25d 216499.5 (J=5)o 2.19E+09 1.07E+09 -1.46
468.101 5s25p64f2 7784.8 (J=3) 5s25p54f25d 221416.7 (J=3)o 5.71E+07 5.31E+08 -1.78
468.488 5s25p64f2 0.0 (J=4) 5s25p54f25d 213453.0 (J=5)o 1.88E+09 9.28E+08 -1.57
468.602 5s25p64f2 12269.7 (J=4) 5s25p54f25d 225668.8 (J=5)o 1.40E+09 2.02E+08 -2.14
468.921 5s25p64f2 7784.8 (J=3) 5s25p54f25d 221040.4 (J=3)o 1.44E+09 1.45E+07 -3.28
468.974 5s25p64f2 8311.4 (J=4) 5s25p54f25d 221538.1 (J=4)o 4.30E+09 3.54E+06 -3.96
469.504 5s25p64f2 2834.3 (J=5) 5s25p54f25d 215828.5 (J=5)o 6.13E+07 6.51E+08 -1.78
469.552 5s25p64f2 7784.8 (J=3) 5s25p54f25d 220754.5 (J=4)o 7.25E+08 1.55E+08 -2.35
469.711 5s25p64f2 5743.4 (J=6) 5s25p54f25d 218638.7 (J=5)o 8.05E+08 4.40E+08 -1.87
470.071 5s25p64f2 8311.4 (J=4) 5s25p54f25d 221040.4 (J=3)o 7.30E+06 1.59E+07 -2.42
470.146 5s25p64f2 26088.1 (J=6) 5s25p54f25d 238787.0 (J=7)o 7.78E+08 1.15E+09 -1.42
470.326 5s25p64f2 2834.3 (J=5) 5s25p54f25d 215456.7 (J=5)o 2.28E+09 1.07E+09 -1.46
470.350 5s25p64f2 5743.4 (J=6) 5s25p54f25d 218353.2 (J=6)o 7.32E+08 1.17E+09 -1.43
470.405 5s25p64f2 7784.8 (J=3) 5s25p54f25d 220368.9 (J=3)o 9.91E+08 1.22E+08 -2.44
471.122 5s25p64f2 12269.7 (J=4) 5s25p54f25d 224529.3 (J=4)o 1.27E+09 1.15E+09 -1.43
471.183 5s25p64f2 25892.9 (J=1) 5s25p54f25d 238127.6 (J=2)o 9.39E+08 4.08E+08 -2.05
471.353 5s25p64f2 8311.4 (J=4) 5s25p54f25d 220472.9 (J=5)o 4.26E+08 4.66E+08 -1.83
471.567 5s25p64f2 8311.4 (J=4) 5s25p54f25d 220368.9 (J=3)o 2.67E+09 2.79E+08 -2.08
471.916 5s25p64f2 7784.8 (J=3) 5s25p54f25d 219685.7 (J=4)o 5.32E+08 1.09E+07 -3.44
473.309 5s25p64f2 0.0 (J=4) 5s25p54f25d 211278.3 (J=3)o 1.05E+08 1.29E+08 -2.31
473.387 5s25p64f2 0.0 (J=4) 5s25p54f25d 211247.3 (J=5)o 1.19E+09 2.90E+09 -1.05
473.835 5s25p64f2 20551.4 (J=2) 5s25p54f25d 231592.0 (J=3)o 2.85E+08 2.41E+08 -2.13
473.969 5s25p64f2 12269.7 (J=4) 5s25p54f25d 223252.1 (J=3)o 8.49E+08 1.30E+08 -2.35
474.111 5s25p64f2 0.0 (J=4) 5s25p54f25d 210920.2 (J=4)o 3.85E+08 4.30E+08 -1.85
474.414 5s25p64f2 8311.4 (J=4) 5s25p54f25d 219103.5 (J=5)o 1.83E+08 3.83E+08 -1.90
474.861 5s25p64f2 2834.3 (J=5) 5s25p54f25d 213423.3 (J=6)o 1.10E+09 1.68E+09 -1.25
474.861 5s25p64f2 7784.8 (J=3) 5s25p54f25d 218371.0 (J=4)o 4.11E+08 1.63E+07 -3.30
474.953 5s25p64f2 0.0 (J=4) 5s25p54f25d 210545.7 (J=5)o 2.60E+08 9.28E+08 -1.57
475.445 5s25p64f2 12269.7 (J=4) 5s25p54f25d 222602.3 (J=3)o 4.63E+08 2.61E+09 -1.27
475.891 5s25p64f2 7784.8 (J=3) 5s25p54f25d 217916.4 (J=4)o 5.74E+08 1.54E+09 -1.32
475.984 5s25p64f2 5743.4 (J=6) 5s25p54f25d 215828.5 (J=5)o 5.12E+08 1.38E+08 -2.35
476.683 5s25p64f2 12269.7 (J=4) 5s25p54f25d 222061.2 (J=5)o 9.37E+08 6.24E+08 -1.67
477.870 5s25p64f2 12269.7 (J=4) 5s25p54f25d 221538.1 (J=4)o 5.66E+08 5.09E+08 -1.79
479.649 5s25p64f2 12269.7 (J=4) 5s25p54f25d 220754.5 (J=4)o 1.04E+08 3.64E+08 -1.96
479.817 5s25p64f2 2834.3 (J=5) 5s25p54f25d 211247.3 (J=5)o 1.15E+09 6.94E+08 -1.66
480.299 5s25p64f2 12269.7 (J=4) 5s25p54f25d 220472.9 (J=5)o 1.99E+07 2.11E+08 -2.16
480.445 5s25p64f2 0.0 (J=4) 5s25p54f25d 208143.8 (J=5)o 5.30E+08 2.90E+09 -1.05
480.569 5s25p64f2 2834.3 (J=5) 5s25p54f25d 210920.2 (J=4)o 3.16E+08 9.84E+07 -2.48
480.569 5s25p64f2 25892.9 (J=1) 5s25p54f25d 233979.7 (J=2)o 1.01E+08 8.84E+07 -2.52
480.740 5s25p64f2 26088.1 (J=6) 5s25p54f25d 234105.4 (J=5)o 1.39E+09 9.61E+09 -0.61
481.122 5s25p64f2 26088.1 (J=6) 5s25p54f25d 233935.4 (J=7)o 1.34E+09 3.36E+09 -0.98
481.435 5s25p64f2 2834.3 (J=5) 5s25p54f25d 210545.7 (J=5)o 2.59E+09 1.58E+08 -2.41
481.435 5s25p64f2 5743.4 (J=6) 5s25p54f25d 213453.0 (J=5)o 8.60E+08 1.95E+08 -2.22
481.509 5s25p64f2 5743.4 (J=6) 5s25p54f25d 213423.3 (J=6)o 5.82E+08 9.80E+08 -1.48
482.119 5s25p64f2 12269.7 (J=4) 5s25p54f25d 219685.7 (J=4)o 7.15E+08 2.23E+08 -2.12
482.741 5s25p64f2 0.0 (J=4) 5s25p54f25d 207148.2 (J=5)o 2.14E+09 1.07E+08 -2.45
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Table D.1: Continued.

λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

482.741 5s25p64f2 8311.4 (J=4) 5s25p54f25d 215456.7 (J=5)o 8.11E+08 1.55E+07 -3.28
483.474 5s25p64f2 12269.7 (J=4) 5s25p54f25d 219103.5 (J=5)o 2.76E+08 1.54E+08 -2.33
484.244 5s25p64f2 0.0 (J=4) 5s25p54f25d 206509.1 (J=5)o 6.46E+08 2.13E+08 -2.14
484.577 5s25p64f2 12269.7 (J=4) 5s25p54f25d 218638.7 (J=5)o 1.59E+08 2.11E+08 -2.16
485.529 5s25p64f2 7784.8 (J=3) 5s25p54f25d 213738.5 (J=4)o 3.76E+08 1.56E+08 -2.34
486.050 5s25p64f2 0.0 (J=4) 5s25p54f25d 205744.4 (J=4)o 2.01E+08 6.19E+07 -2.64
486.795 5s25p64f2 8311.4 (J=4) 5s25p54f25d 213738.5 (J=4)o 1.32E+08 1.13E+09 -1.47
486.881 5s25p64f2 5893.8 (J=2) 5s25p54f25d 211278.3 (J=3)o 2.35E+08 3.28E+08 -1.93
487.468 5s25p64f2 8311.4 (J=4) 5s25p54f25d 213453.0 (J=5)o 1.36E+09 4.60E+08 -1.84
487.629 5s25p64f2 12269.7 (J=4) 5s25p54f25d 217341.6 (J=4)o 4.85E+08 7.28E+07 -2.57
488.281 5s25p64f2 5743.4 (J=6) 5s25p54f25d 210545.7 (J=5)o 9.57E+07 1.95E+08 -2.22
490.971 5s25p64f2 2834.3 (J=5) 5s25p54f25d 206509.1 (J=5)o 4.98E+08 1.18E+08 -2.40
491.084 5s25p64f2 20551.4 (J=2) 5s25p54f25d 224181.2 (J=2)o 2.21E+08 1.92E+08 -2.16
491.169 5s25p64f2 0.0 (J=4) 5s25p54f25d 203596.3 (J=5)o 1.94E+08 2.28E+07 -3.09
491.279 5s25p64f2 12269.7 (J=4) 5s25p54f25d 215828.5 (J=5)o 4.26E+08 1.93E+08 -2.17
491.422 5s25p64f2 7784.8 (J=3) 5s25p54f25d 211278.3 (J=3)o 1.16E+08 1.23E+07 -3.25
491.730 5s25p64f2 20551.4 (J=2) 5s25p54f25d 223914.6 (J=3)o 4.31E+08 1.83E+08 -2.24
492.158 5s25p64f2 12269.7 (J=4) 5s25p54f25d 215456.7 (J=5)o 1.23E+08 3.93E+07 -2.86
492.695 5s25p64f2 8311.4 (J=4) 5s25p54f25d 211278.3 (J=3)o 4.77E+08 4.76E+07 -2.77
492.769 5s25p64f2 8311.4 (J=4) 5s25p54f25d 211247.3 (J=5)o 2.72E+08 4.99E+08 -1.78
492.830 5s25p64f2 2834.3 (J=5) 5s25p54f25d 205744.4 (J=4)o 2.18E+09 3.50E+08 -1.91
493.343 5s25p64f2 20551.4 (J=2) 5s25p54f25d 223252.7 (J=3)o 1.67E+08 5.67E+07 -2.69
493.571 5s25p64f2 8311.4 (J=4) 5s25p54f25d 210920.2 (J=4)o 1.40E+08 1.70E+08 -2.23
494.061 5s25p64f2 5743.4 (J=6) 5s25p54f25d 208143.8 (J=5)o 6.28E+08 1.45E+08 -2.33
496.355 5s25p64f2 12269.7 (J=4) 5s25p54f25d 213738.5 (J=4)o 8.55E+08 5.64E+08 -1.75
496.512 5s25p64f2 5743.4 (J=6) 5s25p54f25d 207148.2 (J=5)o 3.53E+08 3.77E+07 -2.87
497.838 5s25p64f2 20551.4 (J=2) 5s25p54f25d 221416.7 (J=3)o 9.50E+07 8.49E+07 -2.51
498.098 5s25p64f2 5743.4 (J=6) 5s25p54f25d 206509.1 (J=5)o 5.88E+08 4.68E+08 -1.79
498.232 5s25p64f2 27478.7 (J=2) 5s25p54f25d 228189.8 (J=3)o 1.35E+08 2.62E+08 -2.02
498.685 5s25p64f2 26088.1 (J=6) 5s25p54f25d 226618.2 (J=5)o 2.00E+08 2.38E+07 -3.05
499.177 5s25p64f2 0.0 (J=4) 5s25p54f25d 200327.2 (J=4)o 1.43E+08 3.60E+08 -1.89
499.546 5s25p64f2 26088.1 (J=6) 5s25p54f25d 226271.3 (J=7)o 2.34E+08 2.05E+10 -0.21
499.872 5s25p64f2 2834.3 (J=5) 5s25p54f25d 202884.9 (J=6)o 3.65E+08 9.33E+07 -2.47
500.421 5s25p64f2 8311.4 (J=4) 5s25p54f25d 208143.8 (J=5)o 3.52E+08 4.99E+08 -1.78
502.495 5s25p64f2 12269.7 (J=4) 5s25p54f25d 211278.3 (J=3)o 3.73E+08 1.78E+08 -2.17
502.559 5s25p64f2 12269.7 (J=4) 5s25p54f25d 211247.3 (J=5)o 1.89E+08 2.67E+08 -2.01
503.093 5s25p64f2 2834.3 (J=5) 5s25p54f25d 201606.0 (J=5)o 2.62E+08 2.59E+09 -1.11
503.384 5s25p64f2 27478.7 (J=2) 5s25p54f25d 226134.9 (J=3)o 1.58E+09 3.68E+08 -2.02
504.091 5s25p64f2 26088.1 (J=6) 5s25p54f25d 224461.6 (J=6)o 8.51E+07 7.80E+08 -1.55
504.547 5s25p64f2 8311.4 (J=4) 5s25p54f25d 206509.1 (J=5)o 1.98E+08 6.24E+08 -1.79
505.148 5s25p64f2 7784.8 (J=3) 5s25p54f25d 205744.4 (J=4)o 1.63E+08 4.79E+06 -3.74
505.425 5s25p64f2 5743.4 (J=6) 5s25p54f25d 203596.3 (J=5)o 1.25E+09 3.39E+08 -1.89
507.251 5s25p64f2 5743.4 (J=6) 5s25p54f25d 202884.9 (J=6)o 5.01E+08 4.92E+08 -1.72
507.919 5s25p64f2 25892.9 (J=1) 5s25p54f25d 222773.5 (J=2)o 1.65E+08 6.85E+05 -4.52
508.392 5s25p64f2 27478.7 (J=2) 5s25p54f25d 224181.2 (J=2)o 4.19E+08 6.86E+05 -4.52
508.568 5s25p64f2 26088.1 (J=6) 5s25p54f25d 222716.4 (J=5)o 2.13E+08 6.08E+06 -3.62
510.267 5s25p64f2 26088.1 (J=6) 5s25p54f25d 222061.2 (J=5)o 5.20E+08 1.21E+08 -2.32
513.634 5s25p64f2 5893.8 (J=2) 5s25p54f25d 200585.8 (J=3)o 1.92E+08 9.04E+06 -3.43
514.828 5s25p64f2 12269.7 (J=4) 5s25p54f25d 206509.1 (J=5)o 1.09E+08 5.91E+07 -2.61
514.887 5s25p64f2 26088.1 (J=6) 5s25p54f25d 220304.1 (J=6)o 3.95E+08 1.56E+08 -2.18
515.326 5s25p64f2 7784.8 (J=3) 5s25p54f25d 201838.5 (J=4)o 1.07E+08 2.92E+08 -1.97
516.056 5s25p64f2 5893.8 (J=2) 5s25p54f25d 199673.6 (J=1)o 2.29E+08 3.26E+08 -1.89
516.720 5s25p64f2 8311.4 (J=4) 5s25p54f25d 201838.5 (J=4)o 7.06E+07 2.55E+07 -3.00
516.859 5s25p64f2 12269.7 (J=4) 5s25p54f25d 205744.4 (J=4)o 3.88E+08 7.63E+07 -2.51
518.668 5s25p64f2 7784.8 (J=3) 5s25p54f25d 200585.8 (J=3)o 2.09E+08 8.69E+07 -2.44
520.115 5s25p64f2 26088.1 (J=6) 5s25p54f25d 218353.2 (J=6)o 5.26E+08 1.56E+08 -2.18
520.797 5s25p64f2 8311.4 (J=4) 5s25p54f25d 200327.2 (J=4)o 9.02E+07 6.95E+07 -2.56
527.512 5s25p64f2 12269.7 (J=4) 5s25p54f25d 201838.5 (J=4)o 7.37E+07 1.11E+07 -3.37
528.159 5s25p64f2 12269.7 (J=4) 5s25p54f25d 201606.0 (J=5)o 1.07E+08 5.83E+08 -1.72
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λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

544.068 5s25p64f2 27478.7 (J=2) 5s25p54f25d 211278.3 (J=3)o 2.58E+08 3.38E+07 -2.81
552.305 5s25p64f2 26088.1 (J=6) 5s25p54f25d 207148.2 (J=5)o 1.52E+08 5.76E+06 -3.59
575.433 5s25p64f2 25892.9 (J=1) 5s25p54f25d 199673.6 (J=1)o 1.27E+08 5.24E+07 -2.58
713.891 5s25p64f2 2834.3 (J=5) 5s25p64f5d 142910.8 (J=5)o 5.00E+06 2.51E+06 -3.68
729.036 5s25p64f2 5743.4 (J=6) 5s25p64f5d 142910.8 (J=5)o 6.20E+07 6.07E+07 -2.28
738.999 5s25p64f2 0.0 (J=4) 5s25p64f5d 135318.3 (J=3)o 3.20E+07 2.85E+07 -2.60
742.942 5s25p64f2 8311.4 (J=4) 5s25p64f5d 142910.8 (J=5)o 3.20E+07 6.90E+07 -2.21
744.269 5s25p64f2 0.0 (J=4) 5s25p64f5d 134359.7 (J=4)o 2.00E+07 2.91E+07 -2.58
748.900 5s25p64f2 2834.3 (J=5) 5s25p64f5d 136363.4 (J=6)o 3.00E+07 4.26E+07 -2.42
754.159 5s25p64f2 0.0 (J=4) 5s25p64f5d 132597.5 (J=5)o 3.00E+07 4.27E+07 -2.41
756.472 5s25p64f2 2834.3 (J=5) 5s25p64f5d 135027.2 (J=5)o 9.80E+07 1.19E+08 -1.95
756.650 5s25p64f2 0.0 (J=4) 5s25p64f5d 132162.1 (J=4)o 9.10E+07 1.44E+08 -1.87
758.925 5s25p64f2 7784.8 (J=3) 5s25p64f5d 139549.8 (J=3)o 2.40E+07 4.62E+07 -2.36
760.311 5s25p64f2 2834.3 (J=5) 5s25p64f5d 134359.7 (J=4)o 1.42E+08 1.09E+08 -1.99
761.971 5s25p64f2 8311.4 (J=4) 5s25p64f5d 139549.8 (J=3)o 1.80E+07 4.80E+07 -2.34
762.753 5s25p64f2 0.0 (J=4) 5s25p64f5d 131104.7 (J=3)o 1.53E+08 1.23E+08 -1.93
765.456 5s25p64f2 12269.7 (J=4) 5s25p64f5d 142910.8 (J=5)o 1.86E+08 1.82E+08 -1.76
765.579 5s25p64f2 5743.4 (J=6) 5s25p64f5d 136363.4 (J=6)o 9.35E+08 1.34E+09 -0.90
765.973 5s25p64f2 0.0 (J=4) 5s25p64f5d 130553.0 (J=4)o 2.39E+08 3.88E+08 -1.43
770.635 5s25p64f2 2834.3 (J=5) 5s25p64f5d 132597.5 (J=5)o 7.88E+08 1.14E+09 -0.96
773.230 5s25p64f2 2834.3 (J=5) 5s25p64f5d 132162.1 (J=4)o 3.23E+10 4.31E+09 -0.37
773.493 5s25p64f2 5743.4 (J=6) 5s25p64f5d 135027.2 (J=5)o 4.08E+10 5.47E+09 -0.27
774.567 5s25p64f2 0.0 (J=4) 5s25p64f5d 129104.5 (J=3)o 2.51E+10 3.48E+09 -0.46
783.863 5s25p64f2 7784.8 (J=3) 5s25p64f5d 135359.2 (J=2)o 9.13E+08 1.14E+09 -0.94
783.912 5s25p64f2 0.0 (J=4) 5s25p64f5d 127565.1 (J=4)o 4.13E+08 5.32E+08 -1.27
784.105 5s25p64f2 7784.8 (J=3) 5s25p64f5d 135318.3 (J=3)o 8.10E+07 1.39E+08 -1.85
784.483 5s25p64f2 5893.8 (J=2) 5s25p64f5d 133366.3 (J=1)o 6.97E+08 9.74E+08 -1.01
785.669 5s25p64f2 12269.7 (J=4) 5s25p64f5d 139549.8 (J=3)o 2.03E+09 2.66E+09 -0.57
787.091 5s25p64f2 20551.4 (J=2) 5s25p64f5d 147601.4 (J=1)o 4.66E+08 6.27E+08 -1.18
787.359 5s25p64f2 8311.4 (J=4) 5s25p64f5d 135318.3 (J=3)o 1.74E+09 2.46E+09 -0.60
789.169 5s25p64f2 8311.4 (J=4) 5s25p64f5d 135027.2 (J=5)o 2.60E+08 2.55E+08 -1.58
789.440 5s25p64f2 5893.8 (J=2) 5s25p64f5d 132565.8 (J=2)o 6.80E+07 2.57E+07 -2.58
790.043 5s25p64f2 7784.8 (J=3) 5s25p64f5d 134359.7 (J=4)o 3.20E+07 5.62E+07 -2.24
793.348 5s25p64f2 8311.4 (J=4) 5s25p64f5d 134359.7 (J=4)o 3.94E+08 2.73E+08 -1.55
798.654 5s25p64f2 5893.8 (J=2) 5s25p64f5d 131104.7 (J=3)o 3.90E+07 6.97E+07 -2.13
801.406 5s25p64f2 7784.8 (J=3) 5s25p64f5d 132565.8 (J=2)o 2.17E+08 4.07E+08 -1.37
804.005 5s25p64f2 7784.8 (J=3) 5s25p64f5d 132162.1 (J=4)o 2.94E+08 3.58E+08 -1.41
810.898 5s25p64f2 7784.8 (J=3) 5s25p64f5d 131104.7 (J=3)o 9.94E+08 1.32E+09 -0.84
811.616 5s25p64f2 5893.8 (J=2) 5s25p64f5d 129104.5 (J=3)o 2.29E+08 2.66E+08 -1.53
814.378 5s25p64f2 8311.4 (J=4) 5s25p64f5d 131104.7 (J=3)o 6.10E+07 1.27E+08 -1.85
814.539 5s25p64f2 7784.8 (J=3) 5s25p64f5d 130553.0 (J=4)o 1.30E+07 6.74E+06 -3.13
814.616 5s25p64f2 12269.7 (J=4) 5s25p64f5d 135027.2 (J=5)o 7.10E+07 2.55E+08 -1.58
815.987 5s25p64f2 25050.6 (J=0) 5s25p64f5d 147601.4 (J=1)o 1.90E+07 2.73E+07 -2.51
817.297 5s25p64f5d 127565.1 (J=4)o 5s25p64f6p 249919.6 (J=4) 9.57E+08 1.34E+09 -0.89
818.060 5s25p64f2 8311.4 (J=4) 5s25p64f5d 130553.0 (J=4)o 4.90E+08 6.27E+08 -1.16
819.065 5s25p64f2 12269.7 (J=4) 5s25p64f5d 134359.7 (J=4)o 8.96E+08 1.47E+09 -0.79
821.930 5s25p64f2 5893.8 (J=2) 5s25p64f5d 127558.8 (J=2)o 6.51E+08 9.56E+08 -0.97
827.858 5s25p64f2 8311.4 (J=4) 5s25p64f5d 129104.5 (J=3)o 1.90E+07 1.82E+07 -2.68
830.152 5s25p64f5d 131104.7 (J=3)o 5s25p64f6p 251563.0 (J=2) 6.46E+08 7.60E+08 -1.13
832.481 5s25p64f2 27478.7 (J=2) 5s25p64f5d 147601.4 (J=1)o 1.25E+08 1.70E+08 -1.69
834.082 5s25p64f2 12269.7 (J=4) 5s25p64f5d 132162.1 (J=4)o 3.00E+06 8.80E+04 -5.00
834.912 5s25p64f2 7784.8 (J=3) 5s25p64f5d 127558.8 (J=2)o 1.30E+07 3.14E+07 -2.44
836.311 5s25p64f5d 127558.8 (J=2)o 5s25p64f6p 247130.7 (J=1) 1.35E+09 1.82E+09 -0.74
838.547 5s25p64f2 8311.4 (J=4) 5s25p64f5d 127565.1 (J=4)o 3.22E+08 6.47E+08 -1.12
839.543 5s25p64f5d 127565.1 (J=4)o 5s25p64f6p 246677.6 (J=4) 4.06E+09 4.97E+09 -0.30
840.350 5s25p64f2 20551.4 (J=2) 5s25p64f5d 139549.8 (J=3)o 9.80E+07 8.10E+07 -2.00
840.350 5s25p64f5d 132565.8 (J=2)o 5s25p64f6p 251563.0 (J=2) 2.44E+09 1.99E+09 -0.69
845.426 5s25p64f2 12269.7 (J=4) 5s25p64f5d 130553.0 (J=4)o 5.50E+07 7.30E+06 -3.07
848.507 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 250015.7 (J=5) 6.59E+08 7.85E+08 -1.10
849.200 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 249919.6 (J=4) 6.26E+08 2.27E+08 -1.63
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λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

849.444 5s25p64f2 20551.4 (J=2) 5s25p64f5d 138275.4 (J=1)o 1.18E+08 1.70E+08 -1.68
851.653 5s25p64f5d 132597.5 (J=5)o 5s25p64f6p 250015.7 (J=5) 1.44E+09 1.75E+09 -0.74
855.995 5s25p64f2 26088.1 (J=6) 5s25p64f5d 142910.8 (J=5)o 4.36E+09 6.20E+09 -0.11
860.561 5s25p64f5d 135359.2 (J=2)o 5s25p64f6p 251563.0 (J=2) 2.34E+09 3.53E+09 -0.42
861.143 5s25p64f5d 130553.0 (J=4)o 5s25p64f6p 246677.6 (J=4) 5.48E+08 4.26E+08 -1.34
864.631 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 250015.7 (J=5) 9.41E+08 9.52E+08 -0.99
865.353 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 249919.6 (J=4) 6.93E+09 7.85E+09 -0.07
866.776 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 249730.1 (J=3) 7.53E+09 8.30E+09 -0.05
867.342 5s25p64f2 12269.7 (J=4) 5s25p64f5d 127565.1 (J=4)o 1.06E+08 9.35E+07 -1.93
867.622 5s25p64f5d 131104.7 (J=3)o 5s25p64f6p 246362.2 (J=2) 4.42E+09 4.87E+09 -0.28
868.546 5s25p64f5d 127558.8 (J=2)o 5s25p64f6p 242694.9 (J=3) 5.40E+07 1.90E+08 -1.69
868.584 5s25p64f5d 127565.1 (J=4)o 5s25p64f6p 242694.9 (J=3) 6.63E+08 7.17E+08 -1.12
869.650 5s25p64f5d 135027.2 (J=5)o 5s25p64f6p 250015.7 (J=5) 6.92E+09 8.37E+09 -0.05
870.381 5s25p64f5d 135027.2 (J=5)o 5s25p64f6p 249919.6 (J=4) 3.31E+09 3.31E+09 -0.45
871.020 5s25p64f2 20551.4 (J=2) 5s25p64f5d 135359.2 (J=2)o 6.40E+07 1.58E+08 -1.69
871.333 5s25p64f2 20551.4 (J=2) 5s25p64f5d 135318.3 (J=3)o 2.35E+08 3.28E+08 -1.36
872.339 5s25p64f5d 130553.0 (J=4)o 5s25p64f6p 245187.5 (J=3) 9.03E+09 1.75E+08 -1.70
872.869 5s25p64f5d 132565.8 (J=2)o 5s25p64f6p 247130.7 (J=1) 1.48E+09 1.55E+09 -0.77
873.241 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 246677.6 (J=4) 9.59E+08 1.18E+09 -0.89
874.034 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 249730.1 (J=3) 9.75E+08 8.67E+08 -1.02
874.981 5s25p64f2 25892.9 (J=1) 5s25p64f5d 140180.8 (J=2)o 1.78E+08 2.74E+08 -1.44
876.574 5s25p64f5d 132597.5 (J=5)o 5s25p64f6p 246677.6 (J=4) 9.24E+09 1.10E+10 0.09
878.758 5s25p64f5d 132565.8 (J=2)o 5s25p64f6p 246362.2 (J=2) 3.75E+09 5.00E+09 -0.25
879.009 5s25p64f5d 133366.3 (J=1)o 5s25p64f6p 247130.7 (J=1) 2.05E+09 2.60E+09 -0.54
879.876 5s25p64f5d 136363.4 (J=6)o 5s25p64f6p 250015.7 (J=5) 2.45E+10 2.73E+10 0.49
880.359 5s25p64f5d 129104.5 (J=3)o 5s25p64f6p 242694.9 (J=3) 6.40E+08 4.83E+08 -1.28
883.204 5s25p64f2 25050.6 (J=0) 5s25p64f5d 138275.4 (J=1)o 1.42E+08 2.11E+08 -1.55
884.759 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 245187.5 (J=3) 4.84E+09 7.25E+09 -0.08
884.982 5s25p64f5d 133366.3 (J=1)o 5s25p64f6p 246362.2 (J=2) 1.19E+08 2.20E+08 -1.60
887.294 5s25p64f2 27478.7 (J=2) 5s25p64f5d 140180.8 (J=2)o 8.18E+08 1.12E+09 -0.82
887.899 5s25p64f2 25892.9 (J=1) 5s25p64f5d 138519.2 (J=0)o 2.05E+08 2.84E+08 -1.41
888.619 5s25p64f5d 130553.0 (J=4)o 5s25p64f6p 243087.0 (J=4) 2.81E+09 2.26E+09 -0.60
889.820 5s25p64f2 25892.9 (J=1) 5s25p64f5d 138275.4 (J=1)o 1.85E+08 2.45E+08 -1.47
890.329 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 246677.6 (J=4) 1.64E+09 1.18E+09 -0.89
891.732 5s25p64f5d 130553.0 (J=4)o 5s25p64f6p 242694.9 (J=3) 1.76E+09 1.75E+08 -1.70
892.292 5s25p64f2 27478.7 (J=2) 5s25p64f5d 139549.8 (J=3)o 2.59E+08 3.74E+08 -1.28
892.743 5s25p64f2 20551.4 (J=2) 5s25p64f5d 132565.8 (J=2)o 5.60E+08 7.83E+08 -0.97
892.743 5s25p64f5d 139549.8 (J=3)o 5s25p64f6p 251563.0 (J=2) 2.92E+09 3.26E+09 -0.43
892.998 5s25p64f5d 131104.7 (J=3)o 5s25p64f6p 243087.0 (J=4) 1.21E+09 1.27E+09 -0.85
895.464 5s25p64f5d 127558.8 (J=2)o 5s25p64f6p 239232.5 (J=2) 5.56E+09 6.35E+09 -0.14
895.662 5s25p64f5d 135027.2 (J=5)o 5s25p64f6p 246677.6 (J=4) 6.97E+09 7.94E+09 -0.04
896.137 5s25p64f5d 131104.7 (J=3)o 5s25p64f6p 242694.9 (J=3) 3.61E+09 5.36E+09 -0.22
897.818 5s25p64f5d 140180.8 (J=2)o 5s25p64f6p 251563.0 (J=2) 1.80E+09 1.95E+09 -0.64
897.992 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 246677.6 (J=4) 9.62E+08 9.36E+08 -0.96
899.852 5s25p64f5d 127558.8 (J=2)o 5s25p64f6p 238688.0 (J=3) 1.75E+09 1.87E+09 -0.67
899.905 5s25p64f5d 127565.1 (J=4)o 5s25p64f6p 238688.0 (J=3) 1.06E+10 1.10E+10 0.10
900.548 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 246362.2 (J=2) 1.75E+09 1.96E+09 -0.64
900.876 5s25p64f5d 135359.2 (J=2)o 5s25p64f6p 246362.2 (J=2) 1.37E+09 1.10E+09 -0.89
901.521 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 243087.0 (J=4) 4.87E+09 6.75E+09 -0.12
902.557 5s25p64f2 27478.7 (J=2) 5s25p64f5d 138275.4 (J=1)o 1.65E+08 2.24E+08 -1.50
904.708 5s25p64f5d 132162.1 (J=4)o 5s25p64f6p 242694.9 (J=3) 3.97E+09 7.25E+09 -0.08
905.068 5s25p64f5d 132597.5 (J=5)o 5s25p64f6p 243087.0 (J=4) 9.38E+09 9.79E+09 0.06
906.045 5s25p64f5d 139549.8 (J=3)o 5s25p64f6p 249919.6 (J=4) 1.87E+09 2.27E+09 -0.57
907.601 5s25p64f5d 139549.8 (J=3)o 5s25p64f6p 249730.1 (J=3) 6.37E+09 8.07E+09 -0.02
908.034 5s25p64f5d 132565.8 (J=2)o 5s25p64f6p 242694.9 (J=3) 5.57E+08 1.16E+08 -1.87
908.034 5s25p64f5d 129104.5 (J=3)o 5s25p64f6p 239232.5 (J=2) 4.93E+09 6.10E+09 -0.15
910.176 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 245187.5 (J=3) 2.55E+09 2.66E+09 -0.49
912.542 5s25p64f5d 129104.5 (J=3)o 5s25p64f6p 238688.0 (J=3) 4.97E+09 6.08E+09 -0.15
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λobs (Å)a Transition gA (s−1) log(gf )
Lower level Upper level Previousa HFRb HFRb

912.837 5s25p64f5d 140180.8 (J=2)o 5s25p64f6p 249730.1 (J=3) 4.78E+09 5.98E+09 -0.14
913.522 5s25p64f2 25892.9 (J=1) 5s25p64f5d 135359.2 (J=2)o 2.97E+08 3.57E+08 -1.28
917.947 5s25p64f2 26088.1 (J=6) 5s25p64f5d 135027.2 (J=5)o 6.30E+07 7.45E+07 -1.96
918.653 5s25p64f5d 138275.4 (J=1)o 5s25p64f6p 247130.7 (J=1) 1.93E+09 2.11E+09 -0.59
919.732 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 243087.0 (J=4) 2.85E+08 6.80E+08 -1.09
920.719 5s25p64f5d 138519.2 (J=0)o 5s25p64f6p 247130.7 (J=1) 1.65E+09 1.93E+09 -0.63
921.212 5s25p64f2 20551.4 (J=2) 5s25p64f5d 129104.5 (J=3)o 6.00E+06 9.09E+06 -2.86
923.053 5s25p64f5d 134359.7 (J=4)o 5s25p64f6p 242694.9 (J=3) 9.30E+07 2.48E+08 -1.53
923.225 5s25p64f2 20050.6 (J=0) 5s25p64f5d 133366.3 (J=1)o 1.41E+08 1.72E+08 -1.59
924.767 5s25p64f5d 130553.0 (J=4)o 5s25p64f6p 238688.0 (J=3) 1.88E+09 2.69E+09 -0.49
924.844 5s25p64f5d 131104.7 (J=3)o 5s25p64f6p 239232.5 (J=2) 1.90E+08 2.25E+08 -1.57
925.188 5s25p64f5d 138275.4 (J=1)o 5s25p64f6p 246362.2 (J=2) 2.32E+09 2.93E+09 -0.44
925.415 5s25p64f5d 135027.2 (J=5)o 5s25p64f6p 243087.0 (J=4) 2.81E+09 3.83E+09 -0.34
926.948 5s25p64f2 27478.7 (J=2) 5s25p64f5d 135359.2 (J=2)o 2.40E+07 3.83E+07 -2.24
927.304 5s25p64f2 27478.7 (J=2) 5s25p64f5d 135318.3 (J=3)o 1.55E+08 1.52E+08 -1.63
927.915 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 243087.0 (J=4) 1.55E+09 2.06E+09 -0.60
930.460 5s25p64f2 25892.9 (J=1) 5s25p64f5d 133366.3 (J=1)o 3.90E+07 5.62E+07 -2.07
931.296 5s25p64f5d 135318.3 (J=3)o 5s25p64f6p 242694.9 (J=3) 2.90E+09 2.66E+09 -0.49
931.653 5s25p64f5d 135359.2 (J=2)o 5s25p64f6p 242694.9 (J=3) 4.13E+09 4.79E+09 -0.23
934.508 5s25p64f5d 142910.8 (J=5)o 5s25p64f6p 249919.6 (J=4) 1.19E+10 1.53E+10 0.28
934.508 5s25p64f2 20551.4 (J=2) 5s25p64f5d 127558.8 (J=2)o 1.40E+08 1.22E+08 -1.73
936.233 5s25p64f5d 139549.8 (J=3)o 5s25p64f6p 246362.2 (J=2) 7.70E+07 4.40E+07 -2.26
941.772 5s25p64f5d 140180.8 (J=2)o 5s25p64f6p 246362.2 (J=2) 4.57E+08 4.62E+08 -1.22
944.586 5s25p64f5d 133366.3 (J=1)o 5s25p64f6p 239232.5 (J=2) 2.59E+09 2.85E+09 -0.44
961.891 5s25p64f5d 147601.4 (J=1)o 5s25p64f6p 251563.0 (J=2) 3.88E+09 4.95E+09 -0.18
963.694 5s25p64f5d 142910.8 (J=5)o 5s25p64f6p 246677.6 (J=4) 2.71E+09 3.01E+09 -0.39
975.470 5s25p64f5d 140180.8 (J=2)o 5s25p64f6p 242694.9 (J=3) 9.51E+08 7.96E+08 -0.96
998.232 5s25p64f5d 142910.8 (J=5)o 5s25p64f6p 243087.0 (J=4) 1.78E+09 3.01E+09 -0.39
1866.896 5s25p64f6s 197997.9 (J=3)o 5s25p64f6p 251563.0 (J=2) 3.73E+09 4.17E+09 0.35
1868.031 5s25p64f6s 193598.5 (J=2)o 5s25p64f6p 247130.7 (J=1) 2.50E+09 2.47E+09 0.12
1895.243 5s25p64f6s 193598.5 (J=2)o 5s25p64f6p 246362.2 (J=2) 2.43E+09 2.15E+09 0.08
1899.414 5s25p64f6s 194029.5 (J=3)o 5s25p64f6p 246677.6 (J=4) 4.76E+09 6.83E+09 0.58
1902.492 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 250015.7 (J=5) 6.24E+09 8.06E+09 0.65
1905.966 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 249919.6 (J=4) 1.88E+09 2.07E+09 0.07
1912.874 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 249730.1 (J=3) 1.57E+09 2.37E+09 0.13
1925.978 5s25p64f6s 197997.9 (J=3)o 5s25p64f6p 249919.6 (J=4) 3.78E+09 4.51E+09 0.42
1933.032 5s25p64f6s 197997.9 (J=3)o 5s25p64f6p 249730.1 (J=3) 2.71E+09 2.74E+09 0.20
1938.394 5s25p64f6s 193598.5 (J=2)o 5s25p64f6p 245187.5 (J=3) 2.79E+09 2.41E+08 -0.83
1954.726 5s25p64f6s 194029.5 (J=3)o 5s25p64f6p 245187.5 (J=3) 1.55E+09 3.79E+08 -0.63
2030.842 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 246677.6 (J=4) 2.94E+08 3.37E+08 -0.66
2190.667 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 243097.0 (J=4) 1.86E+09 2.88E+09 0.32
2190.667 5s25p64f6s 193598.5 (J=2)o 5s25p64f6p 239232.5 (J=2) 1.02E+09 1.27E+09 -0.04
2209.637 5s25p64f6s 197452.8 (J=4)o 5s25p64f6p 242694.9 (J=3) 1.48E+09 1.63E+09 0.08
2211.551 5s25p64f6s 194029.5 (J=3)o 5s25p64f6p 239232.5 (J=2) 1.08E+09 1.27E+09 -0.04
2217.127 5s25p64f6s 193598.5 (J=2)o 5s25p64f6p 238688.0 (J=3) 1.64E+09 1.47E+09 0.03
2217.127 5s25p64f6s 197997.9 (J=3)o 5s25p64f6p 243087.0 (J=4) 1.63E+09 1.73E+08 -0.98
2236.596 5s25p64f6s 197997.9 (J=3)o 5s25p64f6p 242694.9 (J=3) 1.16E+09 1.48E+09 0.05
2238.515 5s25p64f6s 194029.5 (J=3)o 5s25p64f6p 238688.0 (J=3) 1.25E+09 2.16E+09 0.20

a Meftah et al. (2008) and Delghiche et al. (2015)

b Transition probabilities (gA) and oscillator strengths (log(gf )) computed with HFR
method (this work)



Appendix E

Comparison of the radiative parameters
for Yb V

183



APPENDIX E. COMPARISON OF THE RADIATIVE PARAMETERS FOR YB V 184

Table E.1: Calculated oscillator strengths (log(gf )) for the strongest Yb V lines observed by Meftah et al.
(2013)

λ (Å)a Lower levelb Upper levelb Intc log(gf )
E (cm−1) P J E (cm−1) P J Meftahd HFRe MCDHFf

543.205 6112.03 (e) 4 190207.30 (o) 4 128 -0.98 -1.29 -1.51
543.205 9579.89 (o) 5 193671.10 (o) 6 128 -0.60 -0.72 -1.83
562.617 24192.89 (e) 4 201933.20 (o) 5 106 -0.41 -1.08 -0.68
564.458 6112.03 (e) 4 183275.10 (o) 5 146 -0.66 -1.23 -1.30
564.458 14405.00 (e) 4 191564.40 (o) 3 146 -0.99 -1.80 -1.10
567.252 0.00 (e) 6 176288.80 (o) 6 129 -0.58 -1.44 -1.50
567.743 9579.89 (e) 5 185715.70 (o) 5 102 -0.81 -0.94 -0.91
571.235 24192.89 (e) 4 199252.20 (o) 3 126 -0.55 -1.60 -0.71
571.235 43119.50 (e) 2 218177.80 (o) 1 126 -0.79 -1.75 -2.41
572.155 0.00 (e) 6 174778.00 (o) 6 116 -0.82 -1.09 -1.03
573.374 0.00 (e) 6 174405.80 (o) 5 109 -1.04 -1.29 -1.48
577.217 6112.03 (e) 4 179356.90 (o) 3 113 -0.85 -0.95 -1.04
578.449 6112.03 (e) 4 178991.40 (o) 5 138 -1.33 -1.97 -1.43
578.449 14405.00 (e) 4 187279.70 (o) 4 138 -0.96 -1.87 -2.13
580.547 0.00 (e) 6 172251.10 (o) 6 109 -0.91 -0.83 -1.06
581.140 9579.89 (e) 5 181655.20 (o) 5 112 -0.85 -1.29 -1.43
581.176 39037.90 (e) 6 211102.90 (o) 6 105 -0.62 -0.67 -0.29
583.541 6112.03 (e) 4 177478.10 (o) 3 107 -1.04 -1.38 -2.38
584.552 39037.90 (e) 6 210109.50 (o) 6 135 -0.01 -0.17 -0.80
589.608 6112.03 (e) 4 175716.10 (o) 3 107 -1.01 -1.28 -2.75
592.170 14405.00 (e) 4 183275.10 (o) 5 101 -0.88 -1.79 -1.42
594.713 9579.89 (e) 5 177728.40 (o) 5 113 -0.86 -0.67 -1.83
600.550 6112.03 (e) 4 172626.40 (o) 4 101 -1.10 -1.11 -1.29
802.074 161356.20 (o) 4 286033.82 (e) 5 167 -1.43 -1.64 -1.68
802.074 161356.20 (o) 4 286033.97 (e) 3 167 -1.90 -1.93 -1.35
864.742 143663.60 (o) 10 259305.05 (e) 9 171 0.68 0.65 0.61
868.304 153365.20 (o) 9 268532.23 (e) 8 158 0.63 0.61 0.56
870.582 145352.40 (o) 9 260218.14 (e) 8 156 0.47 0.45 0.40
872.274 159085.20 (o) 7 273728.28 (e) 6 115 0.12 0.26 0.20
873.216 164831.00 (o) 7 279350.06 (e) 6 117 0.42 0.40 0.26
873.996 154816.50 (o) 8 269233.49 (e) 7 136 0.40 0.37 0.32
877.540 146795.20 (o) 7 260750.18 (e) 7 105 0.08 -0.09 -0.09
877.557 145352.40 (o) 9 259305.05 (e) 9 134 0.11 0.09 0.04
877.868 164952.60 (o) 6 278864.67 (e) 5 116 0.01 -0.67 -1.30
878.807 155543.10 (o) 6 269333.95 (e) 6 101 0.10 0.11 0.01
879.385 154816.50 (o) 8 268532.23 (e) 8 113 0.11 0.09 0.04
879.385 146795.20 (o) 7 260509.01 (e) 6 113 -0.60 -0.79 -0.76
882.319 146880.70 (o) 8 260218.14 (e) 8 121 0.20 0.12 0.08
882.954 155977.30 (o) 7 269233.49 (e) 7 114 0.22 0.20 0.13
893.935 174169.40 (o) 3 286033.97 (e) 3 101 -0.68 -0.64 -0.76
893.935 145484.70 (o) 6 257348.77 (e) 7 101 -0.41 -0.30 -0.41
895.390 149901.50 (o) 4 261583.94 (e) 5 107 0.07 0.08 0.05
896.212 145484.70 (o) 6 257065.63 (e) 6 103 0.00 0.07 0.02
898.672 136614.90 (o) 6 247890.51 (e) 7 162 0.38 0.36 0.35
904.534 149953.96 (o) 5 260509.01 (e) 6 160 0.08 0.10 -0.03
904.534 146795.20 (o) 7 257348.77 (e) 7 160 -0.16 -0.01 -0.11
905.246 146880.70 (o) 8 257348.77 (e) 7 132 -0.04 0.15 0.06
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Table E.1: Continued.

λ (Å)a Lower levelb Upper levelb Intc log(gf )
E (cm−1) P J E (cm−1) P J Meftahd HFRe MCDHFf

908.263 137790.20 (o) 7 247890.51 (e) 7 170 0.23 0.22 0.20
913.034 158053.00 (o) 6 267577.92 (e) 5 105 0.10 0.15 0.10
913.347 151021.29 (o) 6 260509.01 (e) 6 100 -0.08 -0.69 -0.80
917.234 152997.54 (o) 7 262021.27 (e) 6 149 0.31 0.28 0.26
917.379 154789.62 (o) 6 263796.29 (e) 5 162 0.25 -0.02 -0.15
917.511 139582.60 (o) 9 248573.04 (e) 8 197 0.52 0.51 0.50
920.884 148757.30 (o) 8 257348.77 (e) 7 150 0.31 0.13 0.20
924.386 164006.60 (o) 7 272186.73 (e) 6 107 0.17 0.28 -0.11
925.770 154002.75 (o) 6 262021.27 (e) 6 102 -0.10 -0.49 -0.33
927.748 140784.80 (o) 8 248573.04 (e) 8 193 0.26 0.25 0.22
932.508 150111.23 (o) 7 257348.77 (e) 7 101 -0.11 -0.34 -0.25
933.656 140784.80 (o) 8 247890.51 (e) 7 127 0.00 -0.02 -0.04
946.775 169918.70 (o) 6 275541.01 (e) 5 127 -2.07 -0.94 -0.81

1467.956 192628.22 (o) 8 260750.18 (e) 7 108 0.20 0.13 0.10
1470.889 194035.09 (o) 7 262021.27 (e) 6 107 0.07 -0.81 -0.56
1479.508 192628.22 (o) 8 260218.14 (e) 8 209 0.72 0.69 0.67
1484.268 208635.08 (o) 5 276008.50 (e) 4 156 0.13 0.07 0.02
1485.636 202022.73 (o) 7 269333.95 (e) 6 129 0.18 0.07 0.08
1487.853 212766.00 (o) 5 279976.85 (e) 4 140 -0.04 -0.09 -0.01
1487.853 202022.73 (o) 7 269233.49 (e) 7 140 0.67 0.58 0.61
1487.902 206519.78 (o) 5 273728.28 (e) 6 119 0.33 0.21 0.16
1488.239 212766.00 (o) 5 279959.30 (e) 5 152 0.06 0.11 -0.58
1489.834 212855.37 (o) 4 279976.85 (e) 4 166 0.35 0.46 -0.32
1490.008 218920.29 (o) 4 286033.97 (e) 3 116 -0.05 -0.08 -0.13
1490.008 218920.29 (o) 4 286033.82 (e) 5 116 0.71 0.49 0.55
1490.233 212855.37 (o) 4 279959.30 (e) 5 134 -0.12 -0.87 -0.71
1490.233 206519.78 (o) 5 273623.27 (e) 5 134 0.55 0.21 0.41
1492.096 208521.33 (o) 4 275541.01 (e) 5 125 0.30 -1.47 -1.14
1493.144 218920.29 (o) 4 285892.87 (e) 4 125 0.28 -0.36 -0.15
1494.048 206796.10 (o) 6 273728.28 (e) 6 132 0.57 0.52 0.48
1494.335 208635.08 (o) 5 275554.90 (e) 6 178 -3.22 -1.23 -1.58
1494.335 212855.37 (o) 4 279774.70 (e) 3 178 0.50 0.46 0.41
1494.629 208635.08 (o) 5 275541.01 (e) 5 115 0.45 0.34 0.11
1496.400 206796.10 (o) 6 273623.27 (e) 5 137 0.19 0.10 0.05
1496.875 202528.13 (o) 6 269333.95 (e) 6 169 0.67 0.62 0.55
1498.649 219307.35 (o) 3 286033.97 (e) 3 131 0.36 0.32 0.26
1498.909 194035.09 (o) 7 260750.18 (e) 7 193 0.74 0.68 0.66
1499.130 202528.13 (o) 6 269233.49 (e) 7 122 0.42 0.38 0.28
1499.774 192628.22 (o) 8 259305.05 (e) 9 283 0.97 0.94 0.91
1501.831 219307.35 (o) 3 285892.87 (e) 4 155 0.26 -0.20 -0.51
1501.859 212766.00 (o) 5 279350.06 (e) 6 189 0.78 0.76 0.27
1503.544 202022.73 (o) 7 268532.23 (e) 8 237 0.92 0.83 0.85
1504.282 206519.78 (o) 5 272996.60 (e) 4 179 0.59 0.46 0.46
1504.350 194035.09 (o) 7 260509.01 (e) 6 223 0.66 0.68 0.63
1505.571 206796.10 (o) 6 273216.25 (e) 7 218 0.86 0.80 0.79
1507.468 202528.13 (o) 6 268864.41 (e) 5 273 0.64 0.63 0.51
1510.967 194035.09 (o) 7 260218.14 (e) 8 282 0.50 0.46 0.41
1512.367 212855.37 (o) 4 278976.88 (e) 4 153 -0.08 0.03 0.30
1512.894 212766.00 (o) 5 278864.67 (e) 5 166 0.26 0.39 -0.11
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Table E.1: Continued.

λ (Å)a Lower levelb Upper levelb Intc log(gf )
E (cm−1) P J E (cm−1) P J Meftahd HFRe MCDHFf

1514.937 212855.37 (o) 4 278864.67 (e) 5 136 0.11 0.26 0.19
1529.272 206796.10 (o) 6 272186.73 (e) 6 124 -0.50 -0.66 -0.28
1577.883 208635.08 (o) 5 272011.18 (e) 5 109 -0.93 -0.86 -2.03
1693.307 208521.33 (o) 4 267577.92 (e) 5 117 -0.96 -0.87 -0.78
1693.307 202528.13 (o) 6 261583.94 (e) 5 117 -0.55 -0.57 -0.51
1709.796 202022.73 (o) 7 260509.01 (e) 6 102 -0.64 -1.22 -0.37
1717.565 202528.13 (o) 6 260750.18 (e) 7 118 -0.83 -0.49 -0.75
1724.712 202528.13 (o) 6 260509.01 (e) 6 124 -0.62 -0.58 -0.68
1782.589 212766.00 (o) 5 268864.41 (e) 5 131 -0.84 -1.26 -1.27
1787.473 192628.22 (o) 8 248573.04 (e) 8 317 0.43 0.40 0.37
1801.748 206519.78 (o) 5 262021.27 (e) 6 393 0.41 0.38 0.37
1805.757 218920.29 (o) 4 274298.83 (e) 4 185 0.22 0.22 0.16
1807.469 202022.73 (o) 7 257348.77 (e) 7 295 0.33 0.21 0.24
1809.145 208521.33 (o) 4 263796.29 (e) 5 266 0.42 0.41 0.38
1809.556 192628.22 (o) 8 247890.51 (e) 7 500 0.69 0.67 0.64
1810.772 206796.10 (o) 6 262021.27 (e) 6 222 0.16 0.18 0.15
1812.862 208635.08 (o) 5 263796.29 (e) 5 235 0.24 0.23 -0.01
1816.071 206519.78 (o) 5 261583.94 (e) 5 789 0.05 -0.10 -0.10
1816.770 202022.73 (o) 7 257065.63 (e) 6 332 0.57 0.44 0.49
1817.108 212766.00 (o) 5 267798.48 (e) 4 254 0.40 -0.04 -0.10
1817.226 208521.33 (o) 4 263549.91 (e) 4 216 0.00 -0.02 -0.06
1818.464 219307.35 (o) 3 274298.83 (e) 4 271 0.20 0.18 0.10
1820.065 212855.37 (o) 4 267798.48 (e) 4 138 -0.01 0.40 -0.07
1821.004 208635.08 (o) 5 263549.91 (e) 4 217 0.38 0.38 0.16
1821.074 218920.29 (o) 4 273832.99 (e) 3 257 0.24 0.25 0.20
1824.134 202528.13 (o) 6 257348.77 (e) 7 321 0.56 0.50 0.44
1824.420 212766.00 (o) 5 267577.92 (e) 5 192 0.21 0.16 -0.25
1825.220 206796.10 (o) 6 261583.94 (e) 5 383 0.49 0.43 0.42
1827.394 212855.37 (o) 4 267577.92 (e) 5 221 0.34 0.27 0.20
1833.587 194035.09 (o) 7 248573.04 (e) 8 431 0.62 0.61 0.56
1833.587 202528.13 (o) 6 257065.63 (e) 6 431 0.04 -0.07 -0.12
1834.001 219307.35 (o) 3 273832.99 (e) 3 104 -0.18 -0.13 -0.17
1852.225 206519.78 (o) 5 260509.01 (e) 6 203 -0.24 -1.23 -0.90
1856.819 194035.09 (o) 7 247890.51 (e) 7 217 0.11 0.06 0.00
1861.745 206796.10 (o) 6 260509.01 (e) 6 103 -0.46 -1.06 -1.13

a Experimental wavelengths measured by Meftah et al. (2013).

b Experimental levels as classified by Meftah et al. (2013) using their energy value, E,
parity, P , and total quantum number, J .

c Observed lines intensities (arbitrary units) as observed by Meftah et al. (2013). Only lines
with Int > 100 × 106 s−1 are listed in the table.

d Oscillator strengths (log(gf )) deduced from the transition probabilities (gA) calculated
by Meftah et al. (2013).

e log(gf ) computed using the HFR method (this work)

f log(gf ) computed using the MCDHF method (this work)
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Table F.1: Transition probabilities (gA) and oscillator strengths (log gf ) for experimentally observed
lines in Lu V.

Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

504.825 0 (o) 7/2 198089 (e) 7/2 2.43E08* 1.80E08 -2.04* -2.18
508.374 0 (o) 7/2 196706 (e) 5/2 2.96E08* 7.75E08 -1.95* -1.54
511.664 0 (o) 7/2 195441 (e) 5/2 1.43E09 1.43E09 -1.26 -1.27
520.559 0 (o) 7/2 192100 (e) 9/2 5.63E07* 4.56E07# -2.65* -2.75#
523.569 0 (o) 7/2 190994 (e) 5/2 1.25E09 1.51E09 -1.30 -1.22
528.571 0 (o) 7/2 189188 (e) 7/2 8.00E07* 1.18E08# -2.48* -2.32#
535.277 0 (o) 7/2 186818 (e) 5/2 1.51E09 1.38E09 -1.19 -1.23
536.778 11793 (o) 5/2 198089 (e) 7/2 5.22E07* 4.53E07# -2.65* -2.72#
538.398 0 (o) 7/2 185736 (e) 7/2 3.99E07* 1.09E06# -2.77* -4.34#
540.794 11793 (o) 5/2 196706 (e) 5/2 1.19E08* 1.59E05# -2.29* -5.18#
544.518 0 (o) 7/2 183649 (e) 9/2 9.56E08 6.61E08# -1.37 -1.53#

11793 (o) 5/2 195441 (e) 5/2 1.91E09 1.54E09 -1.08 -1.18
549.375 0 (o) 7/2 182025 (e) 5/2 1.93E08* 2.08E07 -2.06* -3.03
549.772 0 (o) 7/2 181894 (e) 7/2 5.14E08* 6.97E08 -1.63* -1.50
555.444 0 (o) 7/2 180036 (e) 7/2 2.69E09 4.00E09 -0.91 -0.73
558.024 0 (o) 7/2 179203 (e) 5/2 3.15E07* 2.58E09 -2.83* -0.92

11793 (o) 5/2 190994 (e) 5/2 2.57E08* 1.12E08 -1.93* -2.30
563.723 0 (o) 7/2 177396 (e) 9/2 3.88E08 3.17E08# -1.73 -1.82#

0 (o) 7/2 177390 (e) 5/2 2.93E09 3.39E08 -0.86 -1.80
11793 (o) 5/2 189188 (e) 7/2 5.53E06* 1.39E07# -3.58* -3.19#

569.300 0 (o) 7/2 175654 (e) 7/2 1.59E09 1.95E09 -1.11 -1.03
571.346 11793 (o) 5/2 186818 (e) 5/2 7.06E09 6.40E09 -0.46 -0.51
574.902 11793 (o) 5/2 185736 (e) 7/2 1.19E08* 7.90E07# -2.23* -2.42#
576.300 0 (o) 7/2 173520 (e) 7/2 2.17E09 1.18E09 -0.97 -1.23
580.580 0 (o) 9/2 172242 (e) 9/2 4.23E08 4.08E08 -1.67 -1.68
583.746 0 (o) 7/2 171307 (e) 7/2 1.67E09 1.22E09 -1.07 -1.21
584.778 0 (o) 7/2 171005 (e) 5/2 1.68E08* 3.81E08 -2.07* -1.71
587.432 11793 (o) 5/2 182025 (e) 5/2 9.16E08 1.46E09 -1.33 -1.13
587.887 11793 (o) 5/2 181894 (e) 7/2 8.62E05* 9.55E06# -4.35* -3.30#
588.156 0 (o) 7/2 170023 (e) 5/2 5.66E08* 1.30E08 -1.53* -2.17
594.380 11793 (o) 5/2 180036 (e) 7/2 2.04E09 1.68E09 -0.97 -1.05
597.338 11793 (o) 5/2 179203 (e) 5/2 7.72E08 3.85E07# -1.38 -2.68#
598.004 0 (o) 7/2 167223 (e) 5/2 1.33E08* 5.25E06 -2.15* -3.55
600.328 0 (o) 7/2 166577 (e) 5/2 1.63E08 2.56E08 -2.06 -1.86
600.470 0 (o) 7/2 166535 (e) 7/2 1.02E08* 1.18E08 -2.26* -2.19
601.537 0 (o) 7/2 166240 (e) 9/2 1.44E09 9.59E08 -1.11 -1.28
609.013 0 (o) 7/2 164198 (e) 7/2 1.06E08* 1.69E05# -2.23* -5.02#
610.275 11793 (o) 5/2 175654 (e) 7/2 7.69E07* 1.58E08 -2.37* -2.06
614.226 0 (o) 7/2 162806 (e) 9/2 2.12E09 1.47E09 -0.92 -1.07
615.162 0 (o) 7/2 162558 (e) 7/2 8.44E08 7.14E08 -1.32 -1.39
615.447 0 (o) 7/2 162483 (e) 9/2 1.40E08* 6.17E08 -2.10* -1.45
617.384 0 (o) 7/2 161973 (e) 5/2 7.39E07* 8.93E07# -2.37* -2.29#
618.330 11793 (o) 5/2 173520 (e) 7/2 4.18E08* 3.99E08 -1.62* -1.64
626.285 11793 (o) 5/2 171465 (e) 3/2 1.19E08* 1.12E08 -2.16* -2.18
628.091 11793 (o) 5/2 171005 (e) 5/2 3.33E08 9.45E07 -1.71 -2.25
628.793 0 (o) 7/2 159035 (e) 7/2 7.29E08* 7.47E08 -1.37* -1.35
628.998 0 (o) 7/2 158983 (e) 5/2 7.72E07 3.89E07# -2.34 -2.62#
637.437 11793 (o) 5/2 168671 (e) 7/2 1.03E08* 1.63E08 -2.20* -2.00
637.531 0 (o) 7/2 156855 (e) 9/2 4.46E08 1.57E08 -1.57 -2.02
640.120 0 (o) 7/2 156219 (e) 7/2 7.18E07* 1.41E07# -2.36* -3.06#
643.374 11793 (o) 5/2 167223 (e) 5/2 2.15E08* 6.96E07 -1.88* -2.37
645.219 0 (o) 7/2 154985 (e) 9/2 2.86E08 4.81E08 -1.75 -1.51
646.060 11793 (o) 5/2 166577 (e) 5/2 1.01E08* 2.75E08 -2.20* -1.76
646.238 11793 (o) 5/2 166535 (e) 7/2 1.03E08* 5.21E07# -2.19* -2.49#
647.581 0 (o) 7/2 154421 (e) 5/2 2.66E02* 1.64E06 -7.77* -3.98
656.146 11793 (o) 5/2 164198 (e) 7/2 1.52E08 7.50E07 -2.01 -2.31
659.711 147970 (e) 15/2 299551 (o) 13/2 8.03E05* 8.85E05# -4.29* -4.30#
663.292 11793 (o) 5/2 162558 (e) 7/2 1.22E08* 2.18E08 -2.09* -1.84
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

664.182 0 (o) 7/2 150561 (e) 7/2 1.23E08* 1.34E08 -2.09* -2.04
665.863 11793 (o) 5/2 161973 (e) 5/2 1.16E07* 1.51E07 -3.11* -2.99
699.848 156663 (e) 15/2 299551 (o) 13/2 3.58E05* 3.53E05# -4.58* -4.65#
701.121 11793 (o) 5/2 154421 (e) 5/2 2.59E07* 3.80E07 -2.72* -2.55
711.861 159402 (e) 13/2 299879 (o) 11/2 7.36E04* 8.15E05# -5.25* -4.28#
718.842 171307 (e) 7/2 310420 (o) 9/2 3.21E07 9.84E07 -2.60 -2.17
757.646 143721 (e) 9/2 275709 (o) 9/2 1.44E08 4.13E08 -1.89 -1.50
786.582 160846 (e) 3/2 287980 (o) 5/2 7.85E07* 2.09E08 -2.13* -1.77
790.958 143721 (e) 9/2 270150 (o) 11/2 1.16E09 1.64E09 -0.96 -0.86
791.571 154985 (e) 9/2 281316 (o) 11/2 3.38E08 8.23E08 -1.49 -1.15
793.168 143721 (e) 9/2 269797 (o) 9/2 1.02E08* 2.84E07# -2.01* -2.62#
798.330 162806 (e) 9/2 288068 (o) 9/2 6.79E08 7.94E08 -1.18 -1.17
798.984 162909 (e) 11/2 288068 (o) 9/2 5.63E08 8.03E08 -1.26 -1.16
803.460 156855 (e) 9/2 281316 (o) 11/2 1.22E09 9.96E08 -0.92 -1.05
804.510 157016 (e) 13/2 281316 (o) 11/2 5.71E08 7.00E08 -1.25 -1.21
804.715 143721 (e) 9/2 267988 (o) 11/2 1.12E09 3.63E08 -0.96 -1.50
805.483 151786 (e) 13/2 275935 (o) 11/2 8.48E08 1.09E09 -1.07 -1.02
806.043 160846 (e) 3/2 284908 (o) 5/2 5.67E08 1.06E09 -1.25 -1.03
807.412 150561 (e) 7/2 274413 (o) 5/2 5.23E08 3.44E08 -1.28 -1.53
808.779 162558 (e) 7/2 286201 (o) 9/2 1.94E08* 9.12E07 -1.71* -2.09
811.908 154421 (e) 5/2 277587 (o) 5/2 3.29E07* 7.04E07 -2.49* -2.21
813.433 161973 (e) 5/2 284908 (o) 5/2 4.34E08 5.82E08 -1.36 -1.28
814.355 157016 (e) 13/2 279813 (o) 13/2 9.82E08 9.72E08 -1.00 -1.05
817.741 147970 (e) 15/2 270258 (o) 13/2 2.36E09 2.18E09 -0.62 -0.70
818.952 166535 (e) 7/2 288642 (o) 7/2 3.86E08 3.40E08 -1.40 -1.51
819.642 164198 (e) 7/2 286201 (o) 9/2 2.64E08 6.54E08 -1.56 -1.23
820.249 159402 (e) 13/2 281316 (o) 11/2 2.06E09 1.78E09 -0.67 -0.79
821.643 148551 (e) 11/2 270258 (o) 13/2 5.15E09 5.44E09 -0.27 -0.30
821.750 163804 (e) 13/2 285495 (o) 11/2 7.95E08* 1.32E09 -1.09* -0.91
822.378 148551 (e) 11/2 270150 (o) 11/2 1.47E08* 3.97E08 -1.82* -1.44
822.497 154985 (e) 9/2 276567 (o) 7/2 8.08E08* 4.11E08 -2.08* -1.43
822.821 166535 (e) 7/2 288068 (o) 9/2 4.68E08 5.58E08 -1.31 -1.29
822.936 167125 (e) 9/2 288642 (o) 7/2 2.64E08 4.40E08 -1.56 -1.40
823.595 167223 (e) 5/2 288642 (o) 7/2 4.54E08 5.19E08 -1.33 -1.33
825.428 166240 (e) 9/2 287390 (o) 7/2 6.33E08 1.38E09 -1.18 -0.90
825.652 158983 (e) 5/2 280099 (o) 7/2 2.23E09 2.24E09 -0.63 -0.69
825.910 182025 (e) 5/2 303103 (o) 5/2 4.75E08 3.18E08 -1.31 -1.54
826.794 154985 (e) 9/2 275935 (o) 11/2 1.15E09 7.40E08 -0.92 -1.17
827.260 155054 (e) 11/2 275935 (o) 11/2 2.49E09 1.73E09 -0.58 -0.79
827.442 166535 (e) 7/2 287390 (o) 7/2 5.19E08 5.02E08 -1.26 -1.33
828.845 165551 (e) 11/2 286201 (o) 9/2 5.45E08 8.28E08 -1.24 -1.11
829.830 176019 (e) 11/2 296526 (o) 11/2 1.51E09 1.36E09 -0.80 -0.89
830.408 147970 (e) 15/2 268393 (o) 15/2 2.51E09 1.96E09 -0.58 -0.74
830.492 159402 (e) 13/2 279813 (o) 13/2 8.43E08 4.48E08 -1.05 -1.37
831.499 167125 (e) 9/2 287390 (o) 7/2 1.36E09 7.20E08 -0.84 -1.17
832.149 154985 (e) 9/2 275157 (o) 7/2 1.24E09 5.01E08 -0.89 -1.33
833.538 168671 (e) 7/2 288642 (o) 7/2 7.69E08 3.35E08 -1.09 -1.51
833.931 177396 (e) 9/2 297310 (o) 9/2 6.54E08 7.71E08 -1.15 -1.13
834.694 143721 (e) 9/2 263525 (o) 9/2 5.08E08 5.92E08 -1.27 -1.27
836.108 143721 (e) 9/2 263323 (o) 7/2 2.52E08 2.59E08 -1.58 -1.63
836.289 168491 (e) 11/2 288068 (o) 9/2 2.61E09 2.67E09 -0.55 -0.60
837.382 166535 (e) 7/2 285954 (o) 7/2 2.40E06* 1.05E09 -3.58* -0.99
838.674 150561 (e) 7/2 269797 (o) 9/2 2.13E06* 8.43E08 -3.63* -1.10
839.780 156855 (e) 9/2 275935 (o) 11/2 3.31E08 6.59E08 -1.44 -1.20
840.916 157016 (e) 13/2 275935 (o) 11/2 3.60E09 3.29E09 -0.41 -0.51
841.366 156855 (e) 9/2 275709 (o) 9/2 2.61E08* 6.26E08 -1.55* -1.22
841.544 167125 (e) 9/2 285954 (o) 7/2 2.25E07* 1.24E09 -2.61* -0.92
843.058 168671 (e) 7/2 287287 (o) 5/2 5.50E08 1.80E08 -1.22 -1.76
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

843.503 159035 (e) 7/2 277587 (o) 5/2 7.23E07* 1.65E08 -3.08* -1.81
843.810 162806 (e) 9/2 281316 (o) 11/2 1.05E09 6.92E08 -0.94 -1.17
844.079 151786 (e) 13/2 270258 (o) 13/2 1.89E09 2.13E09 -0.69 -0.68
844.543 162909 (e) 11/2 281316 (o) 11/2 1.05E09 1.37E09 -0.94 -0.87
844.852 151786 (e) 13/2 270150 (o) 11/2 4.06E08* 9.00E08 -1.35* -1.06
845.296 156855 (e) 9/2 275157 (o) 7/2 2.09E06* 1.27E07# -3.64* -2.91#
846.067 156219 (e) 7/2 274413 (o) 5/2 4.55E08 3.72E08 -1.31 -1.45
847.460 162806 (e) 9/2 280805 (o) 9/2 2.83E08* 5.63E08 -1.50* -1.26
848.206 162909 (e) 11/2 280805 (o) 9/2 1.81E09 1.35E09 -0.70 -0.87
848.824 158125 (e) 11/2 275935 (o) 11/2 1.16E09 1.49E09 -0.89 -0.84
849.545 168491 (e) 11/2 286201 (o) 9/2 7.14E08 8.26E08 -1.10 -1.09
849.723 167223 (e) 5/2 284908 (o) 5/2 1.17E09 2.85E08 -0.89 -1.55
850.057 193214 (e) 17/2 310853 (o) 15/2 3.38E10 3.52E10 0.57 0.53
850.458 158983 (e) 5/2 276567 (o) 7/2 2.20E08 4.31E07 -1.62 -2.39

158125 (e) 11/2 275709 (o) 9/2 7.59E08 4.04E08 -1.08 -1.40
850.836 159035 (e) 7/2 276567 (o) 7/2 7.50E06* 5.68E08 -3.08* -1.26
850.976 163804 (e) 13/2 281316 (o) 11/2 2.77E08 5.47E08 -1.51 -1.26
851.580 170639 (e) 9/2 288068 (o) 9/2 3.55E09 4.09E09 -0.40 -0.39
852.001 150561 (e) 7/2 267932 (o) 9/2 5.39E09 5.64E09 -0.23 -0.26

185736 (e) 7/2 303103 (o) 5/2 6.13E08 1.77E09 -1.17 -0.76
852.267 171307 (e) 7/2 288642 (o) 7/2 1.11E09 9.69E08 -0.91 -1.03
852.709 180036 (e) 7/2 297310 (o) 9/2 1.41E09 1.25E09 -0.80 -0.90
853.379 156219 (e) 7/2 273400 (o) 9/2 5.94E08 3.87E08 -1.19 -1.42
855.408 162909 (e) 11/2 279813 (o) 13/2 1.15E09 9.32E08# -0.89 -1.02#
856.592 160846 (e) 3/2 277587 (o) 5/2 3.15E08 3.61E08 -1.46 -1.46
857.582 151786 (e) 13/2 268393 (o) 15/2 1.71E09 1.31E09# -0.71 -0.88#

164198 (e) 7/2 280805 (o) 9/2 3.05E09 2.07E09 -0.46 -0.69
858.039 156855 (e) 9/2 273400 (o) 9/2 7.71E08 6.13E08 -1.07 -1.21
858.128 159402 (e) 13/2 275935 (o) 11/2 1.07E09 1.18E09 -0.92 -0.93
859.109 172242 (e) 9/2 288642 (o) 7/2 1.91E09 2.11E09 -0.67 -0.69
859.849 158983 (e) 5/2 275283 (o) 5/2 1.00E09 1.21E09 -0.96 -0.93
860.567 151786 (e) 13/2 267988 (o) 11/2 2.35E09 1.97E09 -0.58 -0.70
860.781 158983 (e) 5/2 275157 (o) 7/2 2.11E09 2.15E09 -0.62 -0.68
861.164 159035 (e) 7/2 275157 (o) 7/2 2.01E09 1.07E09 -0.64 -0.97
861.455 171307 (e) 7/2 287390 (o) 7/2 9.56E08 1.86E09 -0.96 -0.73
861.924 152373 (e) 17/2 268393 (o) 15/2 3.27E10 3.36E10 0.57 0.53
862.222 171307 (e) 7/2 287287 (o) 5/2 3.52E09 4.33E09 -0.40 -0.36
862.798 164198 (e) 7/2 280099 (o) 7/2 1.26E09 1.47E09 -0.84 -0.83
863.370 172242 (e) 9/2 288068 (o) 9/2 2.30E08 1.80E08 -1.58 -1.74
866.324 158983 (e) 5/2 274413 (o) 5/2 1.29E09 5.88E08 -0.83 -1.24
866.928 164463 (e) 15/2 279813 (o) 13/2 2.85E10 2.89E10 0.52 0.47
867.487 158125 (e) 11/2 273400 (o) 9/2 1.22E08* 9.24E08 -1.86* -1.03
868.023 155054 (e) 11/2 270258 (o) 13/2 1.40E09 1.40E09 -0.79 -0.84
868.327 154985 (e) 9/2 270150 (o) 11/2 7.81E08 2.30E09 -1.05 -0.63
868.447 172242 (e) 9/2 287390 (o) 7/2 2.02E09 1.95E09 -0.63 -0.70
868.652 173520 (e) 7/2 288642 (o) 7/2 1.17E09 2.15E09 -0.87 -0.66
868.841 172885 (e) 5/2 287980 (o) 5/2 1.04E09 6.06E07 -0.92 -2.21

155054 (e) 11/2 270150 (o) 11/2 2.00E09 4.91E09 -0.64 -0.30
868.993 166240 (e) 9/2 281316 (o) 11/2 1.82E09 2.19E09 -0.67 -0.65
869.347 162558 (e) 7/2 277587 (o) 5/2 3.73E08 1.37E08 -1.37 -1.87
869.760 148551 (e) 11/2 263525 (o) 9/2 1.11E09 1.03E09 -0.90 -0.99
869.949 171005 (e) 5/2 285954 (o) 7/2 8.89E08 2.07E09 -0.99 -0.67
870.436 170023 (e) 5/2 284908 (o) 5/2 3.43E08 3.18E09 -1.40 -0.48
870.836 189188 (e) 7/2 304021 (o) 7/2 7.51E08 2.86E08 -1.06 -1.53
870.990 154985 (e) 9/2 269797 (o) 9/2 5.30E00* 5.26E08 -9.21* -1.27

181894 (e) 7/2 296706 (o) 7/2 7.02E09 6.94E09 -0.08 -0.14
872.194 161055 (e) 11/2 275709 (o) 9/2 3.39E09 6.90E09 -0.40 -0.15
872.647 161973 (e) 5/2 276567 (o) 7/2 2.62E08 1.26E09 -1.52 -0.89
872.869 166240 (e) 9/2 280805 (o) 9/2 3.15E09 5.83E09 -0.43 -0.22
873.323 172885 (e) 5/2 287390 (o) 7/2 1.25E09 1.38E09 -0.83 -0.85
873.840 158983 (e) 5/2 273421 (o) 7/2 2.76E09 3.92E09 -0.50 -0.40
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Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

874.237 159035 (e) 7/2 273421 (o) 7/2 7.85E08 7.96E08 -1.05 -1.09
874.319 198972 (e) 9/2 313347 (o) 11/2 7.06E09 6.97E09 -0.08 -0.15
874.638 181894 (e) 7/2 296226 (o) 5/2 1.45E09 1.84E09 -0.77 -1.72
875.121 166535 (e) 7/2 280805 (o) 9/2 1.21E09 6.93E08 -0.84 -1.13
875.645 182025 (e) 5/2 296226 (o) 5/2 4.35E09 4.58E09 -0.28 -0.31
875.724 167125 (e) 9/2 281316 (o) 11/2 1.00E09 1.36E08 -0.93 -1.85
875.892 182357 (e) 13/2 296526 (o) 11/2 2.41E10 2.42E10 0.45 0.40
876.449 174544 (e) 9/2 288642 (o) 7/2 4.57E08* 2.59E08 -1.27* -1.58
876.548 162483 (e) 9/2 276567 (o) 7/2 3.61E08 4.24E09 -1.38 -0.36
877.127 162558 (e) 7/2 276567 (o) 7/2 5.78E07* 2.63E08 -2.17* -1.57
877.501 172242 (e) 9/2 286201 (o) 9/2 3.39E09 4.81E09 -0.40 -0.30
877.848 189188 (e) 7/2 303103 (o) 5/2 9.81E09 8.98E09 0.07 -0.03
877.933 171005 (e) 5/2 284908 (o) 5/2 3.48E09 1.34E09 -0.38 -0.85
878.199 173520 (e) 7/2 287390 (o) 7/2 9.46E08 6.49E08 -0.95 -1.17
878.279 166240 (e) 9/2 280099 (o) 7/2 1.86E08* 4.60E08 -1.66* -1.32
879.409 172242 (e) 9/2 285954 (o) 7/2 1.89E07* 5.85E09 -2.65* -0.21
879.666 167125 (e) 9/2 280805 (o) 9/2 3.26E09 1.10E09 -0.41 -0.93
880.316 156663 (e) 15/2 270258 (o) 13/2 1.80E10 1.77E10 0.33 0.27
880.457 156219 (e) 7/2 269797 (o) 9/2 1.61E08 1.08E08 -1.72 -1.94
880.543 166535 (e) 7/2 280099 (o) 7/2 5.51E09 4.98E09 -0.18 -0.27

160846 (e) 3/2 274413 (o) 5/2 4.44E09 3.84E09 -0.28 -0.40
880.610 161973 (e) 5/2 275530 (o) 3/2 7.55E08 7.48E08 -1.06 -1.12
880.873 174544 (e) 9/2 288068 (o) 9/2 2.73E09 2.10E09 -0.49 -0.66
881.434 162483 (e) 9/2 275935 (o) 11/2 7.92E08 6.92E08 -1.02 -1.14
881.497 171465 (e) 3/2 284908 (o) 5/2 3.81E09 3.57E09 -0.34 -0.42
882.537 161973 (e) 5/2 275283 (o) 5/2 5.39E08 4.41E08 -1.20 -1.34
882.654 156855 (e) 9/2 270150 (o) 11/2 3.90E08 4.61E08 -1.33 -1.31
882.963 172242 (e) 9/2 285495 (o) 11/2 5.55E08 5.07E08 -1.17 -1.27
883.065 157016 (e) 13/2 270258 (o) 13/2 6.32E09 6.04E09 -0.12 -0.20
883.520 161973 (e) 5/2 275157 (o) 7/2 2.44E09 1.69E09 -0.54 -0.75
883.609 174895 (e) 7/2 288068 (o) 9/2 2.78E08 2.64E08 -1.48 -1.55
883.914 157016 (e) 13/2 270150 (o) 11/2 1.98E07* 1.18E09 -2.62* -0.91
884.111 164479 (e) 3/2 277587 (o) 5/2 9.11E07 3.62E08 -1.96 -1.43
884.207 184215 (e) 11/2 297310 (o) 9/2 1.36E10 1.37E10 0.22 0.16
884.290 174895 (e) 7/2 287980 (o) 5/2 1.08E09 1.91E09 -0.88 -0.70

171307 (e) 7/2 284393 (o) 9/2 5.01E07* 5.51E07 -2.23* -2.23
884.512 183649 (e) 9/2 296706 (o) 7/2 6.39E09 6.35E09 -0.11 -0.17
884.747 190994 (e) 5/2 304021 (o) 7/2 1.91E08 1.92E08 -1.64 -1.70
884.928 154985 (e) 9/2 267988 (o) 11/2 1.51E09 1.22E09 -0.75 -0.89
885.057 175654 (e) 7/2 288642 (o) 7/2 1.11E09 7.33E08 -0.88 -1.11
885.160 167125 (e) 9/2 280099 (o) 7/2 2.43E08* 5.04E07# -1.53* -2.27#
885.235 150561 (e) 7/2 263525 (o) 9/2 2.96E09 3.67E09 -0.46 -0.42
885.394 156855 (e) 9/2 269797 (o) 9/2 4.56E07* 1.29E09 -2.26* -0.86
885.720 162806 (e) 9/2 275709 (o) 9/2 4.85E07* 4.49E08 -2.23* -1.33
885.923 183649 (e) 9/2 296526 (o) 11/2 9.45E08 7.70E08# -0.94 -1.08#
886.160 143721 (e) 9/2 256566 (o) 11/2 1.41E10 1.58E10 0.22 0.21

174544 (e) 9/2 287390 (o) 7/2 9.68E09 9.37E09 0.07 0.00
886.322 168491 (e) 11/2 281316 (o) 11/2 8.07E09 7.82E09 -0.01 -0.08
886.438 168506 (e) 13/2 281316 (o) 11/2 1.47E10 1.42E10 0.25 0.18
886.533 162909 (e) 11/2 275709 (o) 9/2 1.03E09 1.53E09 -0.90 -0.79
886.824 150561 (e) 7/2 263323 (o) 7/2 3.79E09 3.33E09 -0.35 -0.47
887.517 162483 (e) 9/2 275157 (o) 7/2 7.37E09 2.95E09 -0.05 -0.51
888.110 162558 (e) 7/2 275157 (o) 7/2 5.19E09 5.54E09 -0.21 -0.23
888.932 174895 (e) 7/2 287390 (o) 7/2 1.92E09 1.85E09 -0.63 -0.70
889.359 161973 (e) 5/2 274413 (o) 5/2 1.98E09 2.18E09 -0.62 -0.64
889.410 173520 (e) 7/2 285954 (o) 7/2 1.89E04* 1.57E09 -5.64* -0.77
889.923 164198 (e) 7/2 276567 (o) 7/2 1.92E09 1.74E09 -0.64 -0.74
890.068 162806 (e) 9/2 275157 (o) 7/2 2.22E08 3.13E09 -1.57 -0.48
890.114 161055 (e) 11/2 273400 (o) 9/2 1.00E10 6.44E09 0.08 -0.16
890.360 168491 (e) 11/2 280805 (o) 9/2 8.28E09 8.48E09 0.01 -0.04
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

891.814 163804 (e) 13/2 275935 (o) 11/2 1.81E10 1.77E10 0.34 0.28
891.991 190994 (e) 5/2 303103 (o) 5/2 3.21E09 3.14E09 -0.41 -0.47
892.556 201310 (e) 11/2 313347 (o) 11/2 3.44E08 6.52E09 -1.38 -0.15
892.656 158125 (e) 11/2 270150 (o) 11/2 2.18E09 3.23E09 -0.57 -0.46

187526 (e) 15/2 299551 (o) 13/2 2.39E10 2.71E10 0.45 0.45
893.489 192100 (e) 9/2 304021 (o) 7/2 1.60E10 1.61E10 0.30 0.24
894.013 162558 (e) 7/2 274413 (o) 5/2 2.34E09 2.10E09 -0.54 -0.65
895.014 156663 (e) 15/2 268393 (o) 15/2 9.30E09 9.46E09 0.06 0.02
895.152 156219 (e) 7/2 267932 (o) 9/2 6.94E09 6.23E09 -0.08 -0.17
895.470 158125 (e) 11/2 269797 (o) 9/2 4.04E08 2.31E09 -1.31 -0.60
897.282 161973 (e) 5/2 273421 (o) 7/2 2.80E09 2.70E09 -0.47 -0.54

198972 (e) 9/2 310420 (o) 9/2 9.60E09 9.79E09 0.08 0.03
897.422 168671 (e) 7/2 280099 (o) 7/2 2.55E08 5.16E08 -1.50 -1.24
897.766 173520 (e) 7/2 284908 (o) 5/2 1.26E09 1.46E09 -0.81 -0.79
897.857 157016 (e) 13/2 268393 (o) 15/2 5.63E08 4.44E08# -1.16 -1.31#
898.301 168491 (e) 11/2 279813 (o) 13/2 7.09E08 5.11E08# -1.05 -1.25#
898.415 168506 (e) 13/2 279813 (o) 13/2 8.10E09 7.96E09 0.01 -0.05
898.918 177396 (e) 9/2 288642 (o) 7/2 4.54E09 2.54E09 -0.25 -0.57
898.980 176831 (e) 11/2 288068 (o) 9/2 1.59E10 1.58E10 0.30 0.24
899.489 202173 (e) 11/2 313347 (o) 11/2 1.25E10 7.02E09 -0.71 -0.11
899.817 156855 (e) 9/2 267988 (o) 11/2 2.42E09 9.66E08 -0.53 -0.97
900.213 164198 (e) 7/2 275283 (o) 5/2 1.64E09 9.93E08 -0.70 -0.98
900.271 156855 (e) 9/2 267932 (o) 9/2 7.55E09 4.84E09 -0.03 -0.27
900.812 166577 (e) 5/2 277587 (o) 5/2 9.59E08 1.71E08 -0.93 -1.74
901.126 157016 (e) 13/2 267988 (o) 11/2 1.22E10 1.25E10 0.17 0.13
901.232 164198 (e) 7/2 275157 (o) 7/2 6.54E06* 7.98E05# -3.09* -4.07#
901.582 162483 (e) 9/2 273400 (o) 9/2 3.62E09 1.33E09 -0.36 -0.84
902.185 162558 (e) 7/2 273400 (o) 9/2 1.37E09 5.60E08 -0.78 -1.22
902.499 164479 (e) 3/2 275283 (o) 5/2 2.98E09 2.90E09 -0.44 -0.51
902.833 203211 (e) 15/2 313974 (o) 13/2 1.60E10 1.56E10 0.30 0.24
902.954 159402 (e) 13/2 270150 (o) 11/2 1.48E10 1.10E10 0.27 0.08
904.594 175654 (e) 7/2 286201 (o) 9/2 3.44E08 6.51E08 -1.36 -1.13
905.047 162909 (e) 11/2 273400 (o) 9/2 5.55E08 4.20E08 -1.16 -1.33
906.082 167223 (e) 5/2 277587 (o) 5/2 6.45E08 1.55E09 -1.09 -0.77
906.619 175654 (e) 7/2 285954 (o) 7/2 2.54E08* 1.63E09 -1.49* -0.73
907.554 203161 (e) 13/2 313347 (o) 11/2 9.02E09 8.47E09 0.06 -0.02
907.718 170639 (e) 9/2 280805 (o) 9/2 2.30E09 1.40E09 -0.53 -0.79
908.460 170023 (e) 5/2 280099 (o) 7/2 1.06E09 7.55E08 -0.87 -1.07
908.988 178629 (e) 9/2 288642 (o) 7/2 8.44E09 1.02E10 0.03 0.06
909.637 164479 (e) 3/2 274413 (o) 5/2 7.91E08 1.16E09 -1.00 -0.89
909.941 177390 (e) 5/2 287287 (o) 5/2 4.22E08 8.32E07 -1.27 -2.03
910.156 181894 (e) 7/2 291764 (o) 5/2 1.89E09 3.05E09 -0.64 -0.49
910.220 158125 (e) 11/2 267988 (o) 11/2 6.20E09 3.15E09 -0.11 -0.45
910.683 158125 (e) 11/2 267932 (o) 9/2 4.78E09 3.48E09 -0.22 -0.41
911.242 182025 (e) 5/2 291764 (o) 5/2 5.07E08 1.09E08# -1.20 -1.92#
911.509 182025 (e) 5/2 291733 (o) 3/2 1.69E09 1.34E09 -0.68 -0.83
912.834 195441 (e) 5/2 304990 (o) 5/2 2.27E09 2.73E09 -0.55 -0.52
913.569 170639 (e) 9/2 280099 (o) 7/2 4.32E09 4.30E09 -0.25 -0.30
913.729 167125 (e) 9/2 276567 (o) 7/2 4.30E09 1.84E09 -0.26 -0.69
914.012 186818 (e) 5/2 296226 (o) 5/2 2.72E08 3.22E08 -1.45 -1.43
914.326 176831 (e) 11/2 286201 (o) 9/2 8.56E08 5.34E08 -0.95 -1.21
914.719 147970 (e) 15/2 257293 (o) 13/2 2.21E10 2.44E10 0.44 0.43
915.730 164198 (e) 7/2 273400 (o) 9/2 5.04E08 1.04E09 -1.20 -0.94

161055 (e) 11/2 270258 (o) 13/2 8.65E07 7.62E07# -1.95 -2.06#
916.503 201310 (e) 11/2 310420 (o) 9/2 1.31E08* 1.75E09 -1.77* -0.69
917.821 166577 (e) 5/2 275530 (o) 3/2 1.12E09 6.51E06# -0.85 -3.14#
918.131 166240 (e) 9/2 275157 (o) 7/2 2.34E06* 3.19E08 -3.52* -1.45
918.260 154421 (e) 5/2 263323 (o) 7/2 7.01E09 7.17E09 -0.05 -0.10
919.071 177396 (e) 9/2 286201 (o) 9/2 3.62E08 1.40E08 -1.33 -1.79
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

919.557 166535 (e) 7/2 275283 (o) 5/2 2.33E09 3.09E09 -0.53 -0.46
919.607 148551 (e) 11/2 257293 (o) 13/2 3.36E09 3.25E09 -0.37 -0.44
919.909 166577 (e) 5/2 275283 (o) 5/2 2.33E09 9.97E08 -0.53 -0.95
920.269 176831 (e) 11/2 285495 (o) 11/2 7.09E08 7.06E08 -1.03 -1.08
920.621 166535 (e) 7/2 275157 (o) 7/2 1.70E08 3.73E08 -1.65 -1.37
920.925 159402 (e) 13/2 267988 (o) 11/2 1.68E09 5.87E09 -0.67 -0.17
921.116 172242 (e) 9/2 280805 (o) 9/2 3.85E08 4.09E08 -1.30 -1.32
921.319 154985 (e) 9/2 263525 (o) 9/2 6.60E09 6.09E09 -0.08 -0.17
921.898 155054 (e) 11/2 263525 (o) 9/2 1.15E10 1.07E10 0.17 0.08
922.727 176019 (e) 11/2 284393 (o) 9/2 5.51E09 1.06E10 -0.15 0.08
923.042 154985 (e) 9/2 263323 (o) 7/2 3.50E09 2.45E09 -0.35 -0.56
923.492 196706 (e) 5/2 304990 (o) 5/2 5.80E08 1.87E08 -1.13 -1.67
923.812 202173 (e) 11/2 310420 (o) 9/2 3.73E09 1.79E09 -0.31 -0.68
925.408 167223 (e) 5/2 275283 (o) 5/2 2.52E08 1.83E09 -1.49 -0.68
925.655 167125 (e) 9/2 275157 (o) 7/2 1.75E08* 1.46E09 -1.64* -0.78
925.787 148551 (e) 11/2 256566 (o) 11/2 9.95E09 1.10E10 0.11 0.10
926.489 167223 (e) 5/2 275157 (o) 7/2 1.49E08 8.72E08 -1.71 -0.99
926.815 168671 (e) 7/2 276567 (o) 7/2 1.37E08 3.45E08 -1.74 -1.40
926.999 177396 (e) 9/2 285271 (o) 7/2 4.06E06* 4.26E09 -3.27* -0.30
927.222 165551 (e) 11/2 273400 (o) 9/2 4.39E09 9.01E09 -0.24 0.02
929.005 203211 (e) 15/2 310853 (o) 15/2 9.66E09 9.64E09# 0.11 0.06#
929.606 178629 (e) 9/2 286201 (o) 9/2 3.61E09 2.53E09 -0.32 -0.52
929.670 170023 (e) 5/2 277587 (o) 5/2 1.98E09 5.06E08 -0.58 -1.24
931.584 162806 (e) 9/2 270150 (o) 11/2 2.81E09 2.14E09 -0.43 -0.60
931.917 156219 (e) 7/2 263525 (o) 9/2 4.16E08 5.04E08 -1.27 -1.24
932.915 167223 (e) 5/2 274413 (o) 5/2 4.10E08 1.01E08 -1.26 -1.93
933.007 166240 (e) 9/2 273421 (o) 7/2 2.97E09 1.55E09 -0.41 -0.74
933.182 166240 (e) 9/2 273400 (o) 9/2 2.15E09 1.43E09 -0.55 -0.78
933.672 156219 (e) 7/2 263323 (o) 7/2 3.57E09 4.48E09 -0.33 -0.29
934.647 162806 (e) 9/2 269797 (o) 9/2 6.69E09 4.95E09 -0.05 -0.23
935.448 198089 (e) 7/2 304990 (o) 5/2 5.38E09 4.42E09 -0.15 -0.30
935.559 162909 (e) 11/2 269797 (o) 9/2 4.46E09 3.02E09 -0.22 -0.44
937.466 156855 (e) 9/2 263525 (o) 9/2 8.31E08 2.05E09 -0.96 -0.62
937.713 178629 (e) 9/2 285271 (o) 7/2 1.68E08* 7.58E08 -1.64* -1.04
938.578 170023 (e) 5/2 276567 (o) 7/2 6.32E08 3.89E08 -1.07 -1.34
939.097 168671 (e) 7/2 275157 (o) 7/2 2.93E08 3.17E07# -1.40 -2.42#
940.328 163804 (e) 13/2 270150 (o) 11/2 3.36E08 3.96E08 -1.34 -1.32
940.775 167125 (e) 9/2 273421 (o) 7/2 1.00E09 2.57E09 -0.88 -0.52
941.636 167223 (e) 5/2 273421 (o) 7/2 1.88E09 1.14E09 -0.60 -0.87
947.805 151786 (e) 13/2 257293 (o) 13/2 9.74E09 1.03E10 0.12 0.09
948.762 158125 (e) 11/2 263525 (o) 9/2 1.64E09 2.83E09 -0.65 -0.47
950.032 170023 (e) 5/2 275283 (o) 5/2 1.28E09 3.95E08 -0.76 -1.33
950.246 180036 (e) 7/2 285271 (o) 7/2 4.67E08 5.21E09 -1.19 -0.19
950.729 162806 (e) 9/2 267988 (o) 11/2 7.93E07* 5.22E08 -1.97* -1.20
951.237 162806 (e) 9/2 267932 (o) 9/2 4.63E07* 1.42E09 -2.20* -0.76
951.662 162909 (e) 11/2 267988 (o) 11/2 1.65E09 4.43E09 -0.64 -0.26
952.173 162909 (e) 11/2 267932 (o) 9/2 2.05E08* 1.62E09 -1.55* -0.70
952.873 186818 (e) 5/2 291764 (o) 5/2 2.70E09 2.80E09 -0.44 -0.48
953.165 186818 (e) 5/2 291733 (o) 3/2 1.58E09 1.45E09 -0.68 -0.77
954.374 151786 (e) 13/2 256566 (o) 11/2 5.49E09 5.57E09 -0.13 -0.17
956.772 170639 (e) 9/2 275157 (o) 7/2 8.14E07* 1.22E09 -1.94* -0.82
958.970 171005 (e) 5/2 275283 (o) 5/2 2.17E08 1.19E09 -1.52 -0.84
960.921 173520 (e) 7/2 277587 (o) 5/2 1.93E09 2.36E09 -0.57 -0.54
963.227 171465 (e) 3/2 275283 (o) 5/2 9.93E08 1.33E09 -0.86 -0.79
965.653 166240 (e) 9/2 269797 (o) 9/2 7.30E08 1.13E09 -0.98 -0.85
974.890 189188 (e) 7/2 291764 (o) 5/2 9.79E08 5.43E08 -0.85 -1.16

197304 (e) 13/2 299879 (o) 11/2 5.16E09 4.92E09 -0.13 -0.19
978.015 197304 (e) 13/2 299551 (o) 13/2 8.87E09 9.56E09 0.11 0.10
979.306 171307 (e) 7/2 273421 (o) 7/2 1.44E09 1.22E09 -0.68 -0.80

1002.891 156855 (e) 9/2 256566 (o) 11/2 7.45E08 8.86E08 -0.95 -0.92
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

1008.394 158125 (e) 11/2 257293 (o) 13/2 6.14E08 6.54E08 -1.03 -1.05
1015.829 158125 (e) 11/2 256566 (o) 11/2 5.73E08 6.75E08 -1.05 -1.03
1236.607 187526 (e) 15/2 268393 (o) 15/2 1.76E04* 9.56E03# -5.38* -5.68#
1247.456 217147 (e) 7/2 297310 (o) 9/2 1.10E07* 1.39E07 -2.57* -2.48
1290.447 207779 (e) 7/2 285271 (o) 7/2 2.83E07* 5.16E05# -2.15* -3.88#
1420.023 243552 (e) 11/2 313974 (o) 13/2 5.36E09 5.00E09 0.23 0.18
1429.209 217422 (e) 9/2 287390 (o) 7/2 4.96E06* 3.62E04# -2.81* -4.96#
1432.500 243539 (e) 13/2 313347 (o) 11/2 2.51E09 2.15E09 -0.09 -0.18

207779 (e) 7/2 277587 (o) 5/2 1.78E09 2.49E09 -0.26 -0.12
1432.771 243552 (e) 11/2 313347 (o) 11/2 1.46E10 1.54E10 0.67 0.67
1435.556 218982 (e) 5/2 288642 (o) 7/2 2.21E09 1.21E09 -0.15 -0.43
1441.761 211957 (e) 11/2 281316 (o) 11/2 1.12E10 1.14E10 0.56 0.56
1441.952 207216 (e) 9/2 276567 (o) 7/2 4.50E07* 1.61E09 -1.83* -0.29
1443.641 212047 (e) 9/2 281316 (o) 11/2 5.57E09 5.16E09 0.26 0.21
1448.138 217147 (e) 7/2 286201 (o) 9/2 3.46E09 4.37E09 0.06 0.14
1449.324 218982 (e) 5/2 287980 (o) 5/2 2.93E08 3.94E04# -1.02 -4.90#
1450.356 201310 (e) 11/2 270258 (o) 13/2 6.31E09 3.27E09 0.32 0.02
1450.686 228377 (e) 7/2 297310 (o) 9/2 5.15E09 4.96E09 0.23 0.20
1452.469 211957 (e) 11/2 280805 (o) 9/2 2.51E09 2.19E09 -0.08 -0.15
1452.638 201310 (e) 11/2 270150 (o) 11/2 7.11E09 6.27E09 0.37 0.30
1453.353 219261 (e) 7/2 288068 (o) 9/2 1.33E10 1.30E10 0.64 0.62
1453.751 207779 (e) 7/2 276567 (o) 7/2 9.94E08 4.73E09 -0.50 0.18
1453.910 217422 (e) 9/2 286201 (o) 9/2 5.42E09 7.26E09 0.25 0.37
1454.375 212047 (e) 9/2 280805 (o) 9/2 1.09E10 1.09E10 0.56 0.55
1455.214 207216 (e) 9/2 275935 (o) 11/2 1.47E09 1.57E10 -0.30 0.70

219261 (e) 7/2 287980 (o) 5/2 7.04E08 8.94E07 -0.63 -1.55
1459.156 217422 (e) 9/2 285954 (o) 7/2 1.96E07* 2.06E09 -2.19* -0.17
1460.113 201310 (e) 11/2 269797 (o) 9/2 3.64E09 4.63E09 0.08 0.18
1460.708 220182 (e) 5/2 288642 (o) 7/2 8.12E09 9.14E09 0.43 0.47
1461.825 218982 (e) 5/2 287390 (o) 7/2 4.63E09 4.81E09 0.19 0.20
1463.514 228377 (e) 7/2 296706 (o) 7/2 8.58E09 8.47E09 0.46 0.44
1464.031 218982 (e) 5/2 287287 (o) 5/2 4.67E09 5.23E09 0.20 0.23
1467.809 219261 (e) 7/2 287390 (o) 7/2 5.60E09 5.44E09 0.28 0.25
1468.749 202173 (e) 11/2 270258 (o) 13/2 1.24E08 2.72E09 -1.37 -0.05

219202 (e) 3/2 287287 (o) 5/2 1.91E09 5.06E08 -0.19 -0.77
1468.991 217422 (e) 9/2 285495 (o) 11/2 1.62E10 1.56E10 0.74 0.71
1469.454 212047 (e) 9/2 280099 (o) 7/2 8.76E09 7.78E09 0.47 0.41
1470.045 219261 (e) 7/2 287287 (o) 5/2 1.39E09 1.96E09 -0.33 -0.19
1471.094 202173 (e) 11/2 270150 (o) 11/2 1.37E08 5.31E09 -1.32 0.24
1471.203 228554 (e) 9/2 296526 (o) 11/2 1.60E10 1.56E10 0.73 0.71
1471.880 207216 (e) 9/2 275157 (o) 7/2 1.92E08 1.14E09 -1.19 -0.43
1472.120 207779 (e) 7/2 275709 (o) 9/2 3.56E09 5.14E09 0.08 0.23
1473.710 211957 (e) 11/2 279813 (o) 13/2 1.89E10 1.82E10 0.81 0.78
1475.774 217147 (e) 7/2 284908 (o) 5/2 7.15E09 6.85E09 0.39 0.36
1478.758 202173 (e) 11/2 269797 (o) 9/2 4.89E07* 3.81E09 -1.77* 0.10
1484.176 207779 (e) 7/2 275157 (o) 7/2 6.76E09 2.95E09 0.36 -0.01
1485.582 243539 (e) 13/2 310853 (o) 15/2 2.13E10 2.07E10 0.87 0.85
1487.908 220182 (e) 5/2 287390 (o) 7/2 5.69E08 2.65E08 -0.70 -1.04
1493.883 219261 (e) 7/2 286201 (o) 9/2 1.61E08 1.52E08 -1.25 -1.28
1499.728 201310 (e) 11/2 267988 (o) 11/2 6.00E09 9.72E08 0.31 -0.48
1500.734 207779 (e) 7/2 274413 (o) 5/2 6.23E09 5.47E09 0.33 0.27
1500.995 201310 (e) 11/2 267932 (o) 9/2 8.65E09 1.55E09 0.47 -0.28
1510.946 207216 (e) 9/2 273400 (o) 9/2 3.22E08 8.63E08 -0.95 -0.52
1516.850 218982 (e) 5/2 284908 (o) 5/2 2.62E08 1.72E08 -1.02 -1.20
1519.401 202173 (e) 11/2 267988 (o) 11/2 1.64E08 9.52E08 -1.23 -0.48
1520.695 202173 (e) 11/2 267932 (o) 9/2 2.13E08 1.49E09 -1.12 -0.29
1523.901 207779 (e) 7/2 273400 (o) 9/2 2.22E09 5.29E08 -0.11 -0.70
1536.335 220182 (e) 5/2 285271 (o) 7/2 2.30E08 5.68E07 -1.07 -1.67
1544.949 220182 (e) 5/2 284908 (o) 5/2 2.23E08 3.47E08 -1.07 -0.88
1584.538 212047 (e) 9/2 275157 (o) 7/2 3.00E08 1.32E09 -0.93 -0.31
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Lower levelb Upper levelb gA (s−1)c log gfc

Wavelength (Å)a E (cm−1) (P) J E (cm−1) (P) J HFRd MCDHFe HFRd MCDHFe

1629.368 212047 (e) 9/2 273421 (o) 7/2 4.62E08 6.28E08 -0.73 -0.61
1647.007 207216 (e) 9/2 267932 (o) 9/2 2.44E07 2.06E08 -1.99 -1.06
1677.768 228377 (e) 7/2 288068 (o) 9/2 4.85E07* 4.61E07 -1.68* -1.76
1709.023 217422 (e) 9/2 275935 (o) 11/2 2.58E07* 5.81E07 -1.92* -1.59
1721.095 212047 (e) 9/2 270150 (o) 11/2 3.16E09 1.03E09 0.17 -0.33
1723.849 217147 (e) 7/2 275157 (o) 7/2 3.35E07* 7.94E07 -1.81* -1.45
1728.896 211957 (e) 11/2 269797 (o) 9/2 4.86E09 1.94E09 0.36 -0.05
1731.593 212047 (e) 9/2 269797 (o) 9/2 1.15E09 4.77E08 -0.27 -0.66
1736.574 218982 (e) 5/2 276567 (o) 7/2 1.75E09 9.55E08 -0.08 -0.35
1741.985 220182 (e) 5/2 277587 (o) 5/2 1.45E09 1.37E09 -0.17 -0.19
1757.639 228377 (e) 7/2 285271 (o) 7/2 3.70E07* 1.25E09 -1.76* -0.24
1760.697 200497 (e) 13/2 257293 (o) 13/2 3.79E09 3.50E09 0.25 0.21
1773.513 220182 (e) 5/2 276567 (o) 7/2 9.71E08 3.47E08 -0.32 -0.76
1775.340 243552 (e) 11/2 299879 (o) 11/2 1.23E09 1.06E09 -0.23 -0.30
1775.921 207216 (e) 9/2 263525 (o) 9/2 3.22E08 2.93E09 -0.81 0.15
1776.176 218982 (e) 5/2 275283 (o) 5/2 1.50E09 1.38E09 -0.15 -0.18
1777.040 217147 (e) 7/2 273421 (o) 7/2 1.32E09 1.16E09 -0.20 -0.26
1777.677 217147 (e) 7/2 273400 (o) 9/2 2.83E09 4.10E09 0.13 0.29
1780.161 218982 (e) 5/2 275157 (o) 7/2 2.21E08 1.13E09 -0.96 -0.25
1783.126 219202 (e) 3/2 275283 (o) 5/2 2.64E08 1.46E08# -0.90 -1.15#
1783.513 200497 (e) 13/2 256566 (o) 11/2 8.14E09 7.86E09 0.59 0.58
1784.713 211957 (e) 11/2 267988 (o) 11/2 1.58E09 2.36E09 -0.12 0.06
1785.034 219261 (e) 7/2 275283 (o) 5/2 2.81E09 2.83E09 0.13 0.13
1785.199 228377 (e) 7/2 284393 (o) 9/2 3.13E09 4.04E09 0.18 0.29
1785.749 243552 (e) 11/2 299551 (o) 13/2 8.61E09 8.45E09 0.61 0.60

217422 (e) 9/2 273421 (o) 7/2 4.48E09 4.18E09 0.33 0.30
1786.254 201310 (e) 11/2 257293 (o) 13/2 7.43E09 3.98E09 0.55 0.28
1786.411 217422 (e) 9/2 273400 (o) 9/2 1.91E09 2.45E09 -0.04 0.07
1786.501 211957 (e) 11/2 267932 (o) 9/2 1.81E09 4.46E09 -0.05 0.33
1787.584 212047 (e) 9/2 267988 (o) 11/2 3.44E09 5.29E09 0.22 0.41
1789.384 212047 (e) 9/2 267932 (o) 9/2 3.13E08 8.20E08 -0.81 -0.40
1789.056 219261 (e) 7/2 275157 (o) 7/2 1.66E08 9.00E08 -1.08 -0.35
1790.865 228554 (e) 9/2 284393 (o) 9/2 2.01E09 2.46E09 -0.01 0.08
1793.854 207779 (e) 7/2 263525 (o) 9/2 4.22E09 3.84E09 0.31 0.27
1800.399 207779 (e) 7/2 263323 (o) 7/2 1.59E09 1.52E09 -0.11 -0.13
1809.730 201310 (e) 11/2 256566 (o) 11/2 1.49E09 7.05E08 -0.13 -0.46
1811.205 219202 (e) 3/2 274413 (o) 5/2 5.02E08 6.33E08 -0.58 -0.48
1814.240 202173 (e) 11/2 257293 (o) 13/2 1.42E08 3.30E09 -1.14 0.21
1819.006 220182 (e) 5/2 275157 (o) 7/2 2.80E07 1.53E08 -1.83 -1.09
1838.460 202173 (e) 11/2 256566 (o) 11/2 3.49E07 6.11E08 -1.74 -0.51
1843.938 220182 (e) 5/2 274413 (o) 5/2 3.05E08 4.34E08 -0.78 -0.63

a Experimental wavelengths measured by Kaufman and Sugar (1978) and Ryabtsev et al. (2015)

b Lower and upper levels of the transitions are represented by their experimental values (in cm−1), their parities
((e) for even and (o) for odd) and their J-values. Level energies (rounded values), are taken from Kaufman and
Sugar (1978) and Ryabtsev et al. (2015)

c Weighted transition probabilities (gA) and oscillator strengths (log(gf )) calculated using HFR method (this
work)

d
gA- and log(gf )-values with the ∗ symbol correspond to transitions for which CF < 0.05 in HFR calculations
(this work)

e
gA- and log(gf )-values with the # symbol correspond to transitions for which dT > 0.20 in the MCDHF
calculations (this work)
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